

Traduction de la notice d'utilisation originale

Capteur LBK SBV (capteurs avec plage de 5 mètres) Unité de contrôle LBK ISC Safe Radar System LBK

© 2022-2025

Leuze electronic GmbH + Co. KG In der Braike 1 73277 Owen / Allemagne Téléphone : +49 7021 573-0

Fax: +49 7021 573 199

www.leuze.com info@leuze.com

1	Glossaire des termes	13
2	Cette notice	14
	2.1 À propos de cette notice	14
	2.1.1 Objectifs de la notice d'instructions	14
	2.1.2 Obligations relatives à la présente notice d'instructions	14
	2.1.3 Documentation fournie	14
	2.1.4 Destinataires de cette notice d'instructions	15
3	Sécurité	16
	3.1 Consignes de sécurité	16
	3.1.1 Messages de sécurité	16
	3.1.2 Symboles de sécurité sur le produit	16
	3.1.3 Compétences du personnel	16
	3.1.4 Évaluation de sécurité	17
	3.1.5 Utilisation normale	17
	3.1.6 Utilisation abusive	18
	3.1.7 Installation électrique conforme à la norme CEM	18
	3.1.8 Avertissements généraux	18
	3.1.9 Avertissements pour la fonction de prévention du redémarrage	19
	3.1.10 Responsabilités	19
	3.1.11 Limites	19
	3.1.12 Mise au rebut	19
	3.2 Conformité	20
	3.2.1 Normes et directives	20
	3.2.2 CE	20
	3.2.3 UKCA	20
	3.2.4 Autres certificats de conformité et configurations nationales	21
4	À propos de LBK SBV System	22
	4.1 LBK SBV System	22
	4.1.1 Définition	22
	4.1.2 Caractéristiques distinctives	22
	4.1.3 Principaux composants	23
	4.1.4 Compatibilité entre les unités de contrôle et les capteurs	23
	4.1.5 Communication unité de contrôle - capteurs	23
	4.1.6 Communication unité de contrôle - machine	24
	4.1.7 Applications	24
	4.2 Unités de contrôle	24
	4.2.1 Interfaces	24
	4.2.2 Architecture de communication	25
	4.2.3 Fonctions	25
	4.2.4 Unités de contrôle type B	27

4.2.5	DEL d'état du système	.29
4.2.6	DEL d'état Fieldbus PROFIsafe	.30
4.2.7	DEL d'état Fieldbus FSoE	.31
4.2.8	DEL d'état CIP Safety™	.32
4.3	Entrées de l'unité de contrôle	.33
4.3.1	Introduction	.33
	Fonctions des entrées	
4.3.3	Option à un canal ou à deux canaux	.34
4.3.4	Mode de redondance	.34
4.3.5	Filtre anti-rebond du signal d'arrêt (uniquement pour LBK ISC110E-C)	.35
4.3.6	Entrée SNS	.35
4.4	Sorties de l'unité de contrôle	
	Sorties	
	Fonctions des sorties	
	Configuration des sorties	
	Configuration de la sortie de sécurité à deux canaux	
	Réglages optionnels de la Rétroaction du signal de redémarrage	
	Paramètres des groupes de signaux/avertissements de détection	
	État des sorties des signaux de détection	
	Test par impulsions des sorties du signal de détection	
	Contrôles diagnostics sur les OSSD	
	Résistance externe pour sorties OSSD	
4.5	Capteurs	
	Capteurs avec plage de 5 mètres	
	Comparaison entre les capteurs 3.x et les capteurs 5.x	
	Fonctions	
	Étrier 2 axes	.41
	Étrier 3 axes	
	DEL d'état	
4.6 4.6 1	Application LBK Designer Fonctions	
	Compatibilité de l'unité de contrôle	
	Utilisation de l'application LBK Designer	
	Authentification	
	Niveaux d'utilisateur	
	Menu principal	
4.7	Configuration du système	
	Configuration du système	
	Configuration dynamique du système	
	Paramètres de la configuration dynamique du système	
	Activation de la configuration dynamique du système	
	Configuration dynamique via les entrées numériques	

	4.7.6 Configuration dynamique via Fieldbus de sécurité	48
	4.7.7 Changement de configuration sécurisé	48
5	Communication système	49
	5.1 Communication Fieldbus (PROFIsafe)	
	5.1.1 Disponibilité de la fonctionnalité PROFIsafe	
	5.1.2 Communication avec la machine	49
	5.1.3 Données d'entrée en provenance du PLC	49
	5.1.4 Données échangées via PROFIsafe	50
	5.2 Communication Fieldbus (Safety over EtherCAT® - FSoE) 5.2.1 Disponibilité de la fonctionnalité FSoE	
	5.2.2 Communication avec la machine	51
	5.2.3 Données échangées via FSoE	51
	5.3 Communication Fieldbus (CIP Safety™ on Ethernet/IP™)5.3.1 Disponibilité de la fonctionnalité CIP Safety	
	5.3.2 Communication avec la machine	
	5.3.3 Données échangées via CIP Safety	
	5.4 Communication MODBUS	
	5.4.1 Disponibilité de la fonctionnalité MODBUS	
	5.4.2 Activation de la communication MODBUS	54
	5.4.3 Données échangées via MODBUS	54
6	Principes de fonctionnement	56
	6.1 Principes de fonctionnement du capteur	
	6.1.2 Facteurs influençant le champ de vision du capteur et la détection des objets	56
	6.1.3 Facteurs influençant le signal réfléchi	56
	6.1.4 Objets détectés et objets ignorés	56
	6.1.5 Interférence avec les stimulateurs cardiaques ou autres dispositifs médicaux	57
	6.2 Portées de détection	57
	6.2.1 Introduction	57
	6.2.2 Paramètres des portées de détection	57
	6.2.3 Couverture d'angle horizontale	57
	6.2.4 Distance de détection	58
	6.2.5 Dépendance des portées de détection et génération du signal de détection	59
	6.2.6 Portées de détection indépendantes : un cas d'utilisation	61
7	Fonctions de sécurité	62
	7.1 Modes de fonctionnement de sécurité et fonctions de sécurité	62
	7.1.1 Introduction	62
	7.1.2 Modes de fonctionnement de sécurité	62
	7.1.3 Limites de vitesse pour la détection d'accès	62

	7.2	Mode de fonctionnement de sécurité : Détection d'accès et prévention du redémarrage (pa défaut)	
	7.2.1	Introduction	62
	7.2.2	Fonction de sécurité : détection d'accès	63
	7.2.3	Fonction de sécurité : prévention du redémarrage	63
	7.2.4	Paramètre Délai de redémarrage	63
	7.3 7.3.1	Mode de fonctionnement de sécurité : Toujours détecter l'accès Fonction de sécurité : détection d'accès	
	7.3.2	Paramètre TOFF	64
	7.4 7.4.1	Fonction de prévention du redémarrage : option Détection d'objet statique	
	7.4.2	Disponibilité	64
	7.4.3	Applications possibles	64
	7.4.4	Fonctionnement	64
	7.4.5	Paramètres	65
	7.5	Caractéristiques de la fonction de prévention du redémarrage	65
	7.5.1	Directives pour le positionnement des capteurs	65
	7.5.2	Types de redémarrages gérés	66
	7.5.3	Précautions à prendre pour éviter un redémarrage inopiné	. 66
	7.5.4	Configurer la fonction de redémarrage	66
8	Autr	es fonctions	. 68
	8.1	Muting	
		Description	
		Activation de la fonction de muting	
		Conditions d'activation de la fonction de muting	
		Caractéristiques du signal d'activation de la fonction de muting	
		État de muting	
	8.2 8.2.1	Fonctions d'autoprotection : anti-rotation autour des axes Anti-rotation autour des axes	
		Activer la fonction anti-rotation autour des axes	
		Conditions d'activation de la fonction	
		Vérifications à effectuer lorsque la fonction anti-rotation autour des axes est désactivée	
	8.3	Fonctions d'autoprotection : anti-masquage	
		Alerte masquage	
	8.3.2	Processus de mémorisation de l'environnement	72
	8.3.3	Causes de masquage	72
	8.3.4	Alerte de masquage à la mise sous tension	72
	8.3.5	Paramètres	72
		Vérifications à effectuer lorsque la fonction anti-masquage est désactivée	
	8.3.7	Conditions de désactivation	73
	8.4	Auto-resume (capteurs 5.x uniquement)	73
	8.4.1	Introduction	

	8.4.2	Limites de la fonction	74
	8.5	Robustesse environnementale (capteurs 5.x uniquement)	74
	8.5.1	Paramètre Robustesse environnementale	74
	8.6	Robustesse électromagnétique	74
	8.6.1	Paramètre Robustesse électromagnétique	74
9	Posi	tion du capteur	75
	9.1	Concepts de base	75
	9.1.1	Facteurs déterminants	75
	9.1.2	Hauteur de montage du capteur	75
	9.1.3	Inclinaison du capteur	75
	9.2	Champ de vision des capteurs	
	9.2.1	Types de champ de vision	75
	9.2.2	Zones et dimensions du champ de vision	76
	9.2.3	Dimensions pour la fonction de détection d'accès	76
	9.2.4	Dimensions pour la fonction de prévention du redémarrage	76
	9.2.5	Position du champ de vision	77
	9.3	Champ de vision avancé (capteurs 5.x uniquement)	78
	9.3.1	Introduction	78
	9.3.2	Champ de vision classique	78
	9.3.3	Champ de vision en forme de couloir	79
	9.4	Calcul de la distance de séparation	79
	9.4.1	Introduction	79
	9.4.2	Formule pour les applications fixes	79
	9.4.3	Considérations pour le calcul de la distance d'atteinte	80
	9.4.4	Calcul de la hauteur de la zone de détection et position des capteurs	82
	9.4.5	Exemples	83
	9.4.6	Exemple de calcul de la distance de séparation - approche parallèle	84
	9.4.7	Exemple de calcul de la distance de séparation - approche orthogonale	85
	9.4.8	Formule pour les applications mobiles	85
	9.5	Calcul de la plage des distances	86
	9.5.1	Introduction	86
	9.5.2	Légende	86
	9.5.3	Configurations d'installation	87
	9.5.4	Calcul de la plage des distances	87
	9.5.5	Calcul de la distance réelle d'alarme	88
	9.6	Recommandations pour le positionnement des capteurs	88
	9.6.1	Pour la fonction de détection d'accès	88
	9.6.2	Pour le contrôle des accès à une entrée	88
	9.6.3	Pour la fonction de prévention du redémarrage	89
	9.7	Installations sur des éléments mobiles (application mobile)	90
	9.7.1	Introduction	90
	9.7.2	Limites de vitesse	90

	9.7.3 Conditions de génération du signal de détection	90
	9.7.4 Prévention du redémarrage inopiné	90
	9.7.5 Recommandations concernant la position du capteur	90
	9.8 Installations extérieures	
	9.8.1 Position exposée aux intempéries	91
	9.8.2 Recommandations concernant l'abri du capteur	91
	9.8.3 Recommandations concernant la position du capteur	91
	9.8.4 Position non exposée aux intempéries	92
10	Procédures d'installation et utilisation	93
	10.1 Avant l'installation	93
	10.1.1 Matériel nécessaire	93
	10.1.2 Système d'exploitation requis	93
	10.1.3 Installer l'application LBK Designer	93
	10.1.4 Mettre LBK SBV System en service	93
	10.2 Installation de LBK SBV System	
	10.2.1 Procédure d'installation	
	10.2.2 Installer l'unité de contrôle	
	10.2.3 Monter l'étrier 3 axes	
	10.2.4 Installer les capteurs	
	10.2.5 Exemples d'installation des capteurs	99
	10.2.6 Raccorder les capteurs à l'unité de contrôle	
	10.2.7 Exemples de chaînes	
	10.3 Régler l'inclinaison du capteur avec une précision de 1°	
	10.3.1 Procédure	
	10.3.2 Choix de la position de la bague de réglage	
	10.3.3 Modes d'insertion du capteur	
	10.3.4 Exemple : réglage de l'inclinaison du capteur à +62°	
	10.4 Configurer LBK SBV System	
	10.4.1 Procédure de configuration	
	10.4.2 Lancer l'application LBK Designer	
	10.4.3 Définir le secteur à surveiller	
	10.4.4 Configurer les entrées et les sorties auxiliaires	
	10.4.5 Sauvegarder et imprimer la configuration 10.4.6 Réattribuer les ID nœuds	
	10.4.7 Synchroniser les unités de contrôle	
	10.5 Valider les fonctions de sécurité 10.5.1 Validation	
	10.5.2 Procédure de validation pour la fonction de détection d'accès	
	10.5.3 Procédure de validation pour la fonction de prévention du redémarrage	
	10.5.4 Valider le système avec LBK Designer	
	10.5.5 Contrôles supplémentaires pour le Fieldbus de sécurité	
	10.5.6 Résolution des problèmes de validation	

	10.6 Intégration dans le réseau Fieldbus 10.6.1 Procédure d'intégration	
	10.7 Gérer la configuration	
	10.7.1 Somme de contrôle de la configuration	
	10.7.2 Rapport de configuration	113
	10.7.3 Modification de la configuration	113
	10.7.4 Afficher les configurations précédentes	114
	10.8 Autres procédures	114
	10.8.1 Changer de langue	114
	10.8.2 Restaurer la configuration d'usine	114
	10.8.3 Réinitialiser les paramètres Ethernet de l'unité de contrôle	115
	10.8.4 Restaurer les paramètres réseau	115
	10.8.5 Identifier un capteur	116
	10.8.6 Régler les paramètres réseau	116
	10.8.7 Régler les paramètres MODBUS	116
	10.8.8 Régler les paramètres du Fieldbus	116
	10.8.9 Définir les étiquettes du système	116
11	Dépannage	117
	11.1 Procédures de dépannage	117
	11.1.1 DEL sur l'unité de contrôle	
	11.1.2 DEL sur le capteur	120
	11.1.3 Autres problèmes	122
	11.2 Gestion du journal des événements	122
	11.2.1 Introduction	122
	11.2.2 Télécharger le journal du système	122
	11.2.3 Sections du fichier journal	123
	11.2.4 Structure de ligne de journal	123
	11.2.5 Estampille temporelle (compteur des secondes depuis le dernier démarrage)	123
	11.2.6 Estampille temporelle (valeur absolue/relative)	123
	11.2.7 Description de l'événement	124
	11.2.8 Exemple de fichier journal	125
	11.2.9 Liste des événements	125
	11.2.10 Niveau de verbosité	126
	11.2.11 Niveau de verbosité pour les événements de début et de fin de détection	126
	11.3 Événements INFO	127
	11.3.1 System Boot	127
	11.3.2 System configuration	127
	11.3.3 Factory reset	127
	11.3.4 Stop signal	128
	11.3.5 Restart signal	128
	11.3.6 Detection access	128
	11.3.7 Detection exit	128

11.3.8 Dynamic configuration in use	. 128
11.3.9 Muting status	. 129
11.3.10 Fieldbus connection	.129
11.3.11 MODBUS connection	.129
11.3.12 Session authentication	. 129
11.3.13 Validation	129
11.3.14 Log download	.129
11.4 Événements d'ERREUR (unité de contrôle)	130
11.4.1 Introduction	
11.4.2 Erreurs de température (TEMPERATURE ERROR)	
11.4.3 Erreurs de tension sur l'unité de contrôle (POWER ERROR)	
11.4.4 Erreur périphériques (PERIPHERAL ERROR)	
11.4.5 Erreurs de configuration (FEE ERROR)	
11.4.6 Erreurs sorties (OSSD ERROR)	. 131
11.4.7 Erreurs flash (FLASH ERROR)	
11.4.8 Erreur de configuration dynamique (DYNAMIC CONFIGURATION ERROR)	.131
11.4.9 Erreur de communication interne (INTERNAL COMMUNICATION ERROR)	131
11.4.10 Erreur d'entrée (INPUT ERROR)	. 131
11.4.11 Erreur Fieldbus (FIELDBUS ERROR)	
11.4.12 Erreur RAM (RAM ERROR)	. 131
11.4.13Erreur de sauvegarde ou de restauration via SD (SD BACKUP OR RESTORE ERROR)	132
11.4.14 Erreurs de configuration des capteurs (SENSOR CONFIGURATION ERROR)	. 132
11.5 Événements d'ERREUR (capteur)	
11.5.1 Introduction	
11.5.2 Erreur de configuration des capteurs (SENSOR CONFIGURATION ERROR)	
11.5.3 Erreur de configuration (MISCONFIGURATION ERROR)	
11.5.4 Erreur d'état et défaillance (STATUS ERROR/FAULT ERROR)	
11.5.5 Erreur de protocole (PROTOCOL ERROR)	
11.5.6 Erreurs de tension du capteur (POWER ERROR)	
11.5.7 Capteur d'autoprotection (TAMPER ERROR)	
11.5.8 Erreur du signal (SIGNAL ERROR)	
11.5.9 Erreurs de température (TEMPERATURE ERROR)	
11.5.10 Erreur MSS et erreur DSS (MSS ERROR/DSS ERROR)	
11.6 Événements d'ERREUR (BUS CAN)	
11.6.1 Introduction	
11.6.2 Erreurs CAN (CAN ERROR)	. 135
Entretien	136
12.1 Entretien courant	136
12.1.1 Nettoyage	
12.2 Entretien exceptionnel	. 136
12.2.1 Technicien de maintenance de la machine	136

12

	12.2.2 Mise à jour du firmware de l'unité de contrôle	136
	12.2.3Remplacement d'un capteur : fonction Réinitialisation opérationnelle du système	136
	12.2.4 Sauvegarde de la configuration sur PC	137
	12.2.5 Sauvegarde de la configuration sur carte microSD	137
	12.2.6 Chargement d'une configuration depuis le PC	137
	12.2.7 Chargement d'une configuration depuis une carte microSD	138
	12.2.8 Spécifications de la carte microSD	138
3	Références techniques	139
	13.1 Données techniques	139
	13.1.1 Caractéristiques générales	139
	13.1.2 Paramètres de sécurité	139
	13.1.3 Connexion Ethernet (si disponible)	140
	13.1.4 Caractéristiques de l'unité de contrôle	140
	13.1.5 Caractéristiques du capteur	142
	13.1.6 Spécifications recommandées pour les câbles bus CAN	143
	13.1.7 Spécifications des vis inviolables	143
	13.1.8 Spécifications des vis non inviolables	143
	13.1.9 Spécifications des vis inférieures	144
	13.2 Brochage des borniers et connecteur	
	13.2.1 Bornier des entrées et des sorties numériques	
	13.2.2 Limites de tension et de courant des entrées numériques	
	13.2.3 Bornier d'alimentation	
	13.2.4 Bornier bus CAN	
	13.2.5 Connecteurs M12 bus CAN	
	13.3 Conventions relatives à l'angle de la position de la cible	
	13.3.1 Signe de l'angle	
	13.4 Raccordements électriques 13.4.1 Raccordement des sorties de sécurité au Programmable Logic Controller	
	13.4.2 Raccordement des sorties de sécurité à un relais de sécurité externe	
	13.4.3 Raccordement du signal d'arrêt (bouton d'arrêt d'urgence)	
	13.4.4 Raccordement du signal de redémarrage (à deux canaux)	
	13.4.5 Raccordement de l'entrée et de la sortie de muting (un groupe de capteurs)	
	13.4.6 Raccordement de l'entrée et de la sortie de muting (deux groupes de capteurs)	
	13.4.7 Raccordement du signal de détection 1 et 2	
	13.4.8 Raccordement de la sortie de diagnostic	
	13.5 Paramètres de configuration de l'application	
	13.5.1 Liste des paramètres	
	13.6 Signaux d'entrée numérique	
	13.6.1 Signal d'arrêt	
	13.6.2 Muting (avec/sans impulsion)	162
	13.6.3 Signal de redémarrage (à deux canaux, mode de redondance cohérente)	164
	13.6.4 Signal de redémarrage (à deux canaux, mode de redondance inversée)	165

	13.6.5 Signal de redémarrage (à un canal)	. 166
	13.6.6Réinitialisation opérationnelle du système (à deux canaux, mode de redondance cohérente)	166
	13.6.7Réinitialisation opérationnelle du système (à deux canaux, mode de redondance inversée	
	13.6.8 Réinitialisation opérationnelle du système (à un canal)	•
	13.6.9Signal de redémarrage + réinitialisation opérationnelle du système (à deux canaux, mode de redondance cohérente)	
	13.6.10Signal de redémarrage + réinitialisation opérationnelle du système (à deux canaux, mode de redondance inversée)	е
	13.6.11Signal de redémarrage + réinitialisation opérationnelle du système (à un canal)	169
	13.6.12 Activation de la configuration dynamique (mode de redondance cohérente)	170
	13.6.13 Activation de la configuration dynamique (mode de redondance inversée)	171
14	Appendice	.172
	14.1 Logiciel du système	172
	14.1.1 Introduction	172
	14.1.2 Configuration	. 172
	14.1.3 Compétences	172
	14.1.4 Instructions d'installation	. 172
	14.1.5 Anomalies évidentes	172
	14.1.6 Compatibilité rétroactive	172
	14.1.7 Contrôle des modifications	172
	14.1.8 Mesures de sécurité mises en œuvre	172
	14.2 Mise au rebut	173
	14.3 Support technique	
	14.3.1 Hotline d'assistance	
	14.4 Propriété intellectuelle	
	14.4.1 Marques	
	14.4.2 Brevets US	
	14.5 Liste de contrôle pour l'installation d'ESPE 14.5.1 Introduction	
	14.5.2 Liste de contrôle	
	14.6 Guide de commande	
	14.6.1 Capteurs	
	14.6.2 Unités de contrôle	
	14.7 Accessoires	
	14.7.1 Technique de raccordement – Câbles de raccordement	
	14.7.2 Technique de raccordement – Câbles d'interconnexion	177
	14.7.3 Technique de raccordement – Câbles d'interconnexion USB	
	14.7.4 Technique de raccordement – Terminateurs	
	14.7.5 Technique de montage – Étriers de montage	
	14.7.6 Technique de montage – Protections	

Contents

1 Glossaire des termes

Sortie activée (ON-state)	Sortie commutant de OFF-state à ON-state.
Zone dangereuse	Zone à surveiller car dangereuse pour les personnes.
Sortie désactivée (OFF- state)	Sortie commutant de ON-state à OFF-state.
Distance de détection x	Profondeur du champ de vision configurée pour la portée de détection x.
Signal de détection x	Signal de sortie décrivant l'état de surveillance de la portée de détection x.
ESPE (Electro-Sensitive Protective Equipment)	Dispositif ou système de dispositifs utilisés pour la détection des personnes ou des parties du corps pour des raisons de sécurité. Les ESPE offrent une protection individuelle au niveau des machines et des installations ou systèmes où il existe un risque de blessure physique. Ces dispositifs/systèmes forcent la machine ou l'installation/le système à se sécuriser avant qu'une personne ne soit exposée à une situation dangereuse.
Champ de vision	Secteur de vision du capteur, caractérisé par une couverture d'angle spécifique.
Fieldset	Structure du champ de vision pouvant comprendre jusqu'à quatre portées de détection.
FMCW	Frequency Modulated Continuous Wave (onde continue modulée en fréquence)
Couverture d'angle horizontale	Propriété du champ de vision correspondant à la couverture dans le plan horizontal.
Inclinaison	Rotation du capteur autour de l'axe x. L'inclinaison du capteur est l'angle entre une ligne perpendiculaire au capteur et une ligne parallèle au sol.
Machine	Système dont une zone dangereuse fait l'objet d'une surveillance.
Secteur surveillé	Secteur surveillé par LBK SBV System. Il se compose de tous les champs de protection de tous les capteurs.
Portée de détection x	Portion du champ de vision du capteur. La portée de détection 1 est la portée la plus proche du capteur.
OSSD	Output Signal Switching Device
RCS	Radar Cross-Section (surface équivalente radar). Elle mesure le niveau de détectabilité d'un objet par le radar. Elle dépend, entre autres, du matériau, de la taille et de la position de l'objet.
Zone de tolérance	Zone du champ de vision dans laquelle la détection ou non du mouvement d'un objet ou d'une personne dépend des caractéristiques de l'objet en question.

2 Cette notice Leuze

2 Cette notice

2.1 À propos de cette notice

2.1.1 Objectifs de la notice d'instructions

Cette notice explique comment intégrer les capteurs avec une plage de 5 mètres sur LBK SBV System afin de protéger les opérateurs de la machine et comment les installer, les utiliser et les entretenir en toute sécurité.

Le présent document contient toutes les informations du manuel de sécurité visées à l'annexe D de la norme CEI 61508-2/3. En particulier, se reporter à Paramètres de sécurité à la page 139 et à Logiciel du système à la page 172.

Le fonctionnement et la sécurité de la machine à laquelle LBK SBV System est connecté ne relèvent pas du présent document.

2.1.2 Obligations relatives à la présente notice d'instructions

AVIS

La présente notice fait partie intégrante du produit et doit être conservée tout au long de la durée de vie de celui-ci. Elle doit être consultée pour toutes les situations liées au cycle de vie du produit depuis sa réception jusqu'à sa mise au rebut. Elle doit être conservée à la portée des opérateurs, dans un endroit propre et en bon état. En cas de perte ou d'endommagement de la notice, prière de contacter le support technique. En cas de vente de l'appareil, toujours remettre la présente notice à l'acheteur.

2.1.3 Documentation fournie

Document	Code	Date	Format de distribution
Traduction de la notice d'utilisation originale - capteurs	UM_LBK-SBV200_ 5m fr 50149158	31-07-2025	PDF en ligne
avec plage de 5 mètres (la présente notice)	0.III_II_00 140 100		PDF téléchargeable à partir du site www.leuze.com
Traduction de la notice	UM_LBK-SBV200-	31-07-2025	PDF en ligne
d'utilisation originale - capteurs avec plage de 9 mètres	9m_fr_50150607		PDF téléchargeable à partir du site www.leuze.com
Instructions d'installation	UM_LBK-Install_ en_50149168		PDF en ligne
			PDF téléchargeable à partir du site www.leuze.com
			(disponible en anglais, allemand)
Communication PROFIsafe	UM_LBK-	15-12-2022	PDF en ligne
Notice d'utilisation originale	PROFIsafe_en_ 50149164		PDF téléchargeable à partir du site www.leuze.com
			(disponible en anglais, allemand)

2 Cette notice Leuze

Document	Code	Date	Format de distribution
Communication MODBUS Notice	_	15-12-2022	PDF en ligne
d'utilisation originale	MODBUS_en_ 50149166		PDF téléchargeable à partir du site www.leuze.com
			(disponible en anglais, allemand)
Communication FSoE Notice	UM_LBK-FSoE_	15-08-2023	PDF en ligne
d'utilisation originale en_50	en_50149164		PDF téléchargeable à partir du site www.leuze.com
			(disponible en anglais, allemand)
Notice d'utilisation RCS Reader	UM_RCS-Reader-	15-12-2022	PDF en ligne
Tool	Soft_en-50149169		PDF téléchargeable à partir du site www.leuze.com
			(disponible en anglais)
Cable validator	-	-	Excel en ligne
			Excel téléchargeable à partir du site www.leuze.com

2.1.4 Destinataires de cette notice d'instructions

Les destinataires de la notice d'instruction sont :

- fabricant de la machine sur laquelle le système est destiné à être installé
- installateur du système
- technicien de maintenance de la machine

3 Sécurité

3.1 Consignes de sécurité

3.1.1 Messages de sécurité

Les avertissements liés à la sécurité de l'utilisateur et de l'équipement figurant dans ce document sont détaillés ci-dessous :

AVERTISSEMENT

Indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner des blessures graves, voire la mort.

AVIS

Indique des obligations qui, si elles ne sont pas respectées, peuvent causer des dommages à l'appareil.

3.1.2 Symboles de sécurité sur le produit

Ce symbole apposé sur le produit indique l'obligation de consulter la notice. En particulier, il convient d'accorder une attention particulière aux activités suivantes :

- réalisation des connexions (voir Brochage des borniers et connecteur à la page 144 et Raccordements électriques à la page 148)
- température de service des câbles (voir Brochage des borniers et connecteur à la page 144)
- capot de l'unité de contrôle soumis à un essai de choc de faible intensité (voir Données techniques à la page 139)

3.1.3 Compétences du personnel

Les destinataires de cette notice et les compétences requises pour chaque activité prévue sont décrits cidessous :

Destinataire	Tâches	Compétences
Fabricant de la machine	définit les dispositifs de protection devant être installés et établit les spécifications d'installation	 connaissance des phénomènes dangereux significatifs de la machine qui doivent être réduits en fonction de l'appréciation du risque connaissance de l'ensemble du système de sécurité de la machine et de l'installation dans laquelle il est installé
Installateur du système de protection	 installe le système configure le système imprime les rapports de configuration 	 connaissances techniques pointues dans le domaine électrique et de la sécurité industrielle connaissance de la taille de la zone dangereuse de la machine à surveiller reçoit les instructions du fabricant de la machine
Technicien de maintenance de la machine	assure l'entretien du système	connaissances techniques pointues dans le domaine électrique et de la sécurité industrielle

3.1.4 Évaluation de sécurité

Avant d'utiliser un appareil, une évaluation de la sécurité conformément à la directive sur les machines est requise.

Le produit, en tant que composant individuel, satisfait aux exigences de sécurité fonctionnelle conformément aux normes spécifiées dans Normes et directives à la page 20. Toutefois, cela ne garantit pas la sécurité fonctionnelle de l'ensemble de l'installation/machine. Afin d'atteindre le niveau de sécurité pertinent des fonctions de sécurité requises pour l'ensemble de l'installation/machine, chaque fonction de sécurité doit être considérée séparément.

3.1.5 Utilisation normale

LBK SBV System est le système de détection du corps humain certifié SIL 2 selon CEI/EN 62061, PL d selon EN ISO 13849-1 et classe de performance D selon CEI/TS 62998-1.

Il remplit les fonctions de sécurité suivantes :

- Fonction de détection d'accès : l'accès d'une ou de plusieurs personnes à une zone dangereuse désactive les sorties de sécurité pour arrêter les pièces mobiles de la machine.
- Fonction de prévention du redémarrage : elle empêche tout démarrage ou redémarrage inopiné de la machine. La détection de mouvements dans la zone dangereuse maintient les sorties de sécurité désactivées pour empêcher le démarrage de la machine.

Il remplit les fonctions de sécurité supplémentaires suivantes :

- Signal d'arrêt (catégorie 3, selon EN ISO 13849-1): il force toutes les sorties de sécurité sur OFF-state. Uniquement pour LBK ISC BUS PS, LBK ISC100E-F, LBK ISC110E-P, LBK ISC110E-C et LBK ISC110E-F, il signale l'état de la demande d'arrêt avec un message de sécurité spécifique sur l'interface de sortie du Fieldbus.
- Signal de redémarrage: il autorise l'unité de contrôle à commuter sur ON-state les sorties de sécurité liées à toutes les portées de détection sans mouvement. Uniquement pour LBK ISC BUS PS, LBK ISC100E-F, LBK ISC110E-P, LBK ISC110E-P et LBK ISC110E-F, il désactive l'état de la demande d'arrêt avec un message de sécurité spécifique sur l'interface de sortie du Fieldbus. Il peut être exécuté:
 - o en utilisant des entrées/OSSD à un canal (catégorie 2, selon EN ISO 13849-1)
 - o en utilisant des entrées/OSSD à deux canaux (catégorie 3, selon EN ISO 13849-1)
- **Muting** (catégorie 3, selon EN ISO 13849-1): il inhibe la capacité de détection d'un capteur donné ou d'un groupe de capteurs (voir Muting à la page 68).
- Activer la configuration dynamique (catégorie 3, selon EN ISO 13849-1): il permet la commutation dynamique entre les configurations précédemment définies (voir Configuration du système à la page 45).
- Contrôlé par le fieldbus : il surveille l'état des entrées via la communication Fieldbus. Il peut être exécuté :
 - en utilisant des entrées/OSSD à un canal (catégorie 2, selon EN ISO 13849-1) : il permet de rediriger en toute sécurité la valeur des données d'entrée échangées avec le maître Fieldbus vers un état physique des OSSD.
 - en utilisant des entrées/OSSD à deux canaux (catégorie 3, selon EN ISO 13849-1): il permet de rediriger en toute sécurité l'état des entrées numériques vers les données de sortie échangées avec le maître Fieldbus.

Les erreurs suivantes rendent indisponible la fonction de sécurité Contrôlé par le fieldbus : POWER ERROR, TEMPERATURE ERROR, FIELDBUS ERROR, PERIPHERAL ERROR, FEE ERROR et FLASH ERROR.

AVERTISSEMENT

Uniquement pour **Signal d'arrêt**, **Signal de redémarrage**, **Muting** et **Activer la configuration dynamique**. Toute erreur des capteurs ou de l'unité de contrôle commute le système en état de sécurité et désactive les fonctions de sécurité.

LBK SBV System est destiné à protéger le corps humain dans les cas de figure suivants :

- · protection des zones dangereuses dans les applications fixes et mobiles
- · applications en intérieur et en extérieur

LBK SBV System répond aux exigences des fonctions de sécurité des applications nécessitant un niveau de réduction du risque de :

- jusqu'à SIL 2, HFT = 0 selon CEI/EN 62061
- jusqu'à PL d, catégorie 3 selon EN ISO 13849-1
- jusqu'à la classe de performance D selon CEI TS 62998-1

LBK SBV System, en combinaison avec d'autres équipements de réduction des risques, peut être utilisé pour les fonctions de sécurité des applications qui nécessitent des niveaux plus élevés de réduction des risques.

3.1.6 Utilisation abusive

Sont notamment considérés comme une utilisation abusive les éléments suivants :

- toute modification technique, électrique ou des composants du produit
- l'utilisation du produit dans des zones autres que celles décrites dans ce document
- l'utilisation du produit en dehors des données techniques prescrites, voir Données techniques à la page 139

3.1.7 Installation électrique conforme à la norme CEM

AVIS

Ce produit est conçu pour être utilisé dans des environnements industriels. S'il est installé dans d'autres environnements, le produit peut provoquer des interférences. Dans ce cas, des mesures doivent être prises pour respecter les normes et les directives applicables au site d'installation respectif en ce qui concerne les interférences.

3.1.8 Avertissements généraux

- Une mauvaise installation et configuration du système réduit ou annule la fonction de protection du système. Suivre les instructions fournies dans cette notice pour une installation, une configuration et une validation correctes du système.
- Toute modification de la configuration du système peut affecter la fonction de protection du système.
 Après chaque modification de configuration, valider le bon fonctionnement du système en suivant les instructions fournies dans cette notice.
- Si la configuration du système permet d'accéder à la zone dangereuse sans être détecté, des mesures de sécurité supplémentaires doivent être prises (par ex., des protecteurs).
- La présence d'objets statiques, en particulier d'objets métalliques, dans le champ de vision peut limiter l'efficacité de détection du capteur. Garder le champ de vision du capteur dégagé.
- Le niveau de protection du système (SIL 2, PL d) doit être compatible avec les exigences de l'appréciation du risque.
- Vérifier que la température de l'environnement dans lequel le système est conservé et installé est compatible avec les températures de stockage et de fonctionnement indiquées dans les caractéristiques techniques de cette notice.

 Les rayonnements de ce dispositif n'interfèrent pas avec les stimulateurs cardiaques ou autres dispositifs médicaux.

3.1.9 Avertissements pour la fonction de prévention du redémarrage

- La fonction de prévention du redémarrage n'est pas garantie dans les angles morts. Si l'appréciation du risque le prévoit, prendre les mesures de sécurité appropriées dans ces secteurs.
- Le redémarrage de la machine ne doit être autorisé que dans des conditions sûres. Le poussoir du signal de redémarrage doit être installé :
 - o en dehors de la zone dangereuse
 - o non accessible depuis la zone dangereuse
 - o dans un endroit où la zone dangereuse est clairement visible

3.1.10 Responsabilités

Les opérations suivantes relèvent de la responsabilité du fabricant de la machine et de l'installateur du système :

- Prévoir une intégration adéquate des signaux de sécurité sortant du système.
- Vérifier le secteur surveillé par le système et le valider en fonction des besoins de l'application et de l'appréciation du risque.
- Suivre les instructions fournies dans la présente notice.

3.1.11 **Limites**

- Lorsque l'option Détection d'objet statique est désactivée, le système ne détecte pas les personnes parfaitement immobiles qui ne respirent pas ou les objets immobiles dans la zone dangereuse.
- Le système ne protège pas contre les pièces projetées par les machines, les radiations ou la chute d'objets de hauteur.
- La machine doit pouvoir être commandée électriquement.

3.1.12 Mise au rebut

Pour les applications de sécurité, respecter la durée de vie indiquée dans Caractéristiques générales à la page 139.

Pour le démantèlement, suivre les instructions indiquées dans Mise au rebut à la page 173.

3.2 Conformité

3.2.1 Normes et directives

Directives	2006/42/CE (DM - Machines)			
	2014/53/UE (RED - Équipements radioélectriques)			
Normes	EN ISO 13849-1: 2023 PL d			
harmonisées	EN ISO 13849-2: 2012			
	EN CEI 62061:2021			
	ETSI EN 305 550-2 V1.2.1			
	CEI/EN 61010-1: 2010, A1:2019			
	ETSI EN 301 489-1 v2.2.3 (en émission seule)			
	ETSI EN 301 489-3 v2.1.1 (en émission seule)			
	EN CEI 61000-6-2:2019			
Normes non	EN CEI 61326-3-1:2017			
harmonisées	EN CEI 61496-1:2020			
	CEI/EN 61508: 2010 Partie 1-7 SIL 2			
	ETSI EN 305 550-1 V1.2.1			
	CEI TS 62998-1:2019			
	UL 61010-1:2023			
	CAN/CSA 61010-1:2023			
	UL 61496-1:2021			
	EN CEI 61784-3-3:2021 pour le Fieldbus PROFIsafe			
	CEI/EN 61784-3-12:2010, A1:2019 pour le Fieldbus FSoE			
	CEI/EN 61784-3-2:2021 pour le Fieldbus CIP Safety™			
	CEI TS 61496-5:2023			

Remarque : aucun type de défaillance n'a été exclu lors de l'analyse et de la conception du système.

Toutes les certifications mises à jour sont disponible à l'adresse www.leuze.com (depuis l'espace de téléchargement du produit).

3.2.2 CE

Leuze déclare que LBK SBV System (Safety Radar Equipment) est conforme aux directives 2014/53/UE et 2006/42/CE. Le texte complet de la déclaration UE de conformité est disponible sur le site web de l'entreprise : www.leuze.com (depuis l'espace de téléchargement du produit).

3.2.3 UKCA

Leuze déclare que LBK SBV System (Safety Radar Equipment) est conforme aux réglementations sur les équipements radioélectriques 2017 et aux réglementations (de sécurité) pour l'alimentation des machines 2008. Le texte complet de la déclaration UKCA de conformité est disponible sur le site web de l'entreprise : www.leuze.com (depuis l'espace de téléchargement du produit).

3.2.4 Autres certificats de conformité et configurations nationales

Pour une liste complète et à jour des certificats de conformité des produits et des configurations nationales, se reporter au document National configuration addendum. Le PDF peut être téléchargé à partir du site www.leuze.com.

4 À propos de LBK SBV System

Description de l'étiquette du produit

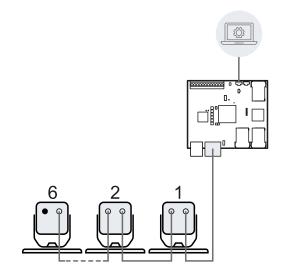
Le tableau suivant décrit les informations figurant sur l'étiquette du produit :

Élément	Description	
SID	ID sur le capteur	
DC	« aa/ss » : année et semaine de fabrication du produit	
SRE	Safety Radar Equipment	
Modèle	Modèle du produit (par ex., LBK SBV-01, LBK ISC-03)	
Type	Variante de produit, utilisée à des fins commerciales uniquement	
S/N	Numéro de série	

4.1 LBK SBV System

4.1.1 Définition

LBK SBV System est un système radar de protection active qui surveille les zones dangereuses d'une machine.


4.1.2 Caractéristiques distinctives

Voici quelques-unes des caractéristiques spéciales de ce système de protection :

- détection de la distance et de l'angle actuels des cibles détectées par chaque capteur
- personnalisation de la portée de détection avec des formes avancées (si disponible)
- jusqu'à deux portées de détection sécurisées pour définir différents comportements des machines
- angle de couverture programmable pour chaque portée de détection
- rotation sur trois axes lors de l'installation pour permettre une meilleure couverture des zones de détection
- Fieldbus de sécurité pour une communication sécurisée avec le PLC de la machine (si disponible)
- possibilité de basculer dynamiquement entre différentes configurations prédéfinies (max. 32 via Fieldbus, si disponible, et max. 8 avec les entrées numériques)
- fonction de muting pour l'ensemble du système ou seulement pour certains capteurs
- immunité à la poussière et à la fumée
- réduction des alarmes intempestives dues à la présence d'eau ou de déchets d'usinage
- communication et échange des données via MODBUS (si disponible)

4.1.3 Principaux composants

LBK SBV System se compose d'une unité de contrôle et jusqu'à un maximum de six capteurs. L'application système permet de configurer et de vérifier le fonctionnement du système.

4.1.4 Compatibilité entre les unités de contrôle et les capteurs

Les modèles et les types d'unités de contrôle et de capteurs sont répertoriés ci-dessous avec leur compatibilité respective.

Unités de contrôle				
Type A	Type B			
LBK ISC BUS PS	LBK ISC110E-P			
LBK ISC100E-F	LBK ISC110E-F			
LBK ISC-02	LBK ISC110E-C			
LBK ISC-03	LBK ISC110E			
	LBK ISC110			

Capteurs				
Capteurs 3.x Capteurs 5.x				
LBK SBV-01	LBK SBV205			

AVIS

Ne pas relier l'unité de contrôle à d'autres types de capteurs (par ex., capteurs avec plage de 9 mètres).

L'unité de contrôle peut être reliée simultanément aux capteurs 3.x et aux capteurs 5.x. Pour plus de détails sur les fonctions disponibles, voir Capteurs à la page 40.

4.1.5 Communication unité de contrôle - capteurs

Les capteurs communiquent avec l'unité de contrôle via le bus CAN en utilisant des mécanismes de diagnostic conformes à la norme EN 50325-5 pour garantir SIL 2 et PL d.

Un identifiant (ID nœud) doit être attribué à chaque capteur pour qu'il fonctionne correctement.

Des capteurs sur le même bus doivent avoir des ID nœud différents. Le capteur n'a pas d'ID nœud préattribué.

4.1.6 Communication unité de contrôle - machine

Les unités de contrôle communiquent avec la machine via les E/S (voir Entrées de l'unité de contrôle à la page 33 et Sorties de l'unité de contrôle à la page 35).

En outre, selon le modèle-type, l'unité de contrôle est dotée de :

- une communication sécurisée sur interface Fieldbus. L'interface Fieldbus permet à l'unité de contrôle de communiquer en temps réel avec le PLC de la machine afin d'envoyer des informations sur le système au PLC (par ex., la position de la cible détectée) ou de recevoir des informations du PLC (par ex., pour le changement dynamique de la configuration). Pour plus de détails, voir Communication Fieldbus (PROFIsafe) à la page 49, Communication Fieldbus (CIP Safety™ on Ethernet/IP™) à la page 52 ou voir Communication Fieldbus (Safety over EtherCAT® FSoE) à la page 51.
- un port Ethernet qui permet une communication non sécurisée sur une interface MODBUS (voir Communication MODBUS à la page 54).

4.1.7 Applications

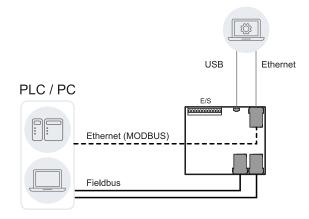
LBK SBV System s'intègre au système de contrôle de la machine : lors de l'exécution des fonctions de sécurité, ou lors de la détection de défaillances, LBK SBV System désactive et maintient désactivées les sorties de sécurité, afin que le système de contrôle puisse sécuriser la zone et/ou empêcher le redémarrage de la machine.

En l'absence d'autres systèmes de contrôle, LBK SBV System peut être raccordé aux dispositifs qui commandent l'alimentation ou le démarrage de la machine.

LBK SBV System n'exécute pas les fonctions de commande normales de la machine.

Pour des exemples de raccordement, voir Raccordements électriques à la page 148.

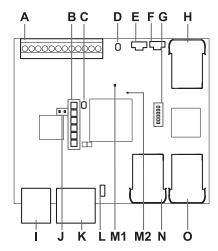
4.2 Unités de contrôle

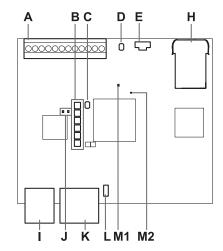

4.2.1 Interfaces

LBK SBV System prend en charge plusieurs unités de contrôle. La principale différence entre les unités réside dans les ports de connexion et, par conséquent, dans les interfaces de communication disponibles, ainsi que dans la présence d'un emplacement microSD :

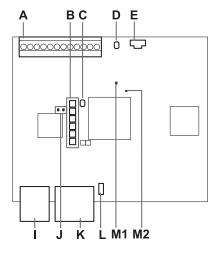
	Unité de contrôle	Port micro- USB	Port Ethernet	Port Fieldbus	Emplacement microSD
Туре А	LBK ISC BUS PS	х	х	x (PROFIsafe)	-
	LBK ISC100E-F	Х	х	x (FSoE)	-
	LBK ISC-02	х	х	-	-
	LBK ISC-03	х	-	-	-
Туре В	LBK ISC110E-P	х	Х	x (PROFIsafe)	Х
	LBK ISC110E-F	х	Х	x (FSoE)	Х
	LBK ISC110E-C	х	Х	x (CIP Safety™)	х
	LBK ISC110E	х	Х	-	Х
	LBK ISC110	х	-	-	Х

4.2.2 Architecture de communication


En fonction du modèle-type, l'architecture de communication entre l'unité de contrôle, le PLC et l'ordinateur est la suivante.

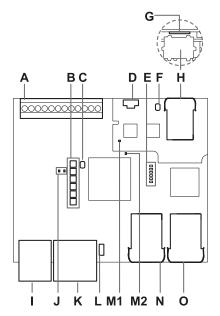

4.2.3 Fonctions

L'unité de contrôle assure les fonctions suivantes :

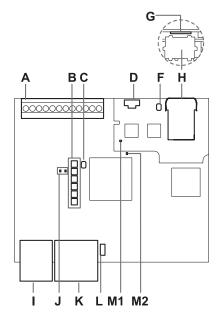

- Elle collecte les informations de tous les capteurs via le bus CAN.
- Elle compare la position du mouvement détecté avec les valeurs réglées.
- Elle désactive la sortie de sécurité sélectionnée lorsque au moins un capteur détecte un mouvement dans la portée de détection.
- Elle désactive toutes les sorties de sécurité si une défaillance sur l'un des capteurs ou sur l'unité de contrôle est détectée.
- Elle gère les entrées et les sorties.
- Elle communique avec l'application LBK Designer pour toutes les fonctions de configuration et de diagnostic.
- Elle permet de passer dynamiquement d'une configuration à l'autre.
- Elle communique avec un PLC de sécurité via la connexion Fieldbus sécurisée (si disponible).
- Elle communique et échange des données via le protocole MODBUS (si disponible).
- Elle sauvegarde et restaure la configuration du système et les mots de passe depuis/vers une carte microSD (si disponible).

LBK ISC BUS PS, LBK ISC100E-F

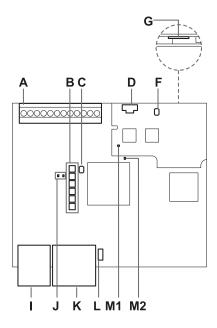
LBK ISC-02


LBK ISC-03

Élément	Description	LBK ISC BUS PS	LBK ISC100E- F	LBK ISC-02	LBK ISC-03
Α	Bornier E/S	x	х	х	х
В	DEL d'état du système	х	х	Х	х
С	Bouton de réinitialisation des paramètres réseau / Bouton de réinitialisation d'usine	x	x	X	х
D	Réservé à un usage interne. Bouton de réinitialisation des sorties	х	х	х	х
E	Port micro-USB (type micro-B) pour connecter l'ordinateur et communiquer avec l'application LBK Designer	х	х	х	х
F	Port Micro-USB, si présent (réservé)	х	Х	-	-
G	DEL d'état Fieldbus	х	Х	-	-
	Voir DEL d'état Fieldbus PROFIsafe à la page 30 ou DEL d'état Fieldbus FSoE à la page 31.				
Н	Port Ethernet avec DEL pour connecter l'ordinateur, communiquer avec l'application LBK Designer et pour la communication MODBUS	х	х	х	-
I	Bornier d'alimentation	х	Х	Х	х
J	DEL d'alimentation (verte fixe)	х	х	х	х
K	Bornier bus CAN pour raccorder le premier capteur	х	х	х	х
L	Commutateur DIP pour activer/désactiver la résistance de terminaison de bus : On (position supérieure, valeur par défaut) = résistance incluse Off (position inférieure) = résistance exclue	х	х	х	х


Élément	Description	LBK ISC BUS PS	LBK ISC100E- F	LBK ISC-02	LBK ISC-03
M1	DEL d'état des fonctionnalités matérielles du microcontrôleur secondaire :	x	х	x	х
	orange, clignotement lent : comportement normal autre état : contacter le support technique				
M2	DEL d'état des fonctionnalités matérielles du microcontrôleur primaire :	х	х	х	х
	éteinte : comportement normalrouge fixe : contacter le support technique				
N	Port Fieldbus n° 1 avec DEL (PROFIsafe ou FSoE IN)	х	Х	-	-
0	Port Fieldbus n° 2 avec DEL (PROFIsafe ou FSoE OUT)	х	Х	-	-

Remarque : uniquement pour LBK ISC100E-F : le sens de traitement va de la connexion N à la connexion O. Dans des conditions normales, le dispositif reçoit les données de l'unité de contrôle sur N et envoie les données de sortie sur O.


4.2.4 Unités de contrôle type B

LBK ISC110E-P, LBK ISC110E-F, LBK ISC110E-

LBK ISC110E

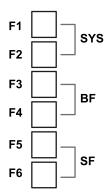
LBK ISC110

Élément	Description	LBK ISC110E- P	LBK ISC110E- F	LBK ISC110E- C	LBK ISC110E	LBK ISC110
Α	Bornier E/S	x	х	x	x	х
В	DEL d'état du système	х	Х	х	х	х
С	Bouton de réinitialisation des paramètres réseau / Bouton de réinitialisation d'usine	х	Х	х	х	х
D	Port micro-USB (type micro-B) pour connecter l'ordinateur et communiquer avec l'application LBK Designer	Х	Х	Х	X	Х
E	DEL d'état Fieldbus Voir DEL d'état Fieldbus PROFIsafe à la page 30 ou DEL d'état Fieldbus FSoE à la page 31 ou DEL d'état CIP Safety™ à la page 32.	x	Х	x	-	-
F	Bouton de restauration via SD	Х	Х	х	х	х
G	Emplacement MicroSD	х	Х	х	х	х
Н	Port Ethernet avec DEL pour connecter l'ordinateur, communiquer avec l'application LBK Designer et pour la communication MODBUS	X	X	х	х	-
I	Bornier d'alimentation	х	Х	х	х	х
J	DEL d'alimentation (verte fixe)	х	х	х	х	х

Élément	Description	LBK ISC110E- P	LBK ISC110E- F	LBK ISC110E- C	LBK ISC110E	LBK ISC110
K	Bornier bus CAN pour raccorder le premier capteur	х	х	Х	х	х
L	Commutateur DIP pour activer/désactiver la résistance de terminaison de bus :	х	х	х	х	х
	 On (position supérieure, valeur par défaut) = résistance incluse Off (position inférieure) = résistance exclue 					
M1	DEL d'état des fonctionnalités matérielles du microcontrôleur secondaire :	х	х	х	х	х
	 orange, clignotement lent : comportement normal autre état : contacter le support technique 					
M2	DEL d'état des fonctionnalités matérielles du microcontrôleur primaire :	х	х	х	х	х
	 éteinte : comportement normal rouge fixe : contacter le support technique 					
N	Port Fieldbus n° 1 avec DEL (PROFIsafe, CIP Safety™ ou FSoE IN)	х	х	х	-	-
0	Port Fieldbus n° 2 avec DEL (PROFIsafe, CIP Safety™ ou FSoE OUT)	х	х	х	-	-

Remarque : uniquement pour LBK ISC110E-F : le sens de traitement va de la connexion N à la connexion O. Dans des conditions normales, le dispositif reçoit les données de l'unité de contrôle sur N et envoie les données de sortie sur O.

4.2.5 DEL d'état du système


Les DEL, chacune dédiée à un capteur, peuvent être dans les états suivants :

État	Signification
Verte fixe	Fonctionnement normal du capteur et aucun mouvement détecté
Orange	Fonctionnement normal du capteur et mouvement détecté
Rouge clignotante	Erreur du capteur (voir DEL sur le capteur à la page 120)
Rouge fixe	Erreur système (voir DEL sur l'unité de contrôle à la page 117)
Verte clignotante	Capteur en état de boot (démarrage) (voir DEL sur l'unité de contrôle à la page 117)

4.2.6 DEL d'état Fieldbus PROFIsafe

Les DEL reflètent l'état du Fieldbus PROFIsafe ; leurs significations sont indiquées ci-dessous.

DEL

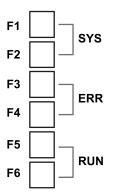
DEL	Туре	Description
F1	SYS	État du système
F2		
F3	BF	Défaillance du bus
F4		
F5	SF	Défaillance du système
F6		

Signification des DEL SYS

État F1	État F2	Signification
Verte fixe	Off	Comportement normal
Verte clignotante	Off	Contacter le support technique
Off	Jaune clignotante	Contacter le support technique
Off	Jaune fixe	Contacter le support technique
Off	Off	Contacter le support technique

Signification des DEL BF

État F3	État F4	Signification
Off	Off (non utilisée)	Échange de données avec l'hôte en cours
Rouge clignotante	Off (non utilisée)	Pas d'échange de données
Rouge fixe	Off (non utilisée)	Pas de raccordement physique


Signification des DEL SF

État F5	État F6	Signification
Off	Off (non utilisée)	Comportement normal
Rouge fixe	Off (non utilisée)	Erreur de diagnostic au niveau PROFIsafe (F Dest Address incorrecte, expiration du délai du watchdog, CRC incorrect) ou au niveau PROFInet (expiration du délai du watchdog, diagnostic de canal, générique ou étendu présent, erreur système)
Rouge clignotante	Off (non utilisée)	Service de signal DCP démarré via bus

4.2.7 DEL d'état Fieldbus FSoE

Les DEL reflètent l'état du Fieldbus FSoE ; leurs significations sont indiquées ci-dessous.

DEL

DEL	Туре	Description
F1	SYS	État du système
F2		
F3	ERR	Code d'erreur
F4		
F5	RUN	État actuel de la machine
F6		

Signification des DEL SYS

État F1	État F2	Signification
Verte fixe	Off	Comportement normal
Verte clignotante	Off	Contacter le support technique
Off	Jaune clignotante	Contacter le support technique
Off	Jaune fixe	Contacter le support technique
Off	Off	Contacter le support technique

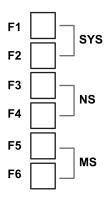
Signification des DEL ERR

État F3	État F4	Signification
Off	Off (non utilisée)	Comportement normal
Rouge clignotante	Off (non utilisée)	Configuration invalide : erreur de configuration générale. Cause possible : le changement d'état requis par le maître est impossible en raison des paramètres du registre ou de l'objet
Un seul clignotement rouge	Off (non utilisée)	Erreur locale : l'application du dispositif esclave a modifié automatiquement l'état EtherCAT. Cause possible 1 : expiration du délai du watchdog de l'hôte. Cause possible 2 : erreur de synchronisation, le dispositif entre automatiquement dans l'état opérationnel sécurisé
Double clignotement rouge	Off (non utilisée)	Expiration du délai du watchdog de l'application. Cause possible : expiration du délai du watchdog de Sync Manager

Signification des DEL RUN

État F5	État F6	Signification
Off (non utilisée)	Off	État INIT
Off (non utilisée)	Verte fixe	État OPÉRATIONNEL
Off (non utilisée)	Un seul clignotement vert	État OPÉRATIONNEL SÉCURISÉ
Off (non utilisée)	Verte clignotante	État OPÉRATIONNEL SÉCURISÉ

4.2.8 DEL d'état CIP Safety™


Les DEL reflètent l'état du Fieldbus CIP Safety ; leurs significations sont indiquées ci-dessous.

AVERTISSEMENT

Les DEL d'état CIP Safety NE sont PAS des indicateurs fiables et la précision des informations qu'elles délivrent ne saurait être garantie. Elles doivent être utilisées UNIQUEMENT à des fins de diagnostic général lors de la mise en service et du dépannage. Ne pas utiliser les DEL comme indicateurs de fonctionnement.

DEL

DEL	Туре	Description
F1	SYS	État du système
F2		
F3	NS	État du réseau
F4		
F5	MS	État du module
F6		

Signification des DEL SYS

État F1	État F2	Signification
Verte fixe	Off	Comportement normal
Verte clignotante	Off	Contacter le support technique
Off	Jaune clignotante	Contacter le support technique
Off	Jaune fixe	Contacter le support technique
Off	Off	Contacter le support technique

Signification des DEL NS

État F3	État F4	Signification
Rouge fixe	Off	Duplication de l'adresse IP
Rouge clignotante	Off	Expiration du délai de connexion : une adresse IP est configurée et la connexion Propriétaire Exclusif pour laquelle ce dispositif sert de cible est interrompue
Off	Verte fixe	Connecté : une adresse IP est configurée et au moins une connexion CIP a été établie ; la connexion Propriétaire Exclusif n'est pas interrompue
Off	Verte clignotante	Aucune connexion CIP
Rouge clignotante	Verte clignotante	[Séquence F4-F3-Off] Auto-test : le dispositif effectue le test d'allumage
Off	Off	Non alimenté ou adresse IP absente

Signification des DEL MS

État F5	État F6	Signification
Rouge fixe	Off	Anomalie grave irréversible
Rouge clignotante	Off	Anomalie grave réversible ; par ex., configuration incorrecte ou incohérente
Off	Verte fixe	Le dispositif fonctionne correctement
Off	Verte clignotante	Standby : le dispositif n'a pas été configuré
Rouge clignotante	Verte clignotante	[Séquence F6-F5-Off] Auto-test : le dispositif effectue le test d'allumage. La séquence de test de l'indicateur MS est effectuée avant celle de l'indicateur NS
Off	Off	Non alimenté

4.3 Entrées de l'unité de contrôle

4.3.1 Introduction

Le système dispose de deux entrées numériques de type 3 à deux canaux (selon CEI/EN 61131-2). Il est également possible d'utiliser les quatre canaux comme entrées numériques à un canal (catégorie 2). La référence de masse est commune à toutes les entrées (voir Références techniques à la page 139).

Lors de l'utilisation des entrées numériques, l'entrée supplémentaire SNS « V+ (SNS) » doit être connectée à 24 V CC et l'entrée GND « V- (SNS) » doit être mise à la terre pour :

- · faire le diagnostic correct des entrées
- assurer le niveau de sécurité du système

4.3.2 Fonctions des entrées

La fonction de chaque entrée numérique doit être programmée via l'application LBK Designer. Les fonctions disponibles sont :

- **Signal d'arrêt** : fonction de sécurité supplémentaire gérant un signal spécifique pour forcer toutes les sorties de sécurité (signaux de détection, le cas échéant) sur OFF-state.
- Signal de redémarrage : fonction de sécurité supplémentaire gérant un signal spécifique qui autorise l'unité de contrôle à commuter sur ON-state les sorties de sécurité associées aux portées de détection sans mouvement.
- **Groupe muting « N »** : fonction de sécurité supplémentaire gérant un signal spécifique qui permet à l'unité de contrôle d'ignorer les informations provenant d'un groupe sélectionné de capteurs.
- Activer la configuration dynamique : fonction de sécurité supplémentaire permettant à l'unité de contrôle de sélectionner une configuration dynamique spécifique.
- Contrôlé par le fieldbus (si disponible) : fonction de sécurité supplémentaire surveillant l'état des entrées via la communication Fieldbus. Par exemple, un ESPE générique peut être raccordé à l'entrée, en respectant les spécifications électriques.
- Réinitialisation opérationnelle du système : configure le système sans modifier aucun paramètre.
- Signal de redémarrage + réinitialisation opérationnelle du système : exécute la fonction Signal de redémarrage ou la fonction Réinitialisation opérationnelle du système suivant la durée du signal d'entrée.
- Enregistrement de la référence anti-masquage : enregistre une nouvelle référence pour la fonction anti-masquage.
- Enregistrement de la référence anti-rotation : enregistre une nouvelle référence pour la fonction antirotation.

Pour plus de détails sur les signaux d'entrée numériques, voir Signaux d'entrée numérique à la page 161.

4.3.3 Option à un canal ou à deux canaux

Par défaut, chaque fonction des entrées numériques nécessite un signal sur les deux canaux pour assurer la redondance requise par la catégorie 3.

Les fonctions suivantes des entrées numériques peuvent également être utilisées en tant que canaux individuels (catégorie 2) :

- Signal de redémarrage
- · Contrôlé par le fieldbus
- · Réinitialisation opérationnelle du système
- · Signal de redémarrage + réinitialisation opérationnelle du système
- Enregistrement de la référence anti-masquage
- Enregistrement de la référence anti-rotation

Dans l'application LBK Designer sous **Paramètres > Entrées-sorties numériques**, régler la fonction de l'entrée numérique sur **À un canal (Catégorie 2)** et sélectionner la fonction de l'entrée pour chaque canal.

4.3.4 Mode de redondance

Pour les fonctions des entrées à deux canaux, deux modes de redondance sont disponibles :

· Redondance cohérente

Entrée canal 1	Entrée canal 2	Valeur logique entrée
0	0	Faible
1	1	Élevé
0	1	Erreur
1	0	Erreur

· Redondance inversée

Entrée canal 1	Entrée canal 2	Valeur logique entrée
0	1	Faible
1	0	Élevé
0	0	Erreur
1	1	Erreur

Le mode de redondance par défaut est le mode de redondance cohérente. Pour les fonctions des entrées ci-dessous, il est possible de régler le mode de redondance inversée afin d'assurer la compatibilité avec les différents dispositifs connectés :

- **Groupe muting « N »** (uniquement avec largeur d'impulsion = 0)
- Signal de redémarrage
- · Contrôlé par le fieldbus
- · Activer la configuration dynamique
- Réinitialisation opérationnelle du système
- Signal de redémarrage + réinitialisation opérationnelle du système
- Enregistrement de la référence anti-masquage
- Enregistrement de la référence anti-rotation

4.3.5 Filtre anti-rebond du signal d'arrêt (uniquement pour LBK ISC110E-C)

Le filtre anti-rebond permet de filtrer les impulsions de test d'une entrée numérique configurée en tant que **Signal d'arrêt**. L'activation est recommandée lorsqu'un dispositif ESPE équipé d'OSSD est connecté à l'entrée numérique.

AVIS

Seuls les dispositifs ESPE qui démarrent et surveillent en interne le test OSSD doivent être utilisés pour l'activation du filtre anti-rebond.

Par défaut, le filtre est désactivé. Le filtre peut être activé via l'application LBK Designer (**Paramètres** > **Avancées** > **Filtre anti-rebond du signal d'arrêt**).

4.3.6 Entrée SNS

L'unité de contrôle est équipée d'une entrée **SNS** (niveau logique haut (1) = 24 V) qui permet de vérifier le bon fonctionnement des entrées.

AVIS

Si au moins une entrée est connectée, l'entrée SNS « V+ (SNS) » et l'entrée GND « V- (SNS) » devront également être connectées.

4.4 Sorties de l'unité de contrôle

4.4.1 Sorties

Le système dispose de quatre sorties numériques OSSD protégées contre les courts-circuits, qui peuvent être utilisées individuellement (uniquement pour LBK ISC110E-C - avertissement de détection) ou programmées comme sorties de sécurité à deux canaux (signal de détection) pour garantir le niveau de sécurité du système.

Une sortie est activée lors du passage de OFF-state à ON-state (da 0 V a 24 V) et est désactivée lors du passage de ON-state à OFF-state (de 24 V a 0 V).

4.4.2 Fonctions des sorties

La fonction de chaque sortie numérique doit être programmée via l'application LBK Designer.

Les fonctions disponibles sont :

• Signal de détection « N » : (par ex., signal d'alarme) commute la sortie sélectionnée sur OFF-state lorsqu'un capteur détecte un mouvement dans la portée de détection N*, ou qu'il reçoit un signal d'arrêt de l'entrée correspondante, ou encore lorsqu'une défaillance du système se produit. La sortie sélectionnée reste sur OFF-state pendant au moins 100 ms.

Remarque* : « N » est le numéro de la portée de détection correspondante (par ex., Signal de détection 1 pour la portée de détection 1, Signal de détection 2 pour la portée de détection 2).

Remarque : lorsqu'une OSSD est configurée comme **Signal de détection « N »**, une seconde OSSD est automatiquement attribuée pour fournir un signal sécurisé.

Avertissement de détection « N » (uniquement pour LBK ISC110E-C): (par ex., signal d'alarme) commute la sortie sélectionnée sur OFF-state lorsqu'un capteur détecte un mouvement dans la portée de détection N*, ou qu'il reçoit un signal d'arrêt de l'entrée correspondante, ou encore lorsqu'une défaillance du système se produit. La sortie sélectionnée reste sur OFF-state pendant au moins 100 ms.

Remarque* : N est le numéro de la portée de détection correspondante (par ex., Signal de détection 1 pour la portée de détection 1, Signal de détection 2 pour la portée de détection 2).

• Signal de détection groupe 1 ou Signal de détection groupe 2 : commute la sortie sélectionnée sur OFF-state lorsque au moins un capteur détecte un mouvement dans une portée de détection appartenant au groupe (voir Paramètres des groupes de signaux/avertissements de détection à la page 38) ou reçoit un signal d'arrêt de l'entrée correspondante ou bien lorsqu'une défaillance du système se produit. La sortie sélectionnée reste sur OFF-state pendant au moins 100 ms.

Remarque : lorsqu'une OSSD est configurée comme Signal de détection groupe 1 ou Signal de détection groupe 2, une seconde OSSD est automatiquement attribuée pour fournir un signal sécurisé.

- Avertissement de détection groupe 1 ou Avertissement de détection groupe 2 (uniquement pour LBK ISC110E-C): commute la sortie sélectionnée sur OFF-state lorsque au moins un capteur détecte un mouvement dans une portée de détection appartenant au groupe (voir Paramètres des groupes de signaux/avertissements de détection à la page 38) ou reçoit un signal d'arrêt de l'entrée correspondante ou bien lorsqu'une défaillance du système se produit. La sortie sélectionnée reste sur OFF-state pendant au moins 100 ms.
- Signal de diagnostic du système : commute la sortie sélectionnée sur OFF-state lorsqu'une défaillance du système est détectée.
- Signal de rétroaction d'activation muting : commute la sortie sélectionnée sur ON-state dans les cas suivants :
 - o lorsqu'un signal de muting est reçu via l'entrée configurée et qu'au moins un groupe est en muting
 - lorsqu'une commande de muting est reçue via la communication Fieldbus (si disponible) et qu'au moins un capteur est en muting
- Contrôlé par le fieldbus (si disponible) : permet de définir la sortie spécifique via la communication Fieldbus.
- Rétroaction du signal de redémarrage : commute la sortie sélectionnée sur ON-state lorsqu'il est possible de redémarrer manuellement au moins une portée de détection (Signal de redémarrage). Elle peut être réglée comme Standard ou Clignotant.
 - Si toutes les portées de détection utilisées sont configurées en tant que redémarrage
 Automatique (sous Paramètres > Fonction de redémarrage), la sortie sélectionnée est toujours sur OFF-state;
 - Si au moins l'une des portées de détection utilisées est configurée en tant que redémarrage
 Manuel ou Manuel sécurisé (sous Paramètres > Fonction de redémarrage), son
 comportement dépendra de l'option sélectionnée (voir Réglages optionnels de la Rétroaction du signal de redémarrage à la page suivante.
- Signal de rétroaction de détection d'objet statique : commute la sortie sélectionnée sur ON-state lorsque au moins un capteur détecte un objet statique dans l'une de ses portées de détection. La sortie sélectionnée reste sur ON-state pendant au moins 100 ms. Si, au même moment, une cible en mouvement est détectée dans la portée de détection, le Signal de rétroaction de détection d'objet statique commute la sortie sélectionnée sur OFF-state pour la durée du mouvement.

Chaque état de la sortie peut être récupéré via la communication Fieldbus (si disponible).

4.4.3 Configuration des sorties

L'installateur du système peut décider de configurer le système comme suit :

- deux sorties de sécurité à deux canaux (par ex., **Signal de détection 1** et **Signal de détection 2**, normalement des signaux d'alarme et d'avertissement)
- une sortie de sécurité à deux canaux (par ex., Signal de détection 1) et deux sorties à un canal (par ex., Signal de diagnostic du système et Signal de détection 2 (non sécurisé))
- chaque sortie en tant que sortie unique (par ex., Avertissement de détection 2, Signal de diagnostic du système, Signal de rétroaction d'activation muting et Rétroaction du signal de redémarrage)

AVERTISSEMENT

Pour utiliser LBK SBV System pour un système de sécurité de catégorie 3, les deux canaux d'une sortie de sécurité doivent être connectés au système de sécurité. La configuration d'un système de sécurité avec une sortie de sécurité à un seul canal peut causer des blessures graves en raison d'une défaillance du circuit de sortie et, donc, du non-arrêt de la machine.

4.4.4 Configuration de la sortie de sécurité à deux canaux

La sortie de sécurité à deux canaux est gérée automatiquement par l'application LBK Designer et s'associe aux seules sorties OSSD individuelles de la manière suivante :

- OSSD 1 avec OSSD 2
- OSSD 3 avec OSSD 4

4.4.5 Réglages optionnels de la Rétroaction du signal de redémarrage

Si au moins l'une des portées de détection utilisées est configurée en tant que redémarrage **Manuel** ou **Manuel sécurisé** (sous **Paramètres > Fonction de redémarrage**), le comportement de la **Rétroaction du signal de redémarrage** dépendra de l'option sélectionnée :

Option	Comportement Rétroaction du signal de redémarrage
Standard	 La sortie sélectionnée est activée (ON-state) si plus aucun mouvement n'est détecté dans au moins l'une des portées de détection configurées en tant que redémarrage Manuel ou Manuel sécurisé. L'ON-state persiste tant qu'aucun mouvement n'est détecté dans une ou plusieurs portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé) et que le signal de redémarrage est activé sur l'entrée sélectionnée. La sortie sélectionnée reste sur OFF-state si : aucune des portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé) n'est prête à être redémarrée et tant qu'un mouvement (ou une défaillance) est détecté dans au moins l'une des portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé), ou bien tant qu'il n'y a pas de mouvements dans aucune des portées de détection configurées en tant que redémarrage Manuel ou Manuel sécurisé, mais aucune d'entre elles n'est prête à être redémarrée.
Clignotant	 La sortie sélectionnée est activée (ON-state) si plus aucun mouvement n'est détecté dans au moins l'une des portées de détection configurées en tant que redémarrage Manuel ou Manuel sécurisé. L'ON-state persiste tant qu'aucun mouvement n'est détecté dans une ou plusieurs portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé) et que le signal de redémarrage est activé sur l'entrée sélectionnée. La sortie sélectionnée commute en continu entre ON-state et OFF-state si aucune des portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé) n'est prête à être redémarrée et tant qu'un mouvement (ou une défaillance) est détecté dans au moins l'une des portées de détection (configurées en tant que redémarrage Manuel ou Manuel sécurisé) La sortie sélectionnée reste sur OFF-state tant qu'il n'y a pas de mouvements dans aucune des portées de détection configurées en tant que redémarrage Manuel ou Manuel sécurisé, mais aucune d'entre elles n'est prête à être redémarrée.

4.4.6 Paramètres des groupes de signaux/avertissements de détection

Les portées de détection de chaque capteur peuvent être attribuées à un groupe afin d'être associées à la même sortie de sécurité.

À l'aide de l'application LBK Designer (sous Paramètres > Groupes des portées de détection), chaque portée de détection de chaque capteur peut être associée à l'un ou aux deux groupes. Par défaut, les portées de détection n'appartiennent à aucun groupe.

AVERTISSEMENT

Tenir compte du choix de la dépendance des portées de détection lors de la configuration des groupes. Voir Dépendance des portées de détection et génération du signal de détection à la page 59

Exemple

L'appartenance au groupe 1 peut être configurée pour les portées de détection suivantes :

- portée de détection 1 du capteur 1
- portée de détection 1 du capteur 3
- portée de détection 2 du capteur 1

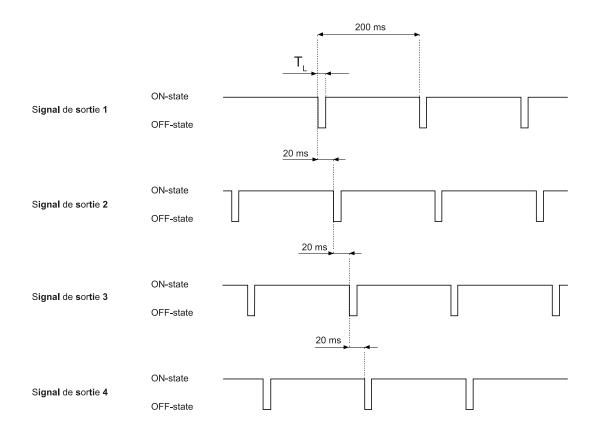
Ainsi, une sortie spécifique attribuée au Signal de détection groupe 1 passe sur OFF-state lorsqu'un mouvement est détecté dans l'une de ces portées de détection.

4.4.7 État des sorties des signaux de détection

L'état des sorties est le suivant :

- sortie activée (24 V CC): signal de repos, aucun mouvement détecté et fonctionnement normal
- sortie désactivée (0 V cc): mouvement détecté dans la portée de détection ou défaillance détectée dans le système

4.4.8 Test par impulsions des sorties du signal de détection


Un test par impulsions est effectué pour la sortie du signal de détection, notamment pour les sorties configurées comme suit :

- · Signal de détection « N »
- Avertissement de détection « N »
- Signal de détection groupe « N »
- · Avertissement de détection groupe « N »

Le test est effectué en appliquant une impulsion périodique à 0 V au signal de repos pour détecter des courts-circuits à 0 V ou 24 V.

La durée de l'impulsion à 0 V (T_L) peut être réglée sur 300 µs ou 2 ms via l'application LBK Designer (Paramètres > Entrées-sorties numériques > Largeur d'impulsion OSSD).

Remarque: les dispositifs connectés à l'OSSD ne doivent pas répondre à ces impulsions à 0 V temporaires et autodiagnostiques du signal.

Pour plus de détails, voir Références techniques à la page 139.

4.4.9 Contrôles diagnostics sur les OSSD

Par défaut, le contrôle diagnostic sur les OSSD (par ex., des courts-circuits) est désactivé. Ce contrôle peut être activé via l'application LBK Designer (Paramètres > Entrées-sorties numériques).

Lorsque le contrôle est activé, l'unité de contrôle surveille :

- · le court-circuit entre les OSSD
- le court-circuit à 24 V
- le circuit ouvert (activations uniquement sur demande, c'est-à-dire lorsque la fonction de sécurité est activée lors du passage de 24 V à GND)

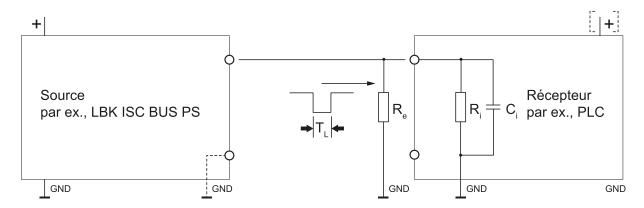
Remarque : le court-circuit vers GND (défaillance fail-safe) est surveillé même si le contrôle diagnostic sur les OSSD est désactivé.

AVERTISSEMENT

Si une défaillance commune externe provoque un court-circuit à 24 V dans les deux OSSD, l'unité de contrôle ne peut pas communiquer la condition d'état de sécurité via les OSSD. Il appartient à l'intégrateur d'éviter cette situation en surveillant les impulsions de test générées périodiquement par les OSSD.

AVERTISSEMENT

Pour garantir la conformité à la norme CEI TS 61496-5, les contrôles diagnostics sur les OSSD doivent être activés et le paramètre Sensibilité anti-masquage doit être réglé sur Élevée.


4.4.10 Résistance externe pour sorties OSSD

Afin d'assurer la bonne connexion entre les OSSD de l'unité de contrôle et un dispositif externe, il peut s'avérer nécessaire d'ajouter une résistance externe.

Si la largeur d'impulsion réglée (**Largeur d'impulsion OSSD**) est de 300 µs, il est fortement recommandé d'ajouter une résistance externe pour garantir le temps de décharge de la charge capacitive. Si elle est réglée sur 2 ms, une résistance externe doit être ajoutée si la résistance de la charge externe dépasse la charge résistive maximale autorisée (voir Données techniques à la page 139).

Voici quelques valeurs standards pour la résistance externe :

Valeur Largeur d'impulsion OSSD	Résistance externe (R _e)			
300 µs	1 kΩ			
2 ms	10 kΩ			

4.5 Capteurs

4.5.1 Capteurs avec plage de 5 mètres

Les principales caractéristiques des capteurs sont les suivantes :

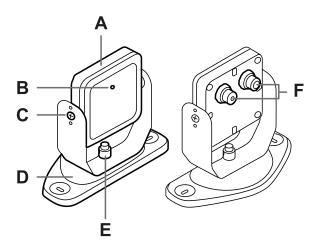
AVIS

Tous les capteurs raccordés à l'unité de contrôle doivent être du même type (par ex., tous les capteurs avec plage de 5 mètres ou tous les capteurs avec plage de 9 mètres).

Distance maximale d'accès	5 m
Distance maximale de redémarrage	5 m
Vitesse de détection (fonction de détection d'accès)	 Utilisation fixe: [0,1, 1,6] m/s Utilisation mobile: pour une distance de détection inférieure ou égale à 4 m : [0,1, 3] m/s pour une distance de détection supérieure à 4 m : [0,1, 2] m/s
Couverture d'angle horizontale	De 10° à 100°
Couverture d'angle verticale	20° avec offset vers le bas de 2,5°

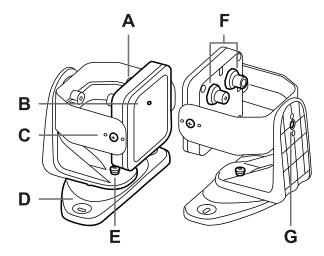
4.5.2 Comparaison entre les capteurs 3.x et les capteurs 5.x

Selon la version du firmware, les capteurs peuvent être regroupés comme suit :


	Capteur	Configuration du champ de vision
Capteurs 3.x	LBK SBV- 01	 portée de détection (de 1 à 4) couverture d'angle horizontale distance de détection
Capteurs 5.x	LBK SBV201	 portée de détection (de 1 à 4) couverture d'angle horizontale distance de détection forme classique et en couloir, voir Champ de vision avancé (capteurs 5.x uniquement) à la page 78.

4.5.3 Fonctions

Les capteurs assurent les fonctions suivantes :


- Ils détectent la présence de mouvements à l'intérieur de leur champ de vision.
- Ils envoient le signal de mouvement détecté à l'unité de contrôle via le bus CAN.
- Ils signalent les erreurs ou les défaillances détectées par le capteur durant le diagnostic à l'unité de contrôle via le bus CAN.

4.5.4 Étrier 2 axes

Élément	Description
Α	Capteur
В	DEL d'état
С	Vis inviolables pour le positionnement du capteur à un angle spécifique autour de l'axe x (pas d'inclinaison de 10°)
D	Étrier de montage
E	Vis pour le positionnement du capteur à un angle spécifique autour de l'axe y (pas d'orientation de 10°)
F	Connecteurs pour le raccordement des capteurs en chaîne et à l'unité de contrôle

4.5.5 Étrier 3 axes

Élément	Description
Α	Capteur
В	DEL d'état
С	Vis inviolables pour le positionnement du capteur à un angle spécifique autour de l'axe x (pas d'inclinaison de 10°)
D	Étrier de montage
E	Vis inviolable pour le positionnement du capteur à un angle spécifique autour de l'axe y (pas d'orientation de 10°)
F	Connecteurs pour le raccordement des capteurs en chaîne et à l'unité de contrôle
G	Vis inviolable pour le positionnement du capteur à un angle spécifique autour de l'axe z (pas de rotation de 10°)

4.5.6 DEL d'état

État	Signification
Bleue fixe	Capteur en marche. Aucun mouvement détecté.
Bleue clignotante	Le capteur est en train de détecter un mouvement*. Non disponible si le capteur est en muting.
	Pour la fonction de prévention du redémarrage, la DEL continue à clignoter pendant environ 2 secondes après la fin de la détection
Violette	Conditions de mise à jour du firmware (voir DEL sur le capteur à la page 120)
Rouge	Conditions d'erreur (voir DEL sur le capteur à la page 120)

4.6 Application LBK Designer

4.6.1 Fonctions

L'application permet d'exécuter les fonctions principales suivantes :

- Configurer le système.
- Créer le rapport de configuration.
- Vérifier le fonctionnement du système.
- Télécharger les journaux du système.

4.6.2 Compatibilité de l'unité de contrôle

Version LBK Designer								
Version du firmware de l'unité de contrôle	2.02	2.2.2	2.3.x	2.4.x	2.5.x	2.6.x	2.7.x	2.8.x
1.1.0	ОК	NO						
1.2.0	NO	OK	NO	NO	NO	NO	NO	NO
1.3.0	NO	NO	OK	OK	OK	OK	NO	NO
1.4.0	NO	NO	NO	ОК	ОК	ОК	NO	NO
1.5.0	NO	NO	NO	NO	OK	OK	NO	NO
1.6.0	NO	NO	NO	NO	NO	OK	OK	ОК
2.0.0	NO	NO	NO	NO	NO	NO	OK	ОК
2.0.1	NO	NO	NO	NO	NO	NO	OK	OK
2.1.0	NO	NO	NO	NO	NO	NO	NO	ОК
2.1.1	NO	NO	NO	NO	NO	NO	NO	ОК

4.6.3 Utilisation de l'application LBK Designer

Pour pouvoir utiliser l'application, il est nécessaire de connecter l'unité de contrôle à un ordinateur via un câble de données USB ou, si un port Ethernet est disponible, via un câble Ethernet. Le câble USB permet de configurer le système localement, tandis que le câble Ethernet permet de le configurer à distance.

La communication Ethernet entre l'unité de contrôle et l'application LBK Designer est protégée par les protocoles de sécurité les plus avancés (TLS).

4.6.4 Authentification

L'application peut être téléchargée gratuitement à partir du site www.leuze.com.

Il existe plusieurs niveaux d'utilisateur. L'utilisateur Admin s'occupe de la gestion des utilisateurs. Tous les mots de passe peuvent être définis via l'application puis enregistrés sur l'unité de contrôle.

4.6.5 Niveaux d'utilisateur

Les fonctions disponibles pour chaque niveau d'utilisateur sont les suivantes :

	Observer	Expert	Engineer	Admin	Service*
Lecture de la configuration du système	Х	х	х	X	X
Validation	-	х	x	х	х
Téléchargement du fichier journal	-	х	х	х	Х
Paramétrage du capteur (par ex., ID nœud) et configuration	-	-	х	х	-
Appliquer les modifications	-	-	x	х	-
Configuration des E/S numériques	-	-	х	X	-
Configuration de sauvegarde	-	х	х	х	-
Restauration de la configuration	-	-	х	х	-
Paramètres réseau, paramètres Fieldbus et étiquettes du système	-	-	-	х	-

	Observer	Expert	Engineer	Admin	Service*
Mise à jour du firmware de l'unité de contrôle	-	-	-	x	-
Gestion des utilisateurs	-	-	-	х	-
Sauvegarde via SD et restauration via SD (si disponible)	-	-	-	х	-
Support technique et entretien	-	-	-	-	Х
Débogage et informations statistiques	-	-	-	-	Х

Remarque * : l'utilisateur Service peut être activé/désactivé par l'administrateur. Étant donné que seuls les techniciens Leuze sont autorisés à se connecter en tant qu'utilisateurs Service, ces utilisateurs sont protégés par un code d'activation.

4.6.6 Menu principal

Page	Fonction
Tableau de bord	Afficher les principales informations sur le système configuré.
	Remarque : les messages contiennent les mêmes informations que le fichier journal. Pour la signification des messages, voir les chapitres sur les fichiers journaux dans Dépannage à la page 117.
Configuration	Définir le secteur surveillé.
	Configurer les capteurs, leur forme (pour les capteurs 5.x) et les portées de détection.
	Configurer les capteurs et les portées de détection.
	Définir les configurations dynamiques.
	Sélectionner le mode de fonctionnement de sécurité.
	Activer l'option de détection d'objet statique.
	Définir le délai de redémarrage.
Paramètres	Configurer les groupes de capteurs.
	Choisir la dépendance des portées de détection.
	Désactiver les fonctions d'autoprotection.
	Synchroniser plusieurs unités de contrôle.
	Configurer la fonction des entrées et des sorties.
	Sauvegarder la configuration et charger une configuration.
	Télécharger les journaux.
	Attribuer l'ID nœud au capteur.
	Autres fonctions générales.

Page	Fonction
Admin	Configurer et gérer les utilisateurs.
	Activer la sauvegarde via SD et la restauration via SD.
	Effectuer une réinitialisation d'usine.
	Configurer, afficher et modifier les paramètres réseau (si disponibles).
	Configurer, afficher et modifier les paramètres MODBUS (si disponibles).
	Configurer, afficher et modifier les paramètres du Fieldbus (si disponibles).
	Définir les étiquettes pour les unités de contrôle et les capteurs.
Validation	Lancer la procédure de validation.
	Remarque : les messages affichés sont ceux du fichier journal. Pour la signification des messages, voir les chapitres sur les fichiers journaux dans Dépannage à la page 117.
ACTUALISER LA CONFIGURATION	Mettre à jour la configuration ou ignorer les modifications non sauvegardées.
Utilisateur	Changer de profil d'utilisateur.
	Modifier les paramètres du compte.
Unité de contrôle	Récupérer les informations de l'unité de contrôle.
	Fermer la connexion avec l'unité de contrôle et permettre la connexion avec une autre unité de contrôle.
	Changer de langue.

4.7 Configuration du système

4.7.1 Configuration du système

Les paramètres de l'unité de contrôle ont des valeurs par défaut qui peuvent être modifiées via l'application LBK Designer (voir Paramètres de configuration de l'application à la page 156).

Lorsqu'une nouvelle configuration est enregistrée, le système génère le rapport de configuration.

Remarque : après une modification physique du système (par ex., installation d'un nouveau capteur), la configuration du système doit être mise à jour et un nouveau rapport de configuration doit également être généré.

4.7.2 Configuration dynamique du système

LBK SBV System permet d'ajuster les principaux paramètres du système en temps réel, fournissant les outils pour alterner dynamiquement différentes configurations prédéfinies. Grâce à l'application LBK Designer, une fois la première configuration du système définie (configuration prédéfinie), il est possible de définir des jeux de paramètres alternatifs pour permettre une reconfiguration dynamique en temps réel du secteur surveillé. Sept jeux de configuration prédéfinis sont prévus pour l'activation via une entrée numérique et 31 pour l'activation via Fieldbus (si disponible).

4.7.3 Paramètres de la configuration dynamique du système

Les paramètres programmables pour chaque capteur sont les suivants :

• portée de détection (de 1 à 4)

Les paramètres programmables pour chaque portée de détection sont les suivants :

- · couverture d'angle horizontale
- · distance de détection
- mode de fonctionnement de sécurité (Détection d'accès et prévention du redémarrage ou Toujours détecter l'accès) (voir Modes de fonctionnement de sécurité et fonctions de sécurité à la page 62)
- uniquement pour les capteurs 5.x : forme classique et en couloir (voir Champ de vision avancé (capteurs 5.x uniquement) à la page 78)
- option détection d'objet statique (voir Fonction de prévention du redémarrage : option Détection d'objet statique à la page 64)
- délai de redémarrage

Tous les autres paramètres du système ne peuvent pas être modifiés de manière dynamique et sont considérés comme statiques.

4.7.4 Activation de la configuration dynamique du système

Il est possible d'activer une des configurations prédéfinies via les entrées numériques (Activer la configuration dynamique) ou le Fieldbus de sécurité (si disponible).

AVERTISSEMENT

Si au moins une des entrées numériques est configurée comme « Activer la configuration dynamique », la commutation via le Fieldbus de sécurité n'est pas prise en compte.

4.7.5 Configuration dynamique via les entrées numériques

Pour activer l'une des configurations prédéfinies en mode dynamique, il est possible d'utiliser une seule entrée numérique de l'unité de contrôle ou les deux. Le résultat est le suivant :

Si	Il sera alors possible d'alterner dynamiquement
seulement une des entrées numériques est configurée comme Activer la configuration dynamique	deux configurations prédéfinies (voir Cas de figure 1 à la page suivante et Cas de figure 2 à la page suivante)
les deux entrées numériques sont configurées comme Activer la configuration dynamique et l'option à canal codé est désactivée	quatre configurations prédéfinies (voir Cas de figure 3 à la page suivante)
les deux entrées numériques sont configurées comme Activer la configuration dynamique et l'option à canal codé est activée	huit configurations prédéfinies (voir Cas de figure 4 à la page 48)

Remarque : le changement de configuration est sécurisé du fait de l'utilisation des entrées à deux canaux.

Remarque: si l'option à canal codé est activée, toute combinaison non valide d'une durée de plus de 33 ms provoque une erreur sur les entrées qui commute le système en état de sécurité.

Cas de figure 1

La première entrée numérique est configurée comme Activer la configuration dynamique.

Numéro configuration dynamique	Entrée 1 (CH1 et CH2)	Entrée 2
#1	0	-
#2	1	-

0 = signal désactivé ; 1 = signal activé

Cas de figure 2

La seconde entrée numérique est configurée comme Activer la configuration dynamique.

Numéro configuration dynamique	Entrée 1	Entrée 2 (CH1 et CH2)
#1	-	0
#2	-	1

0 = signal désactivé ; 1 = signal activé

Cas de figure 3

Les deux entrées numériques sont configurées comme **Activer la configuration dynamique** et l'option à canal codé est désactivée.

Numéro configuration dynamique	Entrée 1 (CH1 et CH2)	Entrée 2 (CH1 et CH2)
#1	0	0
#2	1	0
#3	0	1
#4	1	1

0 = signal désactivé ; 1 = signal activé

Cas de figure 4

Les deux entrées numériques sont configurées comme **Activer la configuration dynamique** et l'option à canal codé est activée.

Seules les combinaisons qui diffèrent d'au moins deux valeurs, répertoriées ci-dessous, sont valables :

Numéro			Entrée 2	
configuration dynamique	CH1	CH2	CH1	CH2
#1	1	0	0	0
#2	0	1	0	0
#3	0	0	1	0
#4	0	0	0	1
#5	1	1	1	0
#6	1	1	0	1
#7	1	0	1	1
#8	0	1	1	1

0 = signal désactivé ; 1 = signal activé

4.7.6 Configuration dynamique via Fieldbus de sécurité

Pour activer l'une des configurations prédéfinies en mode dynamique, connecter un PLC de sécurité externe qui communique avec l'unité de contrôle via le Fieldbus de sécurité. Cela permet d'alterner dynamiquement toutes les configurations prédéfinies, c'est-à-dire jusqu'à 32 configurations différentes. Pour tous les paramètres utilisés dans chaque configuration, voir Configuration dynamique du système à la page 45.

Pour plus d'informations sur le protocole pris en charge, consulter le manuel du Fieldbus.

AVERTISSEMENT

Avant d'activer l'une des configurations prédéfinies via le Fieldbus de sécurité, s'assurer qu'aucune des entrées numériques n'est configurée comme **Activer la configuration dynamique**; sinon, LBK SBV System ignorera toutes les commutations effectuées via le Fieldbus de sécurité.

4.7.7 Changement de configuration sécurisé

Le changement de configuration s'effectue en toute sécurité sur les machines fixes comme sur les machines mobiles. Le capteur vérifie toujours l'ensemble du secteur surveillé et, lorsqu'il reçoit une demande de basculement vers une configuration avec une plus longue portée de détection, il revient immédiatement à l'état de sécurité si des personnes sont présentes dans cette portée de détection.

5 Communication système

5.1 Communication Fieldbus (PROFIsafe)

5.1.1 Disponibilité de la fonctionnalité PROFIsafe

La communication de sécurité via PROFIsafe est disponible dans toutes les unités de contrôle équipées d'une interface PROFIsafe. Pour plus de détails, voir Unités de contrôle à la page 24.

5.1.2 Communication avec la machine

Le Fieldbus permet d'effectuer les opérations suivantes :

- Choisir dynamiquement de 1 à 32 configurations prédéfinies.
- Lire l'état des entrées.
- · Vérifier les sorties.
- Lire les données de la cible.
- · Mettre les capteurs en muting.
- Activer le signal de redémarrage.
- Activer le signal de réinitialisation opérationnelle du système.

Pour plus de détails, voir Communication PROFIsafe Traduction de la notice d'utilisation originale.

5.1.3 Données d'entrée en provenance du PLC

Lorsque ni les entrées numériques ni les OSSD ne sont configurées comme **Contrôlé par le fieldbus**, le comportement des données d'entrée en provenance du PLC est le suivant :

Condition	Données d'entrée en provenance du PLC	Comportement du système
IOPS (état fournisseur PLC) = bad	la dernière valeur valide de la variable d'entrée est maintenue	le système continue de fonctionner dans son état de fonctionnement normal
Perte de connexion	la dernière valeur valide de la variable d'entrée est maintenue	le système continue de fonctionner dans son état de fonctionnement normal
Après la mise sous tension	les valeurs initiales (réglées sur 0) sont utilisées pour les variables d'entrée	le système continue de fonctionner dans son état de fonctionnement normal

Si au moins une entrée numérique ou OSSD est configurée comme **Contrôlé par le fieldbus**, le comportement des données d'entrée en provenance du PLC est le suivant :

Condition	Données d'entrée en provenance du PLC	Comportement du système
IOPS (état fournisseur PLC) = bad	la dernière valeur valide de la variable d'entrée est maintenue	le système continue de fonctionner dans son état de fonctionnement normal
Perte de connexion	la dernière valeur valide de la variable d'entrée est maintenue	le système passe en état de sécurité, désactivant les sorties OSSD, jusqu'à ce que la connexion soit rétablie.

Condition	Données d'entrée en provenance du PLC	Comportement du système
Après la mise sous tension	sont utilisées pour les variables d'entrée	le système reste dans un état de sécurité, désactivant les sorties OSSD, jusqu'à ce que les données d'entrée soient mises dans un état de passivation.

5.1.4 Données échangées via PROFIsafe

Le tableau ci-dessous décrit les données échangées à l'aide de la communication Fieldbus :

AVERTISSEMENT

Le système est en état de sécurité si l'octet « état de l'unité de contrôle » du module Configuration et état du système PS2v6 ou PS2v4 est différent de « 0xFF ».

Type de données	Description	Direction de communication
Sécurisées	SYSTEM STATUS DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne état de chaquina des quatra OCCP	
	 état de chacune des quatre OSSD état de chaque entrée à un canal et à deux canaux 	
	Capteur:	
	 état de chaque portée de détection (cible détectée ou non détectée) ou état d'erreur état de l'option détection d'objet statique état de la fonction de muting 	
Sécurisées	SYSTEM SETTING COMMAND	vers l'unité de
	Unité de contrôle:	contrôle
	définir l'identifiant de la configuration dynamique à activer	
	 définir l'état de chacune des quatre OSSD enregistrer la référence pour la fonction anti-rotation autour 	
	des axes	
	activer le signal de redémarrage	
	activer le signal de réinitialisation opérationnelle du système	
	Capteur:	
	définir l'état de muting	
Sécurisées	DYNAMIC CONFIGURATION STATUS	depuis l'unité de
	 identifiant de la configuration dynamique actuellement active signature (CRC32) de l'identifiant de la configuration dynamique actuellement active 	contrôle
Sécurisées	TARGET DATA	depuis l'unité de
	Distance et angle actuels des cibles détectées par chaque capteur. Pour chaque portée de détection des différents capteurs, seule la cible la plus proche du capteur est prise en compte.	contrôle

Type de données	Description	Direction de communication
Non sécurisées	DIAGNOSTIC DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne avec description détaillée de la condition d'erreur	
	Capteur :	
	état interne avec description détaillée de la condition d'erreur	
Non sécurisées	SYSTEM STATUS AND TARGET DATA	depuis l'unité de contrôle

5.2 Communication Fieldbus (Safety over EtherCAT® - FSoE)

5.2.1 Disponibilité de la fonctionnalité FSoE

La communication de sécurité via FSoE est disponible dans toutes les unités de contrôle équipées d'une interface FSoE. Pour plus de détails, voir Unités de contrôle à la page 24.

5.2.2 Communication avec la machine

Le Fieldbus permet d'effectuer les opérations suivantes :

- Choisir dynamiquement de 1 à 32 configurations prédéfinies.
- Lire l'état des entrées.
- Vérifier les sorties.
- · Mettre les capteurs en muting.
- Activer le signal de redémarrage.
- Activer le signal de réinitialisation opérationnelle du système.

Pour plus de détails, voir Communication FSoE Traduction de la notice d'utilisation originale.

5.2.3 Données échangées via FSoE

Le tableau ci-dessous décrit les données échangées à l'aide de la communication Fieldbus :

AVERTISSEMENT

Le système est en état de sécurité si l'octet 0 du TxPDO sélectionné contient au moins un bit égal à 0, à l'exception du bit 4, qui peut prendre n'importe quelle valeur.

Type de données	Description	Direction de communication
Sécurisées	SYSTEM STATUS DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne	
	état de chacune des quatre OSSD	
	état de chacune des entrées à un canal et à deux canaux	
	Capteur:	
	état de chaque portée de détection (cible détectée ou non détectée) ou état d'erreur	
	état de Détection d'objet statique pour chaque portée de	
	détection	
0, , ,	état de la fonction de muting	
Sécurisées	SYSTEM SETTING COMMAND	vers l'unité de contrôle
	Unité de contrôle:	Controle
	définir l'identifiant de la configuration dynamique à activer	
	définir l'état de chacune des quatre OSSD	
	 activer le signal de réinitialisation opérationnelle du système activer le signal de redémarrage 	
	Capteur:	
	définir l'état de muting	
Sécurisées	DYNAMIC CONFIGURATION STATUS	depuis l'unité de
	 identifiant de la configuration dynamique actuellement active signature (CRC32) de l'identifiant de la configuration dynamique actuellement active 	contrôle
Non sécurisées	DIAGNOSTIC DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne avec description détaillée de la condition d'erreur	
	Capteur :	
	état interne avec description détaillée de la condition d'erreur	
Non sécurisées	SYSTEM STATUS	depuis l'unité de contrôle

5.3 Communication Fieldbus (CIP Safety™ on Ethernet/IP™)

5.3.1 Disponibilité de la fonctionnalité CIP Safety

La communication de sécurité CIP Safety on Ethernet/IP est disponible dans toutes les unités de contrôle équipées d'une interface CIP Safety. Pour plus de détails, voir Unités de contrôle à la page 24.

5.3.2 Communication avec la machine

Le Fieldbus permet d'effectuer les opérations suivantes :

- Choisir dynamiquement de 1 à 32 configurations prédéfinies.
- Lire l'état des entrées.

- Vérifier les sorties.
- · Mettre les capteurs en muting.
- Activer le signal de redémarrage.
- Activer le signal de réinitialisation opérationnelle du système.
- Enregistrer la référence anti-masquage
- Enregistrer la référence anti-rotation

Pour plus de détails, voir Communication CIP Safety Traduction de la notice d'utilisation originale.

5.3.3 Données échangées via CIP Safety

AVERTISSEMENT

Le système est en état de sécurité si l'octet 0 de la connexion d'entrée de sécurité sélectionnée (T2O) contient au moins un bit égal à 0, à l'exception du bit 4, qui peut prendre n'importe quelle valeur.

Le tableau ci-dessous décrit les données échangées à l'aide de la communication Fieldbus :

Type de données	Description	Direction de communication
Sécurisées	SYSTEM STATUS DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne	
	 état de chacune des quatre OSSD état de chacune des entrées à un canal et à deux canaux 	
	Capteur :	
	état de chaque portée de détection (cible détectée ou non détectée) ou état d'erreur	
	état de Détection d'objet statique pour chaque portée de détection	
	état de la fonction de muting	
Sécurisées	SYSTEM SETTING COMMAND	vers l'unité de
	Unité de contrôle:	contrôle
	 définir l'identifiant de la configuration dynamique à activer définir l'état de chacune des quatre OSSD 	
	activer le signal de réinitialisation opérationnelle du système	
	activer le signal de redémarrage	
	 enregistrer la référence anti-masquage enregistrer la référence anti-rotation 	
	Capteur :	
	définir l'état de muting	
Sécurisées	DYNAMIC CONFIGURATION STATUS	depuis l'unité de
	identifiant de la configuration dynamique actuellement active	contrôle
	signature (CRC32) de l'identifiant de la configuration dynamique actuellement active	

Type de données	Description	Direction de communication
Non sécurisées	DIAGNOSTIC DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	état interne avec description détaillée de la condition d'erreur	
	Capteur :	
	état interne avec description détaillée de la condition d'erreur	
Non sécurisées	SYSTEM STATUS	depuis l'unité de contrôle

5.4 Communication MODBUS

5.4.1 Disponibilité de la fonctionnalité MODBUS

La communication MODBUS est disponible dans toutes les unités de contrôle équipées d'une interface MODBUS. Pour plus de détails, voir Unités de contrôle à la page 24.

5.4.2 Activation de la communication MODBUS

Dans l'application LBK Designer, cliquer sur **Admin > Paramètres MODBUS** et vérifier que la fonction est activée (**ON**).

Au sein du réseau Ethernet, l'unité de contrôle fait office de serveur. Le client doit envoyer les requêtes à l'adresse IP du serveur sur le port d'écoute MODBUS (le port par défaut est 502).

Pour afficher et modifier l'adresse et le port, cliquer sur **Admin > Réseau** et **Admin > Paramètres MODBUS**.

5.4.3 Données échangées via MODBUS

Le tableau ci-dessous décrit les données échangées à l'aide de la communication MODBUS :

Type de données	Description	Direction de communication
Non sécurisées	SYSTEM STATUS DATA	depuis l'unité de
	Unité de contrôle:	contrôle
	 état interne état de chacune des quatre OSSD état de chaque entrée à un canal et à deux canaux informations de révision 	
	Capteur :	
	 état de chaque portée de détection (cible détectée ou non détectée) ou état d'erreur état de la fonction de muting informations de révision 	
Non sécurisées	DYNAMIC CONFIGURATION STATUS • identifiant de la configuration dynamique actuellement active • signature (CRC32) de l'identifiant de la configuration dynamique actuellement active	depuis l'unité de contrôle

Type de données	Description	Direction de communication
Non sécurisées	 TARGET DATA Distance et angle actuels des cibles détectées par chaque capteur. Pour chaque portée de détection des différents capteurs, seule la cible la plus proche du capteur est prise en compte. 	depuis l'unité de contrôle
Non sécurisées	DIAGNOSTIC DATA Unité de contrôle: • état interne avec description détaillée de la condition d'erreur Capteur: • état interne avec description détaillée de la condition d'erreur	depuis l'unité de contrôle

6 Principes de fonctionnement

6.1 Principes de fonctionnement du capteur

6.1.1 Introduction

Le capteur est un dispositif radar FMCW (Frequency Modulated Continuous Wave) basé sur un algorithme de détection propriétaire. C'est également un capteur multicibles, qui envoie des impulsions et obtient des informations en analysant la réflexion de la cible mobile la plus proche qu'il rencontre dans chaque portée de détection.

Le capteur peut détecter la distance et l'angle actuels de chaque cible.

Chaque capteur a son propre fieldset. Chaque fieldset correspond à la structure du champ de vision qui est composée de portées de détection (voir Portées de détection à la page suivante).

6.1.2 Facteurs influençant le champ de vision du capteur et la détection des objets

AVERTISSEMENT

La présence d'un matériau conducteur sur le capteur pourrait influer sur son champ de vision et, par conséquent, sur la détection des objets. Pour assurer un fonctionnement correct et sûr, valider le système en tenant compte de cette condition.

6.1.3 Facteurs influençant le signal réfléchi

Le signal réfléchi par l'objet dépend de certaines caractéristiques de l'objet en question :

- Les objets métalliques ont un coefficient de réflexion très élevé alors que le papier et le plastique ne réfléchissent qu'une petite partie du signal
- Plus la surface exposée au radar est grande, plus le signal réfléchi est fort
- Si tous les autres facteurs sont équivalents, les objets parfaitement positionnés devant le radar génèrent un signal plus significatif que les objets placés latéralement
- Vitesse de déplacement
- Inclinaison

Tous ces facteurs ont été analysés pour le corps humain lors de la validation de la sécurité de LBK SBV System et ne peuvent pas conduire à une situation dangereuse. Ces facteurs peuvent parfois influer sur le comportement du système et provoquer une activation intempestive de la fonction de sécurité.

6.1.4 Objets détectés et objets ignorés

L'algorithme d'analyse du signal ne prend en compte que les objets qui se déplacent dans le champ de vision, ignorant ceux qui sont complètement statiques (si l'option Détection d'objet statique est désactivée).

De plus, un algorithme pour la chute d'objets permet d'ignorer les alarmes intempestives générées par de petits déchets d'usinage tombant à l'avant du champ de vision du capteur.

6.1.5 Interférence avec les stimulateurs cardiaques ou autres dispositifs médicaux

Les rayonnements d'LBK SBV System n'interfèrent pas avec les stimulateurs cardiaques ou autres dispositifs médicaux.

6.2 Portées de détection

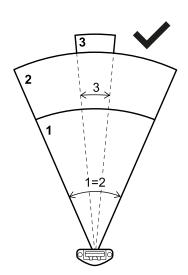
6.2.1 Introduction

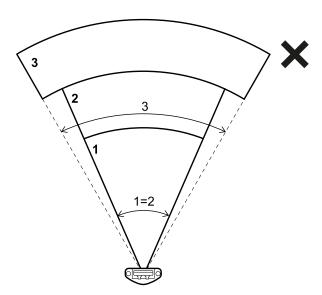
Le champ de vision de chaque capteur peut comprendre un maximum de quatre portées de détection. Chacune des quatre portées de détection possède un signal de détection dédié.

AVERTISSEMENT

Configurer les portées de détection et les associer aux sorties de sécurité à deux canaux conformément aux exigences d'appréciation du risque.

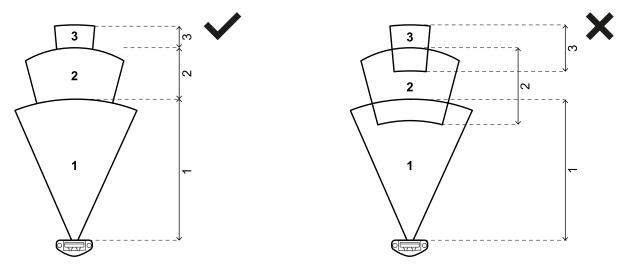
6.2.2 Paramètres des portées de détection

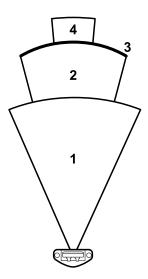

Les paramètres programmables pour chaque portée de détection sont les suivants :


- couverture d'angle horizontale
- · distance de détection
- mode de fonctionnement de sécurité (Détection d'accès et prévention du redémarrage, Toujours détecter l'accès ou Toujours empêcher le redémarrage, voir Modes de fonctionnement de sécurité et fonctions de sécurité à la page 62)
- · délai de redémarrage
- option de détection d'objet statique
- uniquement pour les capteurs 5.x, forme du champ de vision avancé

6.2.3 Couverture d'angle horizontale

La couverture d'angle horizontale est comprise entre 10° et 100° pour l'ensemble du champ de vision.


La couverture d'angle horizontale de la portée de détection doit être supérieure ou égale à la couverture d'angle horizontale des portées de détection suivantes.



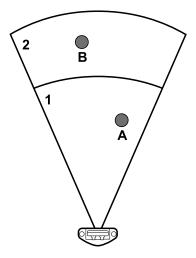
6.2.4 Distance de détection

La distance de détection de la première portée de détection commence au niveau du capteur. La distance de détection d'une portée de détection commence là où se termine celle de la portée de détection précédente.

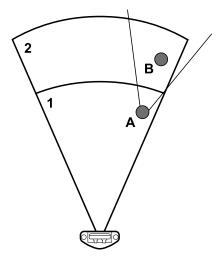
La distance de détection d'une ou de plusieurs portées de détection peut être égale à 0 (par ex., portée de détection 3). La première portée de détection avec une distance de détection différente de 0 (par ex., portée de détection 1) doit avoir une distance de détection minimale de 500 mm (pour les capteurs 3.x) ou de 200 mm (pour les capteurs 5.x).

6.2.5 Dépendance des portées de détection et génération du signal de détection

Si un capteur détecte un mouvement à l'intérieur d'une portée de détection, son signal de détection change d'état et, si elle est configurée, la sortie de sécurité correspondante est désactivée. Le comportement des sorties liées aux portées de détection suivantes varie en fonction de la dépendance définie pour la portée de détection :

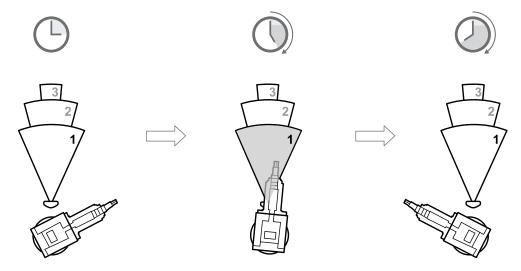

Si	Résultat	
l'option Mode à portées de détection dépendantes est définie et donc les portées de détection dépendent les unes	lorsqu'un capteur détecte un mouvement à l'intérieur d'une portée de détection, toutes les sorties associées aux portées de détection suivantes sont également désactivées.	
des autres	Exemple	
	Portée de détection configurée : 1, 2, 3	
	Portée de détection avec cible détectée : 2	
	Portée de détection en état d'alarme : 2, 3	
l'option Mode à portées de détection indépendantes est définie et donc les portées de détection sont indépendantes	lorsqu'un capteur détecte un mouvement à l'intérieur d'une portée de détection, seule la sortie associée à cette portée de détection est désactivée.	
les unes des autres	Exemple	
	Portée de détection configurée : 1, 2, 3	
	Portée de détection avec cible détectée : 2	
	Portée de détection en état d'alarme : 2	

AVERTISSEMENT



Si les portées de détection sont indépendantes, une évaluation de la sécurité du secteur surveillé doit être effectuée pendant l'appréciation du risque. La zone aveugle générée par une cible peut empêcher le capteur de détecter des cibles dans les portées de détection suivantes.

Dans cet exemple, les deux portées de détection 1 et 2 génèrent un signal de détection, respectivement pour la cible [A] et la cible [B].


Dans cet exemple, la portée de détection 1 génère un signal de détection pour la cible **[A]** mais la cible **[B]** ne peut pas être détectée.

Dans l'application **LBK Designer**, cliquer sur **Paramètres** > **Avancées** > Dépendance des portées de détection pour définir le mode de dépendance des portées de détection.

6.2.6 Portées de détection indépendantes : un cas d'utilisation

Il peut s'avérer utile de définir les portées de détection de manière indépendante, par exemple lorsque le mouvement temporaire d'un objet dans une portée de détection est prévu. Un exemple peut être un bras robotique qui se déplace de droite à gauche à l'intérieur de la portée de détection 1 uniquement pendant une étape spécifique du cycle de fonctionnement.

Dans ce cas, il est possible d'ignorer le signal de détection dans la portée de détection 1, évitant ainsi des temps d'arrêt inutiles.

AVERTISSEMENT

Avant de décider d'ignorer le signal de détection de la portée de détection 1, vérifier la sécurité du secteur surveillé pendant l'appréciation du risque.

AVERTISSEMENT

La zone aveugle générée par le mouvement du bras robotique peut empêcher le capteur de détecter des cibles dans les portées de détection suivantes pendant un certain laps de temps. Ce temps doit être pris en compte lors de la définition de la distance de détection pour la portée de détection 2.

7 Fonctions de sécurité

7 Fonctions de sécurité

7.1 Modes de fonctionnement de sécurité et fonctions de sécurité

7.1.1 Introduction

Chaque portée de détection de chaque capteur peut fonctionner dans l'un des modes de fonctionnement de sécurité suivants :

- · Détection d'accès et prévention du redémarrage
- Toujours détecter l'accès

Chaque mode de fonctionnement de sécurité comprend une ou les deux fonctions de sécurité suivantes :

Fonction	Description
Détection d'accès	La machine est remise en sécurité lorsqu'une ou plusieurs personnes pénètrent dans la zone dangereuse.
Prévention du redémarrage	La machine ne peut pas redémarrer si des personnes se trouvent dans la zone dangereuse.

7.1.2 Modes de fonctionnement de sécurité

Via l'application LBK Designer, il est possible de choisir le mode de fonctionnement de sécurité utilisé par chaque capteur dans chacune des portées de détection :

- Détection d'accès et prévention du redémarrage (par défaut) :
 - Le capteur assure la fonction de détection d'accès lorsqu'il fonctionne dans des conditions normales (état Pas en alarme).
 - Le capteur assure la fonction de prévention du redémarrage lorsqu'il est en état d'alarme (état En alarme).
- Toujours détecter l'accès :
 - Le capteur assure toujours la fonction de détection d'accès (état Pas en alarme + état En alarme).

7.1.3 Limites de vitesse pour la détection d'accès

Les limites de vitesse des mouvements détectés par la fonction de détection d'accès sont les suivantes :

Type d'application	Vitesse minimale	Vitesse maximale
Applications fixes	0,1 m/s	1,6 m/s
Applications mobiles	0,1 m/s	 pour une distance de détection inférieure ou égale à 4 m : 3 m/s pour une distance de détection supérieure à 4 m : 2 m/s

7.2 Mode de fonctionnement de sécurité : Détection d'accès et prévention du redémarrage (par défaut)

7.2.1 Introduction

Ce mode de fonctionnement de sécurité comprend les fonctions de sécurité suivantes :

- · détection d'accès
- prévention du redémarrage

7.2.2 Fonction de sécurité : détection d'accès

La détection d'accès permet ce qui suit :

Lorsque	Résultat	
aucun mouvement n'est détecté dans la portée de détection	les sorties de sécurité restent actives	
un mouvement est détecté dans la portée de détection (voir Limites de vitesse pour la détection d'accès à la page précédente)	 les sorties de sécurité sont désactivées la fonction de prévention du redémarrage est activée 	

7.2.3 Fonction de sécurité : prévention du redémarrage

La fonction de prévention du redémarrage reste active et les sorties de sécurité restent désactivées tant qu'un mouvement est détecté dans la portée de détection ou, avec l'option Détection d'objet statique activée (voir Fonction de prévention du redémarrage : option Détection d'objet statique à la page suivante), tant qu'un objet statique est détecté dans la portée de détection.

Le capteur peut détecter les mouvements ne serait-ce que de quelques millimètres, comme les mouvements respiratoires (avec respiration normale ou une apnée courte) ou les mouvements nécessaires pour qu'une personne reste en équilibre debout ou accroupie.

La sensibilité du système est supérieure à celle de la fonction de détection d'accès. C'est la raison pour laquelle la réaction du système aux vibrations et aux pièces mobiles est différente.

Le capteur assure la détection du mouvement des personnes à n'importe quelle vitesse comprise entre 0 et 1,6 m/s*, à condition que les consignes décrites dans Directives pour le positionnement des capteurs à la page 65 soient respectées.

Remarque * : une personne immobile continue à produire des mouvements statiques résiduels que le radar est à même de détecter.

AVERTISSEMENT

Lorsque la fonction de prévention du redémarrage est active, le secteur surveillé peut être influencé par la position et l'inclinaison des capteurs, ainsi que par leur hauteur de montage et leur couverture d'angle (voir Position du capteur à la page 75).

7.2.4 Paramètre Délai de redémarrage

Lorsque le système ne détecte plus aucun mouvement ou, lorsque l'option Détection d'objet statique est activée, aucun objet statique n'est détecté, les sorties OSSD restent sur OFF-state pendant le temps défini au paramètre Délai de redémarrage. La valeur minimale du paramètre Délai de redémarrage est 0,1 s.

AVERTISSEMENT

Si le Délai de redémarrage est réglé sur une valeur inférieure à 4 s, le capteur n'est plus en mesure de détecter les mouvements respiratoires ou les mouvements nécessaires pour qu'une personne reste en équilibre debout ou accroupie. Ne régler des valeurs inférieures à 4 s que pour les secteurs auxquels les personnes ne peuvent accéder.

7 Fonctions de sécurité Leuze

7.3 Mode de fonctionnement de sécurité : Toujours détecter l'accès

7.3.1 Fonction de sécurité : détection d'accès

C'est la seule fonction de sécurité disponible pour le mode Toujours détecter l'accès. La détection d'accès permet ce qui suit :

Lorsque	Résultat	
aucun mouvement n'est détecté dans la portée de détection	les sorties de sécurité restent actives	
un mouvement est détecté dans la portée de détection	 la fonction de détection d'accès reste active les sorties de sécurité sont désactivées la sensibilité reste la même que celle d'avant la détection du mouvement 	

AVERTISSEMENT

Si le mode Toujours détecter l'accès est sélectionné, des mesures de sécurité supplémentaires doivent être introduites pour assurer la fonction de prévention du redémarrage.

7.3.2 Paramètre Toff

Si le mode de fonctionnement de sécurité est Toujours détecter l'accès, lorsque le système ne détecte plus aucun mouvement, les sorties OSSD restent sur OFF-state pendant le temps défini au paramètre T_{OFF}.

T_{OFF} peut être réglé à une valeur comprise entre 0,1 s et 60 s.

7.4 Fonction de prévention du redémarrage : option Détection d'objet statique

7.4.1 Introduction

L'option Détection d'objet statique permet à la fonction de prévention du redémarrage de détecter également les objets statiques dans la zone dangereuse.

AVIS

La capacité de détecter un objet dépend de la RCS de l'objet. L'option Détection d'objet statique ne garantit pas une détection à 100 % des objets statiques.

7.4.2 Disponibilité

L'option Détection d'objet statique est disponible pour :

- les unités de contrôle avec une version de firmware 1.5.0 ou supérieure et
- les capteurs avec une version de firmware 3.0 ou supérieure.

7.4.3 **Applications possibles**

Cette option peut s'avérer utile si le capteur est installé sur des éléments mobiles (voir Installations sur des éléments mobiles (application mobile) à la page 90) ou pour empêcher le redémarrage d'un robot qui pourrait heurter un objet statique temporairement présent dans le secteur.

7.4.4 **Fonctionnement**

L'option peut être activée pour chaque portée de détection de chaque capteur avec le mode de fonctionnement de sécurité réglé sur Détection d'accès et prévention du redémarrage. Activer cette option uniquement si aucun objet statique ne se trouve dans la portée de détection ; sinon, le système sera incapable de réactiver les signaux de détection après la détection d'un mouvement dans le secteur.

7.4.5 Paramètres

La sensibilité de détection des objets statiques des capteurs peut être augmentée ou réduite via l'application LBK Designer (**Paramètres > Avancées > Sensibilité de détection d'objet statique**)

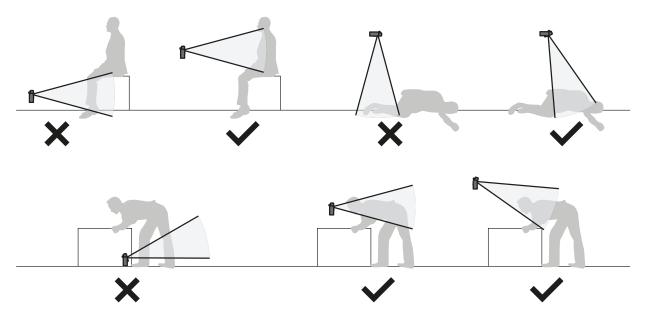
7.5 Caractéristiques de la fonction de prévention du redémarrage

7.5.1 Directives pour le positionnement des capteurs

La fonction de prévention du redémarrage est efficace si le capteur est capable de détecter les mouvements d'une personne ou ses mouvements statiques résiduels. Pour détecter les personnes qui ne sont pas debout ou accroupies, il est important que le capteur puisse cadrer clairement leur poitrine.

Une attention particulière doit être portée aux situations suivantes :

- Lorsque des objets limitent ou empêchent les capteurs de détecter des mouvements.
- L'appréciation du risque requiert qu'une personne allongée puisse être détectée et qu'un capteur soit installé à une hauteur inférieure à 2,5 m ou avec une inclinaison vers le bas inférieure à 60°.
- Le capteur ne détecte pas une partie suffisante du corps ou ne cadre pas correctement la poitrine de la personne.


Si au moins l'une des conditions décrites ci-dessus est constatée, une procédure de validation doit être effectuée (voir Valider les fonctions de sécurité à la page 108).

Si les conditions décrites ci-dessus limitent les performances du capteur, procéder comme suit pour atteindre un niveau de performance adéquat :

- Augmenter la valeur du paramètre Délai de redémarrage.
- · Modifier la position des capteurs.
- · Ajouter d'autres capteurs.

Si au moins l'une des opérations décrites ci-dessus est effectuée, il est recommandé de lancer une procédure de validation (voir Valider les fonctions de sécurité à la page 108).

Ci-dessous sont présentés des exemples de situations où les conditions susmentionnées ne sont pas remplies (X) et qui montrent le positionnement correct du capteur (\checkmark). Ces exemples ne sont pas exhaustifs.

7.5.2 Types de redémarrages gérés

AVIS

Il est de la responsabilité du fabricant de la machine d'évaluer si le redémarrage automatique peut garantir le même niveau de sécurité que celui obtenu avec le redémarrage manuel (tel que défini par la norme EN ISO 13849-1, paragraphe 5.2.2).

Le système gère séparément trois types de redémarrage pour chaque portée de détection :

Туре	Conditions de validation du redémarrage de la machine	Mode de fonctionnement de sécurité autorisé
Automatique	Le délai réglé via l'application LBK Designer (Délai de redémarrage) depuis la détection du dernier mouvement s'est écoulé*.	Tous
Manuel	Le Signal de redémarrage a été reçu avec succès** (voir Signal de redémarrage (à deux canaux, mode de redondance cohérente) à la page 164).	Toujours détecter l'accès
Manuel sécurisé	 Le délai réglé via l'application LBK Designer (Délai de redémarrage) depuis la détection du dernier mouvement s'est écoulé* et Le Signal de redémarrage a été reçu avec succès** (voir Signal de redémarrage + réinitialisation opérationnelle du système (à deux canaux, mode de redondance cohérente) à la page 168). 	Détection d'accès et prévention du redémarrage, Toujours empêcher le redémarrage

AVERTISSEMENT

Si le redémarrage **Automatique** est configuré avec le mode de fonctionnement de sécurité **Toujours détecter l'accès**, la fonction de prévention du redémarrage n'est pas exécutée et, par conséquent, le système ne garantit pas la détection d'une personne dans le secteur surveillé.

Remarque* : le redémarrage de la machine est activé si aucun mouvement n'est détecté jusqu'à 35 cm audelà de la portée de détection.

Remarque** : (pour tous les types de redémarrage) d'autres états de danger du système peuvent empêcher le redémarrage de la machine (par ex., erreur de diagnostic, masquage du capteur, etc.)

7.5.3 Précautions à prendre pour éviter un redémarrage inopiné

Pour éviter un redémarrage inopiné, si le centre du capteur est installé à une hauteur inférieure à 15 cm du sol, une distance minimale de 50 cm du capteur doit être garantie.

Remarque : si le centre du capteur est installé à une hauteur inférieure à 15 cm du sol, il est possible d'activer la fonction de masquage pour générer une erreur système lorsqu'une personne se trouve face au capteur.

7.5.4 Configurer la fonction de redémarrage

AVERTISSEMENT

Si la fonction **Signal de redémarrage** a été activée aussi bien via le Fieldbus de sécurité que via les entrées numériques, cette fonctionnalité peut être activée par les deux.

7 Fonctions de sécurité

Туре	Procédure
Automatique	 Dans l'application LBK Designer sous Paramètres > Fonction de redémarrage, sélectionner Automatique. Dans l'application LBK Designer, sous Configuration pour chaque portée de détection utilisée avec le redémarrage automatique, sélectionner le Fonctionnement de sécurité souhaité et définir le Délai de redémarrage (ou le paramètre T_{OFF}, le cas échéant).
Manuel	 Dans l'application LBK Designer sous Paramètres > Fonction de redémarrage, sélectionner Manuel. En présence d'une entrée numérique configurée comme Signal de redémarrage (Paramètres > Entrées-sorties numériques), raccorder le poussoir de la machine pour le signal de redémarrage de manière appropriée (voir Raccordements électriques à la page 148). Pour utiliser la communication Fieldbus pour le signal de redémarrage, s'assurer qu'aucune entrée numérique n'est configurée comme Signal de redémarrage (Paramètres > Entrées-sorties numériques). Voir le protocole Fieldbus pour plus de détails. Dans l'application LBK Designer, sous Configuration, définir pour chaque portée de détection utilisée avec le redémarrage manuel la valeur du paramètre T_{OFF}. Remarque : le Fonctionnement de sécurité est automatiquement défini sur Toujours détecter l'accès pour toutes les portées de détection utilisées avec le redémarrage manuel.
Manuel sécurisé	 Dans l'application LBK Designer sous Paramètres > Fonction de redémarrage, sélectionner Manuel sécurisé. En présence d'une entrée numérique configurée comme Signal de redémarrage (Paramètres > Entrées-sorties numériques), raccorder le poussoir de la machine pour le signal de redémarrage de manière appropriée (voir Raccordements électriques à la page 148). Pour utiliser la communication Fieldbus pour le signal de redémarrage, s'assurer qu'aucune entrée numérique n'est configurée comme Signal de redémarrage (Paramètres > Entrées-sorties numériques). Voir le protocole Fieldbus pour plus de détails. Dans l'application LBK Designer, sous Configuration, sélectionner pour chaque portée de détection utilisée avec le redémarrage manuel sécurisé le Fonctionnement de sécurité parmi ceux autorisés et définir la valeur du paramètre Délai de redémarrage.

8 Autres fonctions Leuze

8 **Autres fonctions**

8.1 Muting

8.1.1 **Description**

La fonction de muting est une fonction de sécurité supplémentaire qui inhibe la capacité de détection du capteur pour lequel elle est activée. La fonction peut être activée pour un capteur spécifique ou pour un groupe de capteurs. La OSSD ou le Fieldbus de sécurité reste sur ON-state même si les capteurs en muting détectent un mouvement.

Lorsque la fonction de muting est activée, l'activation effective sur un ou plusieurs capteurs n'a lieu que lorsque les conditions le permettent (voir Conditions d'activation de la fonction de muting en bas).

8.1.2 Activation de la fonction de muting

La fonction de muting peut être activée via l'entrée numérique (voir Caractéristiques du signal d'activation de la fonction de muting à la page suivante) ou le Fieldbus de sécurité (si disponible).

AVERTISSEMENT

Si la fonction de muting a été activée aussi bien via le Fieldbus de sécurité que via les entrées numériques, seule l'activation de la fonction par les entrées numériques est prise en compte.

AVERTISSEMENT

Lorsqu'un capteur est en muting, les erreurs du capteur ne sont pas disponibles (voir Événements d'ERREUR (capteur) à la page 132).

Via le Fieldbus de sécurité (si disponible), la fonction de muting peut être activée individuellement pour chaque capteur.

La fonction de muting peut être activée via l'entrée numérique pour tous les capteurs en même temps ou seulement pour un groupe de capteurs. Il est possible de configurer jusqu'à deux groupes, chacun étant associé à une entrée numérique.

Au moyen de l'application LBK Designer, il est nécessaire de définir ce qui suit :

- pour chaque entrée, le groupe de capteurs gérés
- · pour chaque groupe, les capteurs qui lui appartiennent
- pour chaque capteur, s'il appartient ou non à un groupe

Remarque : si la fonction de muting est activée pour un capteur, elle l'est pour toutes les portées de détection du capteur, que les portées de détection soient dépendantes ou indépendantes et que les fonctions d'autoprotection soient désactivées ou non pour ce capteur.

Voir Configurer les entrées et les sorties auxiliaires à la page 106.

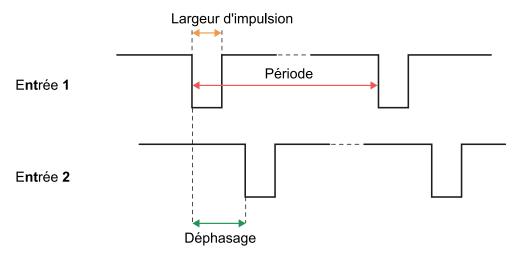
8.1.3 Conditions d'activation de la fonction de muting

La fonction de muting n'est activée pour un capteur spécifique que dans les conditions suivantes :

- Aucune portée de détection concernée ne comporte de signaux de détection actifs ou de signaux de détection d'objets statiques actifs et le délai de redémarrage a expiré pour toutes les portées de détection.
- Aucune alerte sabotage ou signal de défaillance n'est présent pour le capteur concerné.

Lorsqu'elle est activée pour un groupe de capteurs, la fonction de muting est activée lorsque aucune détection n'a lieu dans le secteur surveillé par tous les capteurs.

AVERTISSEMENT



Activer le signal de muting des capteurs qui surveillent la même zone dangereuse uniquement lorsque toute la zone est sécurisée et que personne ne peut y accéder. Si la fonction de muting est activée pour chaque capteur via Fieldbus et que certains capteurs détectent encore un mouvement, une personne pourrait se déplacer vers un espace surveillé par un capteur en muting, compromettant ainsi la sécurité de toute la zone.

Caractéristiques du signal d'activation de la fonction de muting 8.1.4

La fonction de muting n'est activée que si les deux signaux logiques de l'entrée dédiée répondent à certaines caractéristiques.

Une représentation graphique des caractéristiques du signal est illustrée ci-dessous.

Dans l'application LBK Designer, sous Paramètres > Entrées-sorties numériques, il est nécessaire de régler les paramètres qui définissent les caractéristiques du signal.

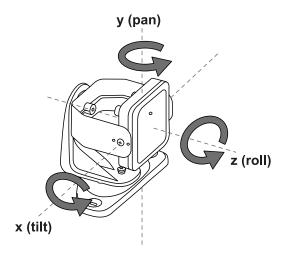
Remarque: avec une durée d'impulsion = 0, il suffit que les signaux d'entrée soient au niveau logique haut (1) pour activer la fonction de muting.

8.1.5 État de muting

Toute sortie dédiée à l'état de la fonction de muting (Signal de rétroaction d'activation muting) est activée si au moins un des groupes de capteurs est en muting.

AVIS

Il est de la responsabilité du fabricant de la machine d'évaluer si l'indication de l'état de la fonction de muting est nécessaire (tel que défini par la norme EN ISO 13849-1, paragraphe 5.2.5).


Leuze 8 Autres fonctions

8.2 Fonctions d'autoprotection : anti-rotation autour des axes

8.2.1 Anti-rotation autour des axes

Le capteur détecte la rotation autour de ses axes.

Remarque : les axes sont ceux représentés dans la figure ci-dessous, quelle que soit la position de montage du capteur.

Lorsque la configuration du système est sauvegardée, le capteur mémorise la position. Si, par la suite, le capteur détecte des changements de rotation autour de ces axes, il envoie une alerte sabotage à l'unité de contrôle. En cas d'alerte sabotage, l'unité de contrôle désactive les sorties de sécurité.

Remarque: si la position est modifiée par rapport aux références enregistrées (par ex., en cas de rotation d'un capteur) et que la fonction anti-rotation autour des axes est activée, LBK SBV System détecte le sabotage et envoie le message dans les 5 secondes.

Le capteur peut détecter des variations de rotation autour de l'axe x et de l'axe z même lorsqu'il est éteint. L'alerte sabotage est envoyée à l'unité de contrôle lors de la mise sous tension suivante.

Une modification de la rotation autour de l'axe y n'est détectée que si elle s'effectue à une vitesse supérieure à 5° toutes les 10 secondes et que le système est en marche.

AVERTISSEMENT

L'alerte sabotage due à une rotation autour de l'axe y est réinitialisée lors de la mise sous tension suivante. Pour assurer un fonctionnement correct et sûr, valider à nouveau le système.

8.2.2 Activer la fonction anti-rotation autour des axes

La fonction anti-rotation autour des axes est désactivée par défaut.

AVERTISSEMENT

Si la fonction est désactivée, le système ne peut pas signaler la modification de la rotation du capteur autour des axes ni même une quelconque variation du secteur surveillé. Voir Vérifications à effectuer lorsque la fonction anti-rotation autour des axes est désactivée à la page suivante.

AVERTISSEMENT

Si la fonction est désactivée pour au moins un axe d'un capteur et que la rotation autour de cet axe n'est pas protégée par des vis inviolables, des précautions doivent être prises pour éviter toute altération.

La fonction peut être activée et configurée individuellement pour chaque axe de chaque capteur. Dans l'application LBK Designer, sous Paramètres > Autoprotection, cliquer sur l'option pertinente pour activer la fonction pour un capteur.

8.2.3 Conditions d'activation de la fonction

Activer la fonction anti-rotation autour des axes uniquement lorsqu'il est nécessaire de détecter une modification de la rotation d'un capteur autour d'un axe spécifique.

Il est fortement recommandé de ne pas activer la fonction si le capteur est installé sur un objet en mouvement (par ex., un chariot, un véhicule) qui modifie l'inclinaison du capteur lorsqu'il se déplace (par ex., mouvement sur un plan incliné ou dans un virage).

8.2.4 Vérifications à effectuer lorsque la fonction anti-rotation autour des axes est désactivée

Lorsque la fonction anti-rotation autour des axes est désactivée, procéder aux vérifications suivantes.

Fonctions de sécurité	Fréquence	Action
Fonction de détection d'accès	Avant chaque redémarrage de la machine	Vérifier que le capteur est positionné comme défini dans la configuration.
Fonction de prévention du redémarrage	Chaque fois que les sorties de sécurité sont désactivées	Vérifier que le secteur surveillé est le même que celui défini par la configuration. Voir Valider les fonctions de sécurité à la page 108.

8.3 Fonctions d'autoprotection : anti-masquage

8.3.1 Alerte masquage

Le capteur détecte la présence d'objets qui peuvent occulter le champ de vision. Lorsque la configuration du système est sauvegardée, le capteur mémorise la zone environnante. Si, par la suite, le capteur détecte des modifications dans l'environnement susceptibles d'avoir une influence sur le champ de vision, il envoie une alerte masquage à l'unité de contrôle. Le capteur surveille la zone comprise entre -50° et 50° dans le plan horizontal, quelle que soit la couverture d'angle horizontale réglée. En cas d'alerte masquage, l'unité de contrôle désactive les sorties de sécurité.

Remarque : l'alerte masquage n'est pas garantie en présence d'objets ayant des propriétés réfléchissantes telles à faire descendre leur RCS en dessous du seuil minimal détectable.

Remarque: si la position est modifiée par rapport aux références enregistrées (par ex., en cas de masquage d'un capteur) et que la fonction anti-rotation autour des axes est activée, LBK SBV System détecte le sabotage et envoie le message dans les 5 secondes.

8 Autres fonctions Leuze

8.3.2 Processus de mémorisation de l'environnement

Le capteur démarre le processus de mémorisation de la zone environnante lors de la sauvegarde de la configuration dans l'application LBK Designer. À partir de ce moment, il attend jusqu'à 20 secondes que le système sorte de l'état d'alarme et que la scène devienne statique, puis il analyse et mémorise l'environnement.

AVIS

Si la scène ne devient pas statique dans les 20 secondes, le système restera en état d'erreur (SIGNAL ERROR) et la configuration du système devra être sauvegardée à nouveau.

Il est recommandé de démarrer le processus de mémorisation au moins 3 minutes après la mise sous tension du système pour avoir la certitude que le capteur a atteint sa température de service.

Ce n'est qu'à la fin du processus de mémorisation que le capteur peut envoyer des alertes de masquage.

8.3.3 Causes de masquage

Voici les causes possibles d'alerte de masquage :

- Un objet a été placé à l'intérieur de la portée de détection qui occulte le champ de vision du capteur.
- L'environnement de la portée de détection varie considérablement, par exemple si le capteur est installé sur des pièces mobiles ou si des pièces mobiles se trouvent à l'intérieur de la portée de détection.
- La configuration a été sauvegardée avec les capteurs installés dans un environnement différent de celui de travail.
- Des écarts de température se sont produits.

8.3.4 Alerte de masquage à la mise sous tension

Si le système a été éteint pendant plusieurs heures et qu'il y a eu un écart de température, il se pourrait qu'à sa mise sous tension le capteur envoie une fausse alerte de masquage. Les sorties de sécurité sont automatiquement activées dans les 3 minutes dès que le capteur atteint sa température de service. Cela ne se produit pas si la température du capteur est encore très éloignée de la température de référence.

8.3.5 Paramètres

Pour chaque capteur, les paramètres anti-masquage sont les suivants :

- distance maximale par rapport au capteur (plage [20 cm, 100 cm], pas de 10 cm) à laquelle la fonction est active
- sensibilité

Les quatre niveaux de sensibilité sont les suivants :

Remarque : la fonction comporte une zone de tolérance dans laquelle la détection effective d'un masquage dépend de la RCS de l'objet et du niveau de sensibilité réglé. Le niveau de sensibilité le plus élevé couvre la zone la plus large, soit environ 10 à 20 cm.

Niveau	Description	Exemple d'application
Élevé	Le capteur a une sensibilité maximale aux variations dans l'environnement. (Niveau recommandé lorsque le champ de vision est libre jusqu'à la distance de masquage définie)	Montages avec un environnement vide et à moins d'un mètre de hauteur, où des objets pourraient occulter le capteur.
Moyen	Le capteur est peu sensible aux variations dans l'environnement. L'occultation doit être évidente (sabotage volontaire).	Montages à plus d'un mètre de hauteur, où le masquage n'est susceptible de se produire que s'il est volontaire.

8 Autres fonctions Leuze

Niveau	Description	Exemple d'application
Faible	Le capteur ne détecte le masquage que si l'occultation est complète et est due à la présence d'objets très réfléchissants (par ex., métal, eau) à proximité du capteur.	Montages sur des pièces mobiles, où l'environnement change continuellement, mais où des objets statiques pourraient se trouver à proximité du capteur (obstacles sur le trajet).
Désactivé	Le capteur ne détecte pas les variations dans l'environnement. AVERTISSEMENT Si la fonction est désactivée, le système ne peut pas signaler la présence d'objets qui empêchent une détection normale (voir Vérifications à effectuer lorsque la fonction anti-masquage est désactivée en bas).	Voir Conditions de désactivation en bas.

Pour modifier le niveau de sensibilité ou désactiver la fonction, dans l'application LBK Designer, cliquer sur **Paramètres > Autoprotection** et chercher **Sensibilité anti-masquage**.

Pour régler la distance, dans l'application LBK Designer, cliquer sur **Paramètres > Autoprotection** et chercher **Distance anti-masquage**.

8.3.6 Vérifications à effectuer lorsque la fonction anti-masquage est désactivée

Lorsque la fonction anti-masquage est désactivée, procéder aux vérifications suivantes.

Fonctions de sécurité	Fréquence	Action
Fonction de détection d'accès		Retirer tous les objets susceptibles d'occulter le champ de vision du capteur.
Fonction de prévention du redémarrage	Chaque fois que les sorties de sécurité sont désactivées	Remettre le capteur dans sa position initiale.

8.3.7 Conditions de désactivation

La fonction anti-masquage doit être désactivée lorsque les conditions suivantes se produisent :

- (Avec fonction de prévention du redémarrage) Le secteur surveillé contient des pièces mobiles dont l'arrêt a lieu dans des positions différentes et imprévisibles.
- Le secteur surveillé contient des pièces mobiles dont la position varie pendant que les capteurs sont en muting.
- Le capteur est positionné sur une pièce mobile.
- Dans le secteur surveillé, la présence d'objets statiques est tolérée (par ex., zone de chargement/déchargement).

8.4 Auto-resume (capteurs 5.x uniquement)

8.4.1 Introduction

Certaines défaillances transitoires provoquent une condition de blocage permanent qui empêche le rétablissement du fonctionnement normal.

Bien que l'état de sécurité soit maintenu, ce comportement constitue une limitation, notamment pour les systèmes distants qui ne sont pas facilement accessibles.

Leuze 8 Autres fonctions

La fonction Auto-resume tente de rétablir le fonctionnement normal du capteur pendant cinq tentatives consécutives : si la défaillance persiste, la condition de blocage est maintenue. Dans le cas contraire, la condition de fonctionnement normal est automatiquement rétablie.

8.4.2 Limites de la fonction

Les conditions suivantes empêchent l'exécution de la fonction Auto-resume :

- POWER ERROR
- SIGNAL ERROR
- TAMPER ERROR
- TEMPERATURE ERROR

La fonction n'est pas exécutée lorsque le capteur est en muting.

8.5 Robustesse environnementale (capteurs 5.x uniquement)

8.5.1 Paramètre Robustesse environnementale

Dans certains environnements, le système peut ne pas être en mesure de filtrer les objets statiques à l'intérieur de la scène, notamment s'ils ont des formes particulières.

Cela pourrait retarder le redémarrage du système.

Le paramètre Robustesse environnementale permet d'augmenter la résistance du système afin qu'il puisse mieux filtrer ces objets.

Dans l'application LBK Designer sous **Paramètres > Avancées**, l'option peut être activée individuellement pour chaque capteur.

Il est fortement recommandé d'activer cette option uniquement dans les applications de prévention du redémarrage, où le temps de réponse plus long n'affecte pas le comportement du système, et uniquement pour les capteurs installés à une hauteur inférieure à 50 cm du sol dans le secteur surveillé.

AVERTISSEMENT

Le paramètre influe sur le temps de réponse du système pour la fonction de sécurité de détection d'accès (max. 200 ms).

8.6 Robustesse électromagnétique

8.6.1 Paramètre Robustesse électromagnétique

Le paramètre Robustesse électromagnétique permet d'augmenter la résistance du système aux perturbations électromagnétiques (dues, par ex., à des capteurs de différents systèmes installés trop près les uns des autres ou à des problèmes du bus CAN).

Dans l'application LBK Designer sous Paramètres > Avancées, il est possible de définir les niveaux de robustesse suivants:

- Standard (par défaut)
- Élevée
- · Très élevée

AVERTISSEMENT

Le paramètre influe sur le temps de réponse du système pour la fonction de sécurité de détection d'accès. Suivant le niveau sélectionné, le temps de réponse maximal garanti est de 100 ms (Standard), 150 ms (Élevée) ou 200 ms (Très élevée).

9 Position du capteur

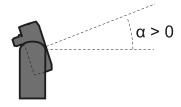
9.1 Concepts de base

9.1.1 Facteurs déterminants

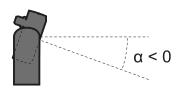
La hauteur de montage du capteur et son inclinaison doivent être déterminées conjointement avec la couverture d'angle et les distances de détection afin d'obtenir une couverture optimale de la zone dangereuse.

9.1.2 Hauteur de montage du capteur

La hauteur de montage (h) est définie comme la distance entre le centre du capteur et le sol ou le plan de référence du capteur.


9.1.3 Inclinaison du capteur

L'inclinaison du capteur est la rotation du capteur autour de son axe x. L'inclinaison est définie comme l'angle entre une ligne perpendiculaire au capteur et une ligne parallèle au sol. Trois exemples sont donnés ci-dessous :


capteur vers le haut : α positif

capteur droit : α = 0

• capteur vers le bas : α négatif

9.2 Champ de vision des capteurs

9.2.1 Types de champ de vision

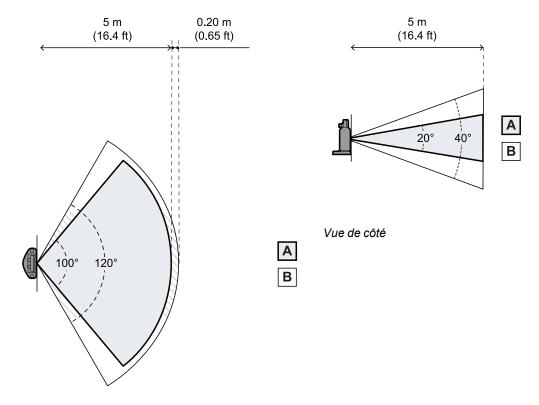
Au cours de la configuration, il est possible de choisir la couverture d'angle horizontale pour chaque capteur (voir Couverture d'angle horizontale à la page 57).

La portée de détection effective du capteur dépend également de la hauteur et de l'inclinaison de montage du capteur (voir Calcul de la plage des distances à la page 86).

Les formes standards du champ de vision sont décrites ci-dessous. Pour les capteurs 5.x, la forme classique et la forme en couloir sont disponibles, (voir Champ de vision avancé (capteurs 5.x uniquement) à la page 78).

9.2.2 Zones et dimensions du champ de vision

Le champ de vision du capteur comporte deux zones :

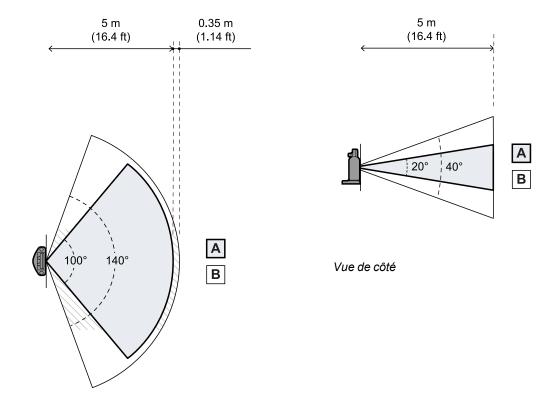

- portée de détection : où la détection d'objets assimilés à des personnes est assurée dans n'importe quelle position
- zone de tolérance : où la détection effective du mouvement d'un objet ou d'une personne dépend des caractéristiques de l'objet en question (voir Facteurs influençant le signal réfléchi à la page 56).

9.2.3 Dimensions pour la fonction de détection d'accès

Les dimensions maximales du champ de vision [A] et la zone de tolérance relative [B] sont indiquées ciaprès.

Les dimensions de la zone de tolérance sont les mêmes pour la couverture d'angle maximale (comme décrit dans les figures ci-dessous) et pour les couvertures plus petites.

Remarque : les dimensions de la zone de tolérance décrites sont liées à la détection des personnes.

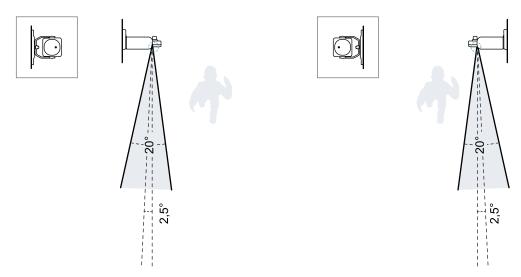

Vue de dessus

9.2.4 Dimensions pour la fonction de prévention du redémarrage

Les dimensions maximales du champ de vision [A] et la zone de tolérance relative [B] sont indiquées ciaprès.

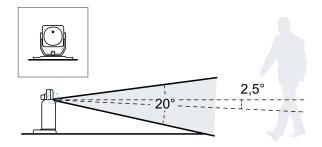
Les dimensions de la zone de tolérance sont les mêmes pour la couverture d'angle maximale (comme décrit dans les figures ci-dessous) et pour les couvertures plus petites.

Remarque : les dimensions de la zone de tolérance décrites sont liées à la détection des personnes.



Vue de dessus

9.2.5 Position du champ de vision


La position du champ de vision présente un désalignement de 2,5°. Pour comprendre la position effective du champ de vision du capteur, considérer la position de la DEL :

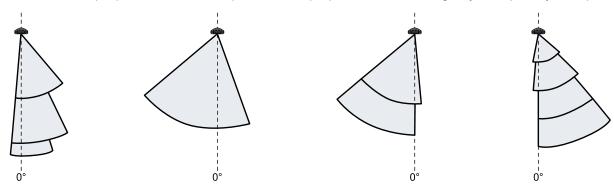
- vers la gauche avec la DEL du capteur à droite (par rapport au centre du capteur, en se tenant face au capteur)
- vers la droite avec la DEL du capteur à gauche (par rapport au centre du capteur, en se tenant face au capteur)
- vers le bas avec la DEL du capteur en haut

Vue de dessus avec inclinaison du capteur à 0°.

Vue de dessus avec inclinaison du capteur à 0°.

Vue latérale avec inclinaison du capteur à 0°.

9.3 Champ de vision avancé (capteurs 5.x uniquement)

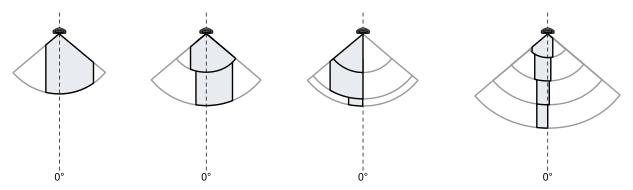

9.3.1 Introduction

Le champ de vision de chaque capteur peut prendre deux formes :

- Classique
- Couloir

9.3.2 Champ de vision classique

La forme classique permet de choisir la forme standard du champ de vision et de la rendre asymétrique si nécessaire. Chaque portée de détection peut avoir sa propre couverture d'angle symétrique/asymétrique.



Conditions:

- L'axe du capteur doit toujours être compris dans toutes les portées de détection.
- La couverture d'angle horizontale de chaque portée de détection doit être supérieure ou égale à la couverture d'angle horizontale des portées de détection suivantes.
- La largeur minimale du champ de vision est de 10°.

9.3.3 Champ de vision en forme de couloir

La forme en couloir permet de personnaliser la forme du champ de vision. À partir de la forme standard avec la couverture d'angle maximale, il est possible de la diviser latéralement en deux surfaces planes parallèles à l'axe du capteur. La largeur du couloir peut être personnalisée pour chaque portée de détection.

Conditions:

- L'axe du capteur doit toujours être compris dans toutes les portées de détection.
- La largeur du couloir de chaque portée de détection doit être supérieure ou égale à la largeur du couloir des portées de détection qui suivent.
- La largeur minimale du couloir est de 20 cm.

9.4 Calcul de la distance de séparation

9.4.1 Introduction

La formule utilisée par LBK SBV System pour calculer la distance de séparation est basée sur la norme ISO 13855:2024 et est décrite dans les sections suivantes. La norme a été utilisée comme consigne pour définir la distance de séparation pour les dispositifs volumétriques pouvant être atteints depuis différentes directions.

9.4.2 Formule pour les applications fixes

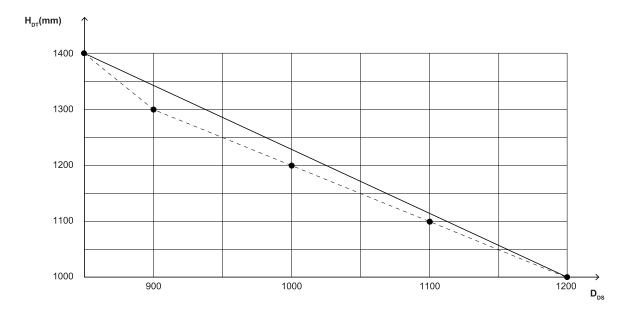
Pour calculer la distance de séparation (S) pour les applications fixes, utiliser la formule suivante :

$$S = K*T + D_{DS} + Z$$

Où:

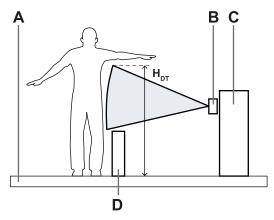
Variable	Description	Valeur	Unité de mesure	Remarques
K	Vitesse d'approche maximale	1600	mm/s	La vitesse d'approche maximale considérée est de 1 600 mm/s car les RPD sont des dispositifs de protection du corps humain. Ceci est conforme à la définition de la vitesse d'approche de la norme ISO 13855:2024.
Т	Réponse globale du système	Voir ISO 13855	s	Le temps de réponse global du système T comprend des portions de temps qui varient en fonction du type de machine, des moyens de protection utilisés et des éléments du SRP/CS concernés par la fonction de sécurité.

Variable	Description	Valeur	Unité de mesure	Remarques
D _{DS}	Distance d'atteinte	• Si H _{DT} ≤ 1 000 D _{DS} = 1 200 • Si 1 000 < H _{DT} < 1 400, D _{DS} = 1 200 - [(H _{DT} - 1 000) * 0,875] • Si H _{DT} ≥ 1 400, D _{DS}	mm	Pour la définition de H_{DT} , voir ISO 13855:2024. Pour plus de détails sur H_{DT} , voir Considérations pour le calcul de la distance d'atteinte en bas.
Z	Facteur de distance supplémentaire	= 850 Voir ISO 13855:2024	mm	La zone de tolérance est déjà prise en compte dans la distance de détection fournie, comme indiqué dans la norme CEI TS 61496-5. Le calcul de la distance de séparation ne requiert pas l'ajout de valeurs correctives pour la zone de tolérance.

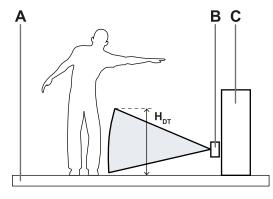

Remarque : lors de l'utilisation du Fieldbus, le calcul du temps de réponse global doit prendre en compte le temps de cycle.

9.4.3 Considérations pour le calcul de la distance d'atteinte

La distance d'atteinte D_{DS} peut être calculée à partir de la hauteur de la zone de détection H_{DT} selon les considérations suivantes :


- si la valeur H_{DT} dépasse 1 400 mm, une personne ne peut introduire qu'un seul bras (voir Exemple de HDT ≥ 1 400 mm (approche parallèle) à la page suivante).
- si la valeur H_{DT} est inférieure à 1 000 mm, une personne peut introduire un bras et une partie du torse (voir Exemple de HDT ≤ 1 000 mm (approche parallèle) à la page suivante.

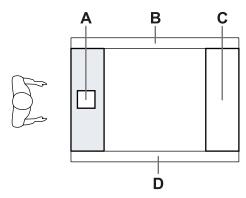
La formule de calcul de la valeur D_{DS} est définie selon une approche conservatrice fondée sur les valeurs indiquées dans le tableau 2 de la norme ISO 13855:2024.


Ligne	Description	
	Distance d'atteinte sur une zone verticale selon le Tableau 2 de la norme ISO 13855	
	Distance d'atteinte selon la formule 1 200 - [(H _{DT} - 1 000) * 0,875)]	

Exemple de $H_{DT} \ge 1 400 \text{ mm}$ (approche parallèle)

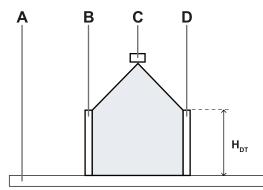
Elément	Description
Α	Plan de référence
В	RPD
С	Zone dangereuse
D	Obstacle

Exemple de $H_{DT} \le 1 000 \text{ mm}$ (approche parallèle)


Élément	Description
Α	Plan de référence
В	RPD
С	Zone dangereuse

9.4.4 Calcul de la hauteur de la zone de détection et position des capteurs

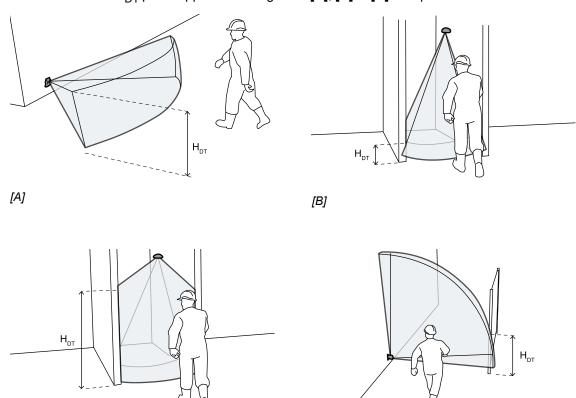
Pour calculer la hauteur de la zone de détection H_{DT}, suivre les consignes de la norme ISO 13855:2024 aussi bien pour l'approche parallèle que pour l'approche orthogonale.


Le capteur doit être installé de manière à empêcher l'accès à la partie inférieure (voir ISO 13855:2024). Une distance verticale de plus de 200 mm par rapport au plan de référence H_D peut entraîner un risque d'accès accidentel non détecté au-dessous de la zone de détection. Cet aspect doit être pris en compte lors de l'appréciation du risque et, si nécessaire, des mesures de protection supplémentaires doivent être mises en place.

Exemple de H_{DT} pour l'approche orthogonale (vue de dessus)

Élément	Description
Α	RPD
В	Structure de protection
С	Zone dangereuse
D	Structure de protection

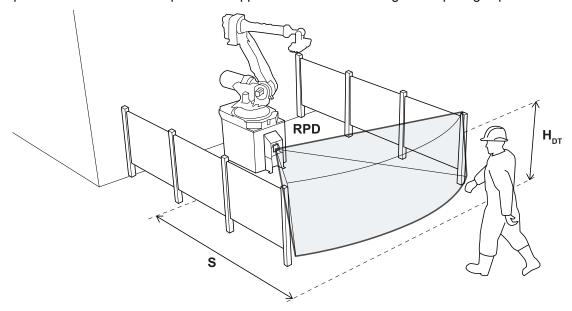
Exemple de H_{DT} pour l'approche orthogonale (vue de face)



Elément	Description
Α	Plan de référence
В	Structure de protection
С	RPD
D	Structure de protection

9.4.5 Exemples

[C]


Un autre exemple d'identification de H_{DT} pour l'approche parallèle **[A]**, ainsi que des exemples d'identification de H_{DT} pour l'approche orthogonale **[B]**, **[C]** et **[D]** sont présentés ci-dessous.

[D]

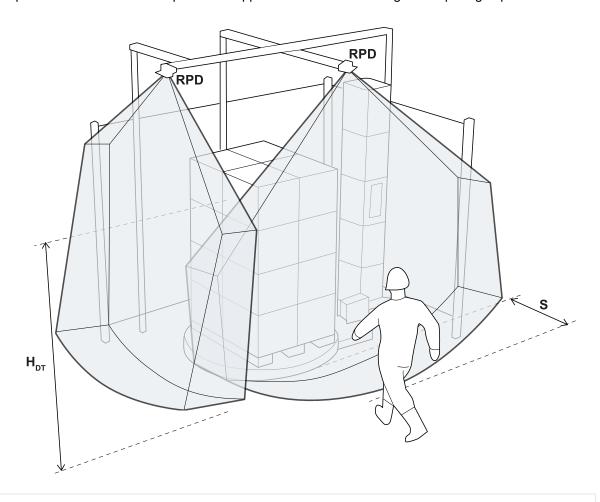
9.4.6 Exemple de calcul de la distance de séparation - approche parallèle

L'exemple ci-dessous montre un opérateur s'approchant d'une zone dangereuse protégée par un RPD.

Exemple

- Temps d'arrêt total T = 0,2 s
- H_{DT} = 1 200 mm
- Z_P = 0 mm
- Z_M = 100 mm

En appliquant la formule pour le calcul de la distance d'atteinte :


 $D_{DS} = 1200 - [(H_{DT} - 1000) * 0,875] = 1200 - 175 = 1025 \text{ mm}$

Sur la base de ces valeurs, la distance de séparation globale est la suivante :

 $S = 1600 \times 0.2 + 1025 + 100 = 1445 \text{ mm}$

9.4.7 Exemple de calcul de la distance de séparation - approche orthogonale

L'exemple ci-dessous montre un opérateur s'approchant d'une zone dangereuse protégée par un RPD.

Exemple

- Temps d'arrêt total T = 0,1 s
- H_{DT} = 2200 mm
- Z = 0 mm

En appliquant la formule pour le calcul de la distance d'atteinte :

 $D_{DS} = 850 \text{ mm}$

Sur la base de ces valeurs, la distance de séparation globale est la suivante :

 $S = 1600 \times 0.1 + 850 + 0 = 1010 \text{ mm}$

9.4.8 Formule pour les applications mobiles

Pour calculer la profondeur de la distance de séparation (S) des applications mobiles, utiliser la formule suivante :

$$S = K * T + C$$

Où:

Variable	Description	Valeur	Unité de mesure
K	Vitesse maximale véhicule/pièce de la machine *.	Pour une distance de détection ≤ 4 m : K ≤ 3000	mm/s
		Pour une distance de détection > 4 m : K ≤ 2000	
Т	Temps de réponse global du système	Voir ISO 13855**	S
С	Valeur corrective	200	mm

Remarque* : seule la vitesse du véhicule ou de la pièce de la machine est prise en compte, en supposant que la personne reconnaît le danger et reste immobile.

Remarque**: le temps de réponse global du système T comprend des portions de temps qui varient en fonction du type de machine, des moyens de protection utilisés et des éléments du SRP/CS concernés par la fonction de sécurité.

Remarque: lors de l'utilisation du Fieldbus, le temps de cycle doit être pris en compte dans le calcul du temps de réponse global.

Exemple 1

- vitesse maximale du véhicule = 2 000 mm/s
- temps d'arrêt de la machine = 0,5 s

T = 0.1 s + 0.5 s = 0.6 s

S = 2000 * 0.6 + 200 = 1400 mm

9.5 Calcul de la plage des distances

9.5.1 Introduction

La plage des distances de détection d'un capteur dépend de l'inclinaison (α) et de la hauteur de montage (h) du capteur. La distance de détection de chaque portée de détection (Dalarm) dépend d'une distance d qui doit se situer dans la plage des distances autorisées.

Les formules de calcul des distances sont données ci-dessous.

AVERTISSEMENT

Définir la position optimale du capteur en fonction des exigences de l'appréciation du risque.

9.5.2 Légende

Élément	Description	Unité de mesure
α	Inclinaison du capteur	degrés
h	Hauteur de montage du capteur	m
d	Distance de détection (linéaire)	m
	Elle doit se situer à l'intérieur de la plage des distances autorisées (voir Configurations d'installation à la page suivante).	
Dalarm	Distance de détection (réelle)	m

Élément	Description	Unité de mesure
D ₁	Distance de début de détection (pour les configurations 2 et 3) ; distance de fin de détection (pour la configuration 1)	m
D ₂	Distance de fin de détection (pour la configuration 3)	m

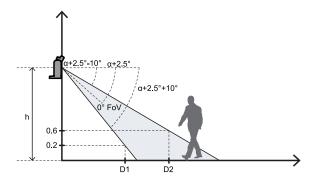
9.5.3 Configurations d'installation

En fonction de l'inclinaison du capteur (α), trois configurations sont possibles :

- $\alpha \ge +13^{\circ}$: configuration 1, le champ de vision du capteur ne rencontre jamais le sol
- -7° ≤ α ≤ +12°: configuration 2, la partie supérieure du champ de vision du capteur ne rencontre jamais le sol
- α ≤ -8°: configuration 3, la partie supérieure et la partie inférieure du champ de vision rencontrent toujours le sol

Remarque: le signe positif (+) indique l'inclinaison vers le haut, le signe négatif (-) l'inclinaison vers le bas.

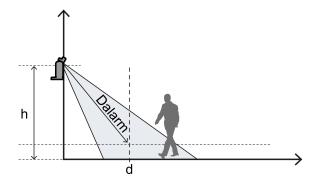
9.5.4 Calcul de la plage des distances


La plage des distances de détection d'un capteur dépend de la configuration :

Configuration	Plage des distances
1	0 m à D ₁
2	D ₁ à 5 m
3	D_1 à D_2

$$D_1=rac{h-0.2}{tan((-lpha)+2.5\degree+10\degree)}$$

$$D_2=rac{h-0.6}{tan((-lpha)+2.5\degree-10\degree)}$$


Un exemple pour la configuration 3, avec D_1 = 0,9 m et D_2 = 1,6 m est illustré ci-dessous.

9.5.5 Calcul de la distance réelle d'alarme

La distance réelle de détection **Dalarm** est la valeur à entrer dans la page **Configuration** de l'application LBK Designer.

Dalarm indique la distance maximale entre le capteur et l'objet à détecter.

$$Dalarm = \sqrt{d^2 + (h-0.2)^2}$$

9.6 Recommandations pour le positionnement des capteurs

9.6.1 Pour la fonction de détection d'accès

Voici quelques recommandations concernant le positionnement des capteurs pour la fonction de détection d'accès:

- Si la distance entre le sol et la portion inférieure du champ de vision est supérieure à 20 cm, prendre des précautions pour faire en sorte qu'une personne pénétrant dans la zone dangereuse en dessous du volume surveillé par le champ de vision soit également détectée.
- Si la hauteur par rapport au sol est inférieure à 20 cm, installer le capteur avec une inclinaison minimale de 10° vers le haut.
- La hauteur de montage (du sol au centre du capteur) doit être supérieure ou égale à 15 cm.

9.6.2 Pour le contrôle des accès à une entrée

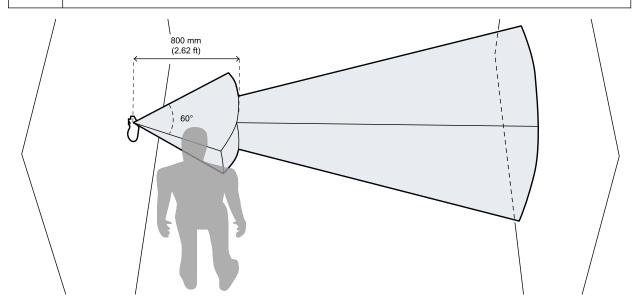
AVERTISSEMENT



Prendre toutes les précautions nécessaires pour empêcher les personnes de grimper partout où ce risque existe.

Voici quelques recommandations concernant le positionnement des capteurs, s'ils sont installés pour contrôler une entrée :

- La hauteur de montage (du sol au centre du capteur) doit être supérieure ou égale à 20 cm.
- La couverture d'angle horizontale doit être de 90°.
- L'inclinaison doit être de 40° vers le haut.
- La rotation autour de l'axe z doit être de 90°.


Voici un exemple:

AVERTISSEMENT

Dans les 800 premiers millimètres du champ de vision, la couverture d'angle horizontale doit être d'au moins 60°. S'il n'est pas possible de respecter cette spécification, prendre des précautions pour éviter que des personnes ne pénètrent dans les 800 premiers millimètres du champ de vision.

9.6.3 Pour la fonction de prévention du redémarrage

Voici quelques recommandations concernant le positionnement des capteurs pour la fonction de prévention du redémarrage :

• La hauteur de montage (du sol au centre du capteur) doit être supérieure ou égale à 15 cm.

9.7 Installations sur des éléments mobiles (application mobile)

9.7.1 Introduction

Les capteurs peuvent être installés sur des véhicules en mouvement ou sur des pièces mobiles de la machine.

Les caractéristiques de la portée de détection et du temps de réponse sont les mêmes que pour les installations fixes.

9.7.2 Limites de vitesse

La détection n'est garantie que si la vitesse du véhicule ou de la pièce de la machine est :

- pour une distance de détection inférieure ou égale à 4 m, de 0,1 m/s à 3 m/s
- pour une distance de détection supérieure à 4 m, de 0,1 m/s à 2 m/s

Remarque : seule la vitesse du véhicule ou de la pièce de la machine est prise en compte. en supposant que la personne reconnaît le danger et reste immobile.

9.7.3 Conditions de génération du signal de détection

Un capteur monté sur des pièces mobiles détecte les objets statiques en tant qu'objets mobiles.

Le capteur déclenche un signal de détection lorsque les conditions suivantes sont remplies :

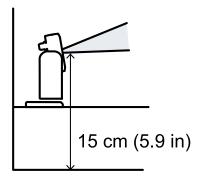
- La surface équivalente radar, ou RCS (Radar Cross-Section), des objets statiques est supérieure ou égale à la RCS d'un corps humain.
- La vitesse relative entre les objets et le capteur est supérieure à la vitesse minimale requise pour la détection.

9.7.4 Prévention du redémarrage inopiné

Comme pour les installations fixes, lorsque la pièce mobile sur laquelle le capteur est installé s'arrête suite à une détection, le système passe à la fonction de sécurité de prévention du redémarrage (si le **Fonctionnement de sécurité** n'est pas **Toujours détecter l'accès**) et le capteur détecte la présence d'un corps humain (voir Directives pour le positionnement des capteurs à la page 65). Les objets statiques sont alors filtrés automatiquement et ne sont plus détectés.

Le redémarrage du véhicule mobile ou de la pièce mobile de la machine en présence d'objets statiques peut être empêché en appliquant les méthodes suivantes :

- Option Détection d'objet statique activée (voir Fonction de prévention du redémarrage : option Détection d'objet statique à la page 64).
- Fonction anti-masquage : si la fonction est activée, une erreur se produira lorsque l'objet statique est suffisamment proche pour limiter la détection du capteur.


Remarque : si la fonction anti-masquage est activée même lorsque le capteur est en mouvement, de fausses alarmes peuvent être générées car le changement d'environnement pendant le mouvement peut être détecté comme un sabotage.

- Redémarrage manuel : le redémarrage est activé de l'extérieur et uniquement une fois que l'objet statique est retiré de la trajectoire du véhicule ou de la pièce mobile.
- Logique de l'application sur PLC/unité de contrôle qui stoppe la pièce mobile de façon permanente si
 plusieurs arrêts se produisent immédiatement après le redémarrage de la pièce. Si le véhicule ou la
 pièce s'arrête très rapidement après le redémarrage, cela signifie probablement qu'un obstacle statique
 est présent. Lorsque la pièce mobile est arrêtée, le capteur ne détecte plus l'objet; la pièce se remet en
 mouvement mais s'arrête aussitôt que l'objet est à nouveau détecté.

9.7.5 Recommandations concernant la position du capteur

Dans les applications mobiles, le capteur se déplace avec le véhicule ou avec les pièces mobiles de la machine. Placer le capteur de sorte que le sol soit exclu de la portée de détection pour éviter les alarmes

intempestives.

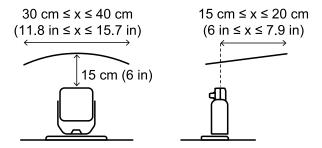
9.8 Installations extérieures

9.8.1 Position exposée aux intempéries

Si la position de montage du capteur est exposée à des intempéries susceptibles de provoquer des alarmes intempestives, les précautions suivantes doivent être prises :

- Prévoir un abri pour protéger le capteur de la pluie, de la grêle et de la neige.
- Placer le capteur de manière à ce qu'il ne puisse pas cadrer le sol où des flaques d'eau peuvent se former.

AVIS

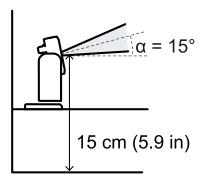


Toute condition météorologique hors des spécifications peut entraîner un vieillissement prématuré du dispositif.

9.8.2 Recommandations concernant l'abri du capteur

Voici quelques recommandations pour la création et l'installation du capot du capteur :

- hauteur par rapport au capteur: 15 cm
- largeur: minimale 30 cm, maximale 40 cm
- avancée par rapport au capteur : minimale 15 cm, maximale 20 cm
- écoulement de l'eau : sur les côtés ou derrière le capteur mais pas devant (capot arqué et/ou incliné vers l'arrière)


9.8.3 Recommandations concernant la position du capteur

Voici quelques recommandations pour déterminer la position du capteur :

- hauteur de montage (du sol au centre du capteur) : minimum 15 cm
- inclinaison suggérée : minimum 15°

Avant d'installer un capteur orienté vers le bas, s'assurer qu'il n'y a pas de liquides ou de matériaux réfléchissant les radars sur le sol.

Remarque : si les recommandations ci-dessus sont suivies et qu'aucun objet statique ne se trouve dans le secteur surveillé, le système peut résister à des intempéries allant jusqu'à 45 mm/h.

9.8.4 Position non exposée aux intempéries

Si la position de montage du capteur n'est pas exposée aux intempéries, aucune précaution particulière n'est nécessaire.

10 Procédures d'installation et utilisation

10.1 Avant l'installation

10.1.1 Matériel nécessaire

- Deux vis inviolables (voir Spécifications des vis inviolables à la page 143) pour monter chaque capteur.
- Câbles pour relier l'unité de contrôle au premier capteur et les capteurs entre eux (voir Spécifications recommandées pour les câbles bus CAN à la page 143).
- Un câble de données USB avec connecteur micro-USB (type micro-B) ou, uniquement si un port Ethernet est disponible, un câble Ethernet pour raccorder l'unité de contrôle à l'ordinateur.
- Une terminaison de bus (code produit : 50040099) avec résistance de 120 Ω pour le dernier capteur du bus CAN.
- Un tournevis pour les vis inviolables (voir Spécifications des vis inviolables à la page 143) à utiliser avec la goupille de sécurité à tête hexagonale livrée avec l'unité de contrôle.

10.1.2 Système d'exploitation requis

- · Microsoft Windows 64 bit 11 ou version ultérieure
- Apple OS X 14.0 Sonoma ou version ultérieure

10.1.3 Installer l'application LBK Designer

Remarque : si l'installation échoue, il se peut que les dépendances nécessaires à l'application soient manquantes. Mettre à jour le système d'exploitation ou contacter notre support technique.

- 1. Télécharger l'application à partir du site www.leuze.com (depuis l'espace de téléchargement du produit) et l'installer sur l'ordinateur.
- 2. Pour le système d'exploitation Microsoft Windows, télécharger à partir de ce même site et installer également le pilote pour la connexion USB.

10.1.4 Mettre LBK SBV System en service

- 1. Calculer la position du capteur (voir Position du capteur à la page 75) et la profondeur de la zone dangereuse (voir Calcul de la distance de séparation à la page 79).
- 2. "Installation de LBK SBV System".
- 3. "Configurer LBK SBV System".
- 4. "Valider les fonctions de sécurité".

10.2 Installation de LBK SBV System

10.2.1 Procédure d'installation

- 1. "Installer l'unité de contrôle".
- 2. Option. "Monter l'étrier 3 axes".
- 3. "Installer les capteurs".
- 4. "Raccorder les capteurs à l'unité de contrôle".

Remarque : si l'on prévoit, qu'une fois en place, les connecteurs seront difficiles d'accès, raccorder les capteurs à l'unité de contrôle sur le banc d'essai.

10.2.2 Installer l'unité de contrôle

AVERTISSEMENT

Pour éviter toute altération, faire en sorte que l'unité de contrôle ne soit accessible qu'au personnel autorisé (par ex., dans une armoire électrique fermée à clé).

- 1. Monter l'unité de contrôle sur un rail DIN.
- 2. Effectuer les raccordements électriques (voir Brochage des borniers et connecteur à la page 144 et Raccordements électriques à la page 148).

AVIS

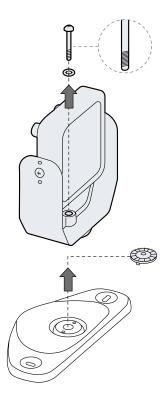
Si au moins une entrée est connectée, l'entrée SNS « V+ (SNS) » et l'entrée GND « V- (SNS) » devront également être connectées.

AVIS

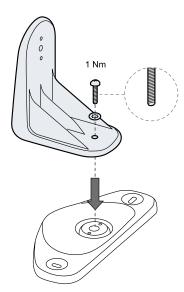
Après la mise sous tension, le système prend environ 20 s pour démarrer. Pendant ce laps de temps, les sorties et les fonctions de diagnostic sont désactivées et les DEL d'état vertes des capteurs raccordés clignotent sur l'unité de contrôle.

AVIS

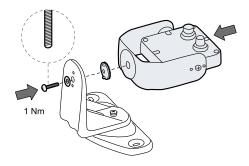
S'assurer que toute interférence CEM est évitée lors de l'installation de l'unité de contrôle


Remarque : pour raccorder correctement les entrées numériques, voir Limites de tension et de courant des entrées numériques à la page 145.

10.2.3 Monter l'étrier 3 axes


Remarque: pour un exemple d'installation des capteurs, voir Exemples d'installation des capteurs à la page 99.

L'étrier qui permet la rotation autour de l'axe z (roll) est un accessoire fourni. Pour le monter :


1. Dévisser la vis du bas et retirer l'étrier avec le capteur et la bague de réglage.

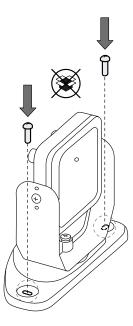
2. Fixer l'étrier pour la rotation autour de l'axe z à la base. Utiliser la vis inviolable fournie avec l'étrier.

3. Monter l'étrier avec le capteur et la bague de réglage. Utiliser la vis inviolable fournie avec l'étrier.

10.2.4 Installer les capteurs

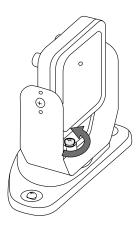
Remarque: pour un exemple d'installation des capteurs, voir Exemples d'installation des capteurs à la page 99.

Remarque : il est recommandé d'appliquer du frein filet sur les filets des éléments de fixation, notamment si le capteur est installé sur une pièce mobile ou vibrante de la machine.


Remarque : si aucun étrier n'est prévu pour l'installation du capteur, utiliser des vis inviolables et du frein filet.

1. Positionner le capteur comme indiqué dans le rapport de configuration et fixer l'étrier directement au sol ou sur un support à l'aide de deux vis inviolables.

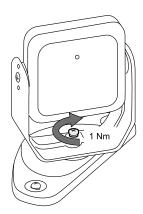
AVIS



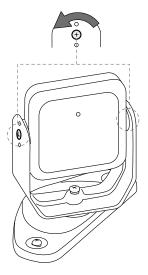
S'assurer que le support ne gêne pas les commandes de la machine.

2. Desserrer la vis du bas avec une clé Allen pour orienter le capteur.

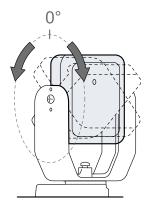
Remarque : pour éviter d'endommager l'étrier, desserrer complètement la vis avant d'orienter le capteur.



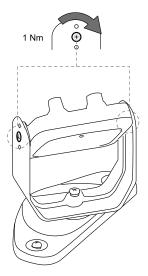
3. Orienter le capteur jusqu'à ce qu'il atteigne la position souhaitée.


Remarque : un cran correspond à une rotation de 10°.

4. Serrer la vis.



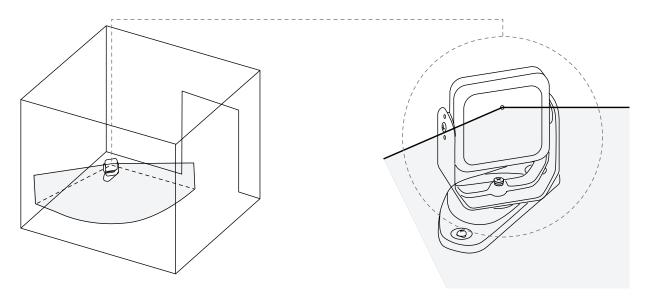
5. Desserrer les vis inviolables pour incliner le capteur.



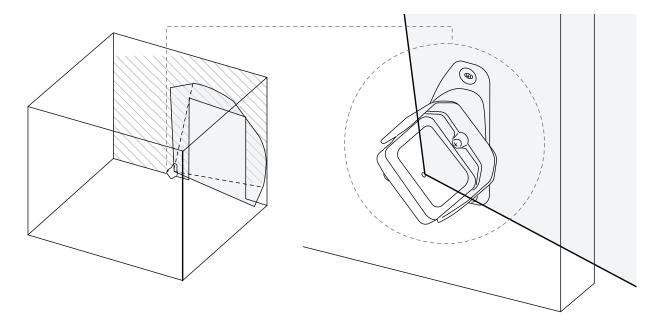
6. Orienter le capteur selon l'inclinaison souhaitée (voir Position du capteur à la page 75).

Remarque : un cran correspond à une inclinaison de 10°. Pour le réglage fin de l'inclinaison du capteur avec une précision de 1° (voir Régler l'inclinaison du capteur avec une précision de 1° à la page 101).

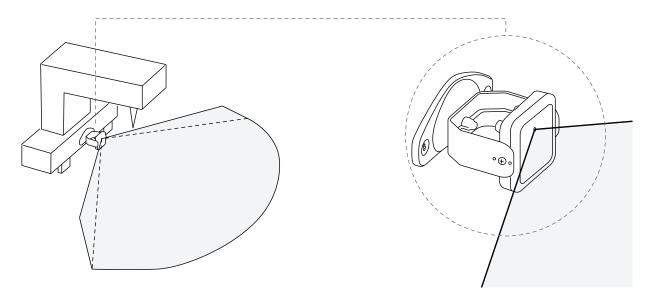
7. Serrer les vis.



10.2.5 Exemples d'installation des capteurs


AVIS

Pour repérer le champ de vision du capteur, se reporter à l'emplacement de la DEL du capteur (voir Position du champ de vision à la page 77).

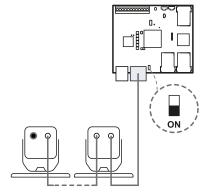


Installation au sol

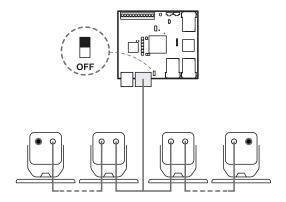
Installation murale (par ex., pour contrôler l'accès à une entrée).

Remarque : installer le capteur de manière à ce que le champ de vision soit orienté vers l'extérieur de la zone dangereuse afin d'éviter les fausses alarmes (voir Position du champ de vision à la page 77).

Installation sur la machine.


10.2.6 Raccorder les capteurs à l'unité de contrôle

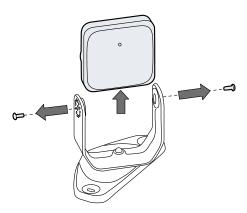
Remarque: la longueur totale maximale de la ligne bus CAN est de 80 m.


Remarque: en cas de remplacement d'un capteur, dans l'application LBK Designer, cliquer sur **APPLIQUER LES MODIFICATIONS** pour confirmer la modification.

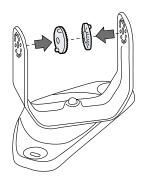
- 1. Utiliser un outil de validation de câbles (téléchargeable depuis le site www.leuze.com), pour décider si l'unité de contrôle doit être placée en bout de chaîne ou à l'intérieur de la chaîne (voir Exemples de chaînes en bas).
- 2. Régler le commutateur DIP de l'unité de contrôle en fonction de sa position dans la chaîne.
- 3. Raccorder le capteur souhaité directement à l'unité de contrôle.
- 4. Pour raccorder un autre capteur, il suffit de le relier au dernier capteur de la chaîne ou directement à l'unité de contrôle pour commencer une seconde chaîne.
- 5. Répéter l'étape 4 pour tous les capteurs à installer.
- 6. Insérer la terminaison de bus (code produit : 50040099) dans le connecteur libre du dernier capteur de la/des chaîne(s).

10.2.7 Exemples de chaînes

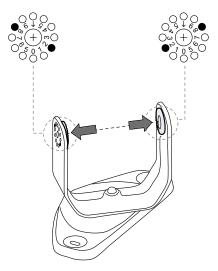
Chaîne avec unité de contrôle en bout de chaîne et un capteur avec terminaison de bus

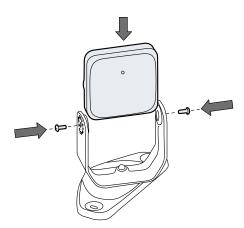


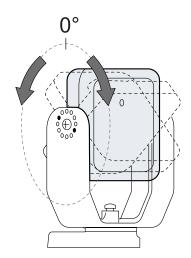
Chaîne avec unité de contrôle à l'intérieur de la chaîne et deux capteurs avec terminaison de bus


10.3 Régler l'inclinaison du capteur avec une précision de 1°

10.3.1 Procédure


1. Retirer les vis inviolables et détacher le capteur de l'étrier.

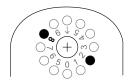

2. Retirer la bague de réglage interne de l'étrier.


3. Réinsérer la bague de réglage dans les trous de l'étrier en appliquant la valeur en degrés de l'inclinaison souhaitée (voir Choix de la position de la bague de réglage à la page suivante).

4. Insérer le capteur et les vis inviolables dans l'étrier (voir Modes d'insertion du capteur à la page suivante).

5. Incliner le capteur vers le bas ou vers le haut pour le nombre de crans correspondant à la valeur décimale de l'angle souhaité (par exemple, pour un angle d'inclinaison de +38°, la valeur décimale est 3 : incliner le capteur vers le haut de trois crans).

6. Serrer les vis.

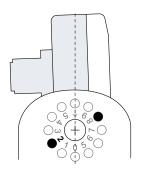


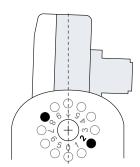
10.3.2 Choix de la position de la bague de réglage

De part et d'autre de l'étrier, insérer la bague de réglage dans le trou correspondant à la valeur en degrés souhaitée (0-9°).

Par exemple, pour 8° (vers le haut), +38° (vers le haut) et -18° (vers le bas), la valeur est toujours 8° :

Face 1 Face 2

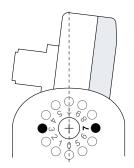

10.3.3 Modes d'insertion du capteur

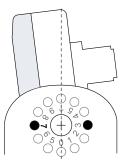

Pour insérer le capteur dans l'étrier, respecter les règles suivantes :

Pour incliner le capteur	insérer le capteur comme suit	Voir
vers le haut	avec la face arrière du corps du capteur orientée vers l'angle souhaité	Exemple 1 (vers le haut) : +62° à la page suivante
vers le bas	avec la face avant du corps du capteur orientée vers l'angle souhaité	Exemple 2 (vers le bas) : -37° à la page suivante

Exemple 1 (vers le haut) : +62°

Dans cet exemple, la face arrière du corps du capteur est orientée vers les angles suivants : 1°, **2°**, 3°, 4°, 5°.

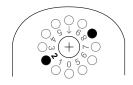



Face 1

Face 2

Exemple 2 (vers le bas) : -37°

Dans cet exemple, la face avant du corps du capteur est orientée vers les angles suivants : 5°, 6°, 7°, 8°, 9°.

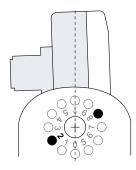



Face 1

Face 2

10.3.4 Exemple : réglage de l'inclinaison du capteur à +62°

1. Insérer la bague de réglage dans le trou correspondant à 2°.



Face 1

Face 2

2. Insérer le capteur dans l'étrier avec la face arrière orientée vers l'angle 2°.

3. Incliner le capteur vers le haut de six crans.

10.4 Configurer LBK SBV System

10.4.1 Procédure de configuration

- 1. "Lancer l'application LBK Designer".
- 2. "Définir le secteur à surveiller".
- 3. "Configurer les entrées et les sorties auxiliaires".
- 4. "Sauvegarder et imprimer la configuration".
- 5. Option. "Réattribuer les ID nœuds".
- 6. Option. "Synchroniser les unités de contrôle".

10.4.2 Lancer l'application LBK Designer

- 1. Raccorder l'unité de contrôle à l'ordinateur à l'aide d'un câble de données USB avec connecteur micro-USB ou d'un câble Ethernet (si un port Ethernet est disponible).
- 2. Alimenter l'unité de contrôle.
- 3. Lancer l'application LBK Designer.
- 4. Choisir le mode de connexion (USB ou Ethernet).

Remarque : l'adresse IP par défaut pour la connexion Ethernet est 192.168.0.20. L'ordinateur et l'unité de contrôle doivent être raccordés au même réseau.

- 5. Définir un nouveau mot de passe admin, le mémoriser et ne le communiquer qu'aux personnes autorisées.
- 6. Sélectionner le type de capteur et le nombre de capteurs.
- 7. Option. Réinitialiser et réattribuer tous les ID nœuds.

8. Définir le pays dans lequel le système est installé.

Remarque : ce réglage n'a aucun effet sur les performances et sur la sécurité du système. La sélection du pays est nécessaire lors de la première installation du système pour configurer le profil radio du système, qui doit être conforme aux réglementations du pays d'installation.

- 9. Seulement si le pays sélectionné est **États-Unis d'Amérique** ou **Canada**, définir le type d'installation dans lequel le système (**Intérieur** ou **Extérieur**) est installé.
- 10. Sélectionner le type d'application :
 - pour les applications fixes, sélectionner Applications fixes.
 - pour l'installation sur un pont mobile de la machine, sur un camion, sur des rails, sur une grue, sélectionner **Applications mobiles**.
 - o pour les véhicules à conduite autonome et les véhicules avec conducteur, sélectionner Véhicule.

Remarque: les algorithmes sont optimisés pour minimiser les interférences entre les capteurs en fonction des conditions d'installation. Bien que ce choix n'affecte pas les performances et la robustesse, la sélection du type d'application adéquat est obligatoire.

10.4.3 Définir le secteur à surveiller

AVERTISSEMENT

Le système est désactivé lors de la configuration. Avant de configurer le système, prévoir des mesures de sécurité appropriées dans la zone dangereuse protégée par le système.

- 1. Dans l'application LBK Designer, cliquer sur **Configuration**.
- 2. Option. Ajouter le nombre de capteurs souhaité au plan.
- 3. Définir la position et l'inclinaison de chaque capteur.

AVERTISSEMENT

Les valeurs de ces paramètres doivent être définies avec précision, car elles servent à optimiser le comportement du système.

- 4. Sélectionner la forme du secteur (uniquement pour les capteurs 5.x).
- 5. Définir le mode de fonctionnement de sécurité, la distance de détection, la couverture d'angle et le délai de redémarrage pour chaque portée de détection de chaque capteur.
- 6. Option. Activer l'option **Détection d'objet statique** pour chaque portée de détection uniquement si nécessaire. Pour plus de détails, voir Fonction de prévention du redémarrage : option Détection d'objet statique à la page 64.

10.4.4 Configurer les entrées et les sorties auxiliaires

- 1. Dans l'application LBK Designer, cliquer sur Paramètres.
- 2. Cliquer sur Entrées-sorties numériques et définir la fonction des entrées et des sorties.
- 3. Si la fonction de muting est gérée, cliquer sur **Paramètres > Muting** et affecter les capteurs aux groupes de manière cohérente à la logique des entrées numériques.
- 4. **Paramètres > Fonction de redémarrage** et choisir le type de redémarrage géré.
- 5. Pour sauvegarder la configuration, cliquer sur APPLIQUER LES MODIFICATIONS.

10.4.5 Sauvegarder et imprimer la configuration

- 1. Dans l'application, cliquer sur **APPLIQUER LES MODIFICATIONS**: les capteurs mémorisent l'inclinaison réglée et la zone environnante. L'application transfère la configuration à l'unité de contrôle et, au terme du transfert, génère le rapport de configuration.
- 2. Pour sauvegarder et imprimer le rapport, cliquer sur &.

Remarque: pour enregistrer le PDF, l'ordinateur nécessite l'installation d'une imprimante.

3. Le faire signer par la personne autorisée.

10.4.6 Réattribuer les ID nœuds

Type d'attribution

Remarque : si aucun ID nœud n'a encore été attribué aux capteurs raccordés (par ex., au premier démarrage), le système attribue automatiquement un ID nœud aux capteurs au cours de la procédure d'installation.

Les trois types d'attribution décrits ci-dessous sont possibles.

- Manuelle: pour attribuer l'ID nœud à un capteur à la fois. Elle peut être effectuée pour tous les capteurs déjà raccordés ou après chaque raccordement. Elle est utile pour ajouter un capteur ou modifier l'ID nœud d'un capteur.
- Automatique : pour attribuer l'ID nœud à tous les capteurs en une seule fois. Elle doit être effectuée lorsque tous les capteurs sont raccordés.

Remarque : l'unité de contrôle attribue l'ID nœud par ordre croissant en fonction de l'ID du capteur (SID).

• Semi-automatique : assistant pour raccorder les capteurs et attribuer l'ID nœud à un capteur à la fois.

Procédure

- 1. Lancer l'application.
- 2. Cliquer sur **Configuration** et vérifier que le nombre de capteurs inclus dans la configuration est le même que le nombre de capteurs installés.
- 3. Cliquer sur Paramètres > Attribution ID nœud.
- 4. Continuer en fonction du type d'attribution :

Si l'attribution est	Marche à suivre
manuelle	 Cliquer sur DÉTECTER LES CAPTEURS CONNECTÉS pour afficher les capteurs raccordés. Pour attribuer un ID nœud, cliquer sur Attribuer pour l'ID nœud non attribué dans la liste Capteurs configurés. Pour modifier un ID nœud, cliquer sur Changer pour l'ID de nœud déjà attribué dans la liste Capteurs configurés. Sélectionner le SID du capteur et confirmer.
automatique	 Cliquer sur DÉTECTER LES CAPTEURS CONNECTÉS pour afficher les capteurs raccordés. Cliquer sur ATTRIBUER ID NŒUD > Automatique : l'unité de contrôle attribue l'ID nœud par ordre croissant en fonction de l'ID du capteur (SID).
semi-automatique	Cliquer sur ATTRIBUER ID NŒUD > Semi-automatique et suivre les instructions qui s'affichent.

10.4.7 Synchroniser les unités de contrôle

Si le secteur comporte plus d'une unité de contrôle, procéder comme suit :

- 1. Dans l'application LBK Designer, cliquer sur **Paramètres > Avancées**.
- 2. Sous Synchronisation entre plusieurs unités de contrôle, attribuer un Canal de l'unité de contrôle différent à chaque unité de contrôle.

Remarque : s'il y a plus de quatre unités de contrôle, les secteurs surveillés des unités de contrôle ayant le même canal doivent être aussi éloignés que possible les uns des autres.

10.5 Valider les fonctions de sécurité

10.5.1 **Validation**

La validation est destinée au fabricant de la machine et à l'installateur du système.

Une fois le système installé et configuré, il est nécessaire de vérifier que les fonctions de sécurité sont activées/désactivées comme prévu et, donc, que la zone dangereuse est surveillée par le système.

Le fabricant de la machine doit définir tous les essais requis en fonction des conditions de l'application et de l'appréciation du risque.

AVERTISSEMENT

Durant la procédure de validation, le temps de réponse du système n'est pas garanti.

AVERTISSEMENT

L'application LBK Designer facilite l'installation et la configuration du système. Cependant, le processus de validation décrit ci-après est encore nécessaire pour terminer l'installation.

10.5.2 Procédure de validation pour la fonction de détection d'accès

La fonction de sécurité de détection d'accès doit être opérationnelle et les exigences suivantes doivent être remplies:

- La cible (dans les applications fixes) ou la machine/le véhicule sur lequel le capteur est installé (dans les applications mobiles) doit se déplacer dans le respect de la vitesse maximale autorisée. Pour plus de détails, voir Limites de vitesse pour la détection d'accès à la page 62.
- Aucun objet ne doit occulter complètement la cible.

Conditions de départ

- Machine éteinte (condition de sécurité)
- LBK SBV System configuré pour effectuer la fonction de sécurité de détection d'accès
- Signaux de détection surveillés via les sorties numériques ou le Fieldbus de sécurité

Réglage des essais

Les essais suivants ont pour but de valider les performances des capteurs pour la fonction de sécurité de détection d'accès.

Dans les applications fixes, tous les essais partagent les paramètres suivants :

Type de cible	Corps humain
Vitesse de la cible	Dans la plage [0,1, 1,6] m/s, avec une attention particulière aux vitesses minimales et maximales.
Critères d'acceptation	Le système atteint l'état de sécurité via les sorties numériques ou le Fieldbus lorsque la cible accède à la zone pendant l'essai.

Dans les applications mobiles, tous les essais partagent les paramètres suivants :

Type de cible	Corps humain
Vitesse de la machine/du véhicule	 Pour une distance de détection inférieure ou égale à 4 m : dans la plage [0,1, 3] m/s, avec une attention particulière aux vitesses minimales et maximales. Pour une distance de détection supérieure à 4 m : dans la plage [0,1, 2] m/s, avec une attention particulière aux vitesses minimales et maximales.
Mouvement de la cible	Applications fixes
Critères d'acceptation	Le système atteint l'état de sécurité via les sorties numériques ou le Fieldbus lorsque, pendant le mouvement de la machine/du véhicule, le champ de vision des capteurs atteint la cible.

Test de validation

La procédure de validation d'LBK SBV System est décrite ci-dessous :

- 1. Repérer les positions d'essai, y compris celles auxquelles l'opérateur peut accéder pendant le cycle de production :
 - a. limites de la zone dangereuse
 - b. points intermédiaires entre les capteurs
 - c. positions partiellement couvertes par des obstacles existants ou présumés pendant le cycle de fonctionnement
 - d. positions indiquées par le responsable de l'appréciation du risque
- 2. Vérifier si le signal de détection correspondant est actif ou attendre son activation.
- 3. Effectuer l'essai selon le réglage défini auparavant en se déplaçant vers l'une des positions d'essai.
- 4. Vérifier que les critères d'acceptation de l'essai définis auparavant sont remplis. Si les critères d'acceptation de l'essai ne sont pas remplis, voir Résolution des problèmes de validation à la page 112.
- 5. Répéter les étapes 2, 3 et 4 pour chaque position d'essai.

10.5.3 Procédure de validation pour la fonction de prévention du redémarrage

La fonction de sécurité de prévention du redémarrage doit être opérationnelle et les exigences suivantes doivent être remplies :

- · La personne doit respirer normalement.
- Aucun objet ne doit occulter complètement la personne.

Conditions de départ

- Machine éteinte (condition de sécurité)
- LBK SBV System configuré pour effectuer la fonction de sécurité de prévention du redémarrage
- Signaux de détection surveillés via les sorties numériques ou le Fieldbus de sécurité

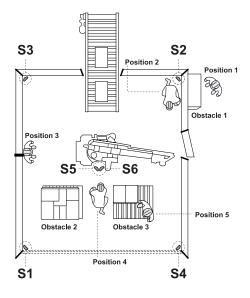
Réglage des essais

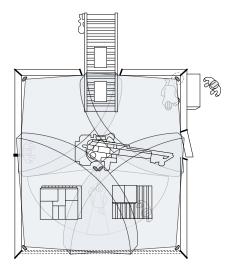
Les essais suivants ont pour but de valider les performances de la fonction de sécurité de prévention du redémarrage des capteurs.

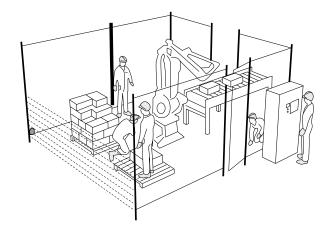
Tous les essais partagent les paramètres suivants :

Délai de redémarrage configuré du radar	Au moins 4 s
Type de cible	Corps humain selon ISO 7250, respiration normale
Vitesse de la cible	0 m/s
Position de la cible	Debout ou accroupie (ou autres positions si l'appréciation du risque spécifique l'exige)

Durée de l'essai	Au moins 20 s
	Le signal de détection reste désactivé pendant l'essai. Lorsque l'opérateur quitte la zone, le signal de détection est activé.


Test de validation


La procédure de validation du système LBK SBV System est décrite ci-dessous :


- 1. Repérer les positions d'essai, y compris celles où l'opérateur se trouve normalement pendant le cycle de production :
 - o limites de la zone dangereuse
 - o points intermédiaires entre les capteurs
 - positions partiellement couvertes par des obstacles déjà présents ou présumés pendant le cycle de fonctionnement
 - o positions indiquées par le responsable de l'appréciation du risque
- 2. Accéder à la zone dangereuse et atteindre l'une des positions d'essai : le signal de détection correspondant doit être désactivé.
- 3. Effectuer l'essai selon le réglage défini auparavant.
- 4. Vérifier que les critères d'acceptation de l'essai définis auparavant sont remplis.
- 5. Si les critères d'acceptation de l'essai ne sont pas remplis, voir Valider le système avec LBK Designer à la page suivante.
- 6. Répéter les étapes 2, 3 et 4 pour chaque position d'essai.

Exemples de positions d'essai

Les images suivantes montrent quelques exemples de positions dans lesquelles effectuer l'essai et des suggestions pour repérer d'autres positions potentiellement pertinentes.

Position 1: position hors de la zone dangereuse

Position 2 : position cachée à la vue de l'opérateur en « Position 1 ». Tester également les autres positions couvertes similaires.

Position 3: position équidistante des deux capteurs et/ou proche des limites de la zone dangereuse (par ex., le long des clôtures de sécurité). Cette position est recommandée car elle permet de s'assurer que les portées de détection des différents capteurs se chevauchent sans laisser de zones découvertes. De plus, la proximité des clôtures permet de vérifier que les capteurs sont correctement orientés, couvrant à la fois le côté droit et le côté gauche.

Position 4: position possible cachée par des éléments de l'environnement présents ou non pendant le processus de validation. Exemples: L'obstacle 2 empêche la détection par le capteur 1 **(S1)**. L'obstacle 3 est partiellement présent pendant le processus de validation, mais il sera probablement présent au cours du cycle de fonctionnement normal, empêchant la détection par le capteur 4. **(S4)**. Cette position doit être couverte par les capteurs supplémentaires 5 **(S5)** et 6 **(S6)** qui doivent être insérés dans une étude de faisabilité ad hoc.

Position 5 : toute position en hauteur et circulable indiquée par le responsable de l'appréciation du risque.

D'autres positions peuvent être indiquées par le responsable de l'appréciation du risque ou par le fabricant de la machine.

10.5.4 Valider le système avec LBK Designer

Λ

AVERTISSEMENT

Lorsque la fonction de validation est active, le temps de réponse du système n'est pas garanti.

L'application LBK Designer est utile pendant la phase de validation des fonctions de sécurité et permet de vérifier le champ de vision effectif des capteurs selon leur position de montage.

- 1. Cliquer sur **Validation** : la validation est lancée automatiquement.
- 2. Se déplacer et effectuer des mouvements à l'intérieur du secteur surveillé comme indiqué dans Test de validation à la page précédente et Procédure de validation pour la fonction de prévention du redémarrage à la page 109.
- 3. Vérifier que le capteur se comporte comme prévu.

Remarque : lorsque l'option Détection d'objet statique est activée, le point vide représente une cible mobile et le point plein une cible statique.

4. Vérifier que la distance et l'angle de la position de détection de mouvement correspondent aux valeurs attendues.

10.5.5 Contrôles supplémentaires pour le Fieldbus de sécurité

- Pour intégrer correctement le Fieldbus, consulter la documentation pertinente, voir Intégration dans le réseau Fieldbus à la page suivante.
- Vérifier les câbles de raccordement du Fieldbus de sécurité et s'assurer de leur bon fonctionnement.
- Vérifier les paramètres du Fieldbus de sécurité dans la configuration.
- Pour CIP Safety™ uniquement : avant de saisir la signature de configuration dans la configuration du PLC de la machine, vérifier la configuration de l'unité de contrôle.
- Pour CIP Safety™ uniquement : vérifier que les numéros SNN attribués à chaque réseau ou sousréseau de sécurité sont univoques dans l'ensemble du système.

10.5.6 Résolution des problèmes de validation

Problème	Cause	Solution
Le signal de détection ne reste pas désactivé lors de l'essai de prévention du redémarrage, ou ne se désactive pas lors de	Présence d'objets qui occultent le champ de vision	Si possible, retirer l'objet. Sinon, mettre en œuvre des mesures de sécurité supplémentaires dans la zone où se trouve l'objet (par ex., en ajoutant de nouveaux capteurs).
l'essai de détection d'accès	Positon d'un ou de plusieurs capteurs	Positionner les capteurs de manière à ce que le secteur surveillé soit adapté à la zone dangereuse (voir Position du capteur à la page 75).
	Inclinaison et/ou hauteur de montage d'un ou de plusieurs capteurs	 Modifier l'inclinaison et/ou la hauteur de montage des capteurs pour que le secteur surveillé soit adapté à la zone dangereuse (voir Position du capteur à la page 75). Noter ou mettre à jour l'inclinaison et la hauteur de montage des capteurs dans le rapport de configuration imprimé.
	Délai de redémarrage inadéquat (uniquement avec l'option Détection d'objet statique activée)	Modifier le paramètre Délai de redémarrage avec l'application LBK Designer et vérifier qu'il est réglé sur un intervalle minimum de 4 secondes pour chaque capteur (Configuration > sélectionner le capteur et la portée de détection concernés)
Lorsque l'opérateur quitte la zone, le signal de détection ne s'active pas	Présence d'objets mobiles dans le champ de vision du capteur (y compris les vibrations des pièces métalliques sur lesquelles les capteurs sont installés ou les vibrations des étriers)	Repérer les objets/étriers mobiles et, si possible, serrer les pièces desserrées
	Réflexions des signaux	Modifier les positions des capteurs ou ajuster les portées de détection en réduisant la distance de détection

10.6 Intégration dans le réseau Fieldbus

10.6.1 Procédure d'intégration

Les modalités d'intégration dans le réseau Fieldbus peuvent varier en fonction du modèle et du type d'unité de contrôle. Voir les notices complémentaires pertinentes :

- LBK ISC BUS PS et LBK ISC110E-P: Communication PROFIsafe Guide de référence (Inxpect 100S_ 200S PROFIsafe RG_7_[DocLangCode]_fr)
- LBK ISC100E-F et LBK ISC110E-F: Communication FSoE Guide de référence (Inxpect 100S_200S FSoE RG 7 [DocLangCode] fr)
- LBK ISC110E-C : Communication CIP Safety Guide de référence (Inxpect 100S_200S CIP RG_7_ [DocLangCode]_fr)

10.7 Gérer la configuration

10.7.1 Somme de contrôle de la configuration

Dans l'application LBK Designer, sous **Paramètres > Somme de contrôle de la configuration**, il est possible de consulter :

- le hash du rapport de configuration, un code alphanumérique univoque associé au rapport. Il est calculé en tenant compte de l'ensemble de la configuration, ainsi que de la date et de l'heure de l'opération APPLIQUER LES MODIFICATIONS, et du nom de l'ordinateur utilisé pour appliquer les modifications
- la somme de contrôle d'une configuration dynamique, associée à une configuration dynamique spécifique. Elle prend en compte aussi bien les paramètres communs que les paramètres dynamiques

10.7.2 Rapport de configuration

Après avoir modifié la configuration, le système génère un rapport de configuration contenant les informations suivantes :

- · données de configuration
- · hash univoque
- date et heure de la modification de la configuration
- nom de l'ordinateur utilisé pour la configuration

Les rapports sont des documents non modifiables qui peuvent être uniquement imprimés et signés par le responsable sécurité machines.

Remarque: pour enregistrer le PDF, l'ordinateur nécessite l'installation d'une imprimante.

10.7.3 Modification de la configuration

AVERTISSEMENT

Le système est désactivé lors de la configuration. Avant de configurer le système, prévoir des mesures de sécurité appropriées dans la zone dangereuse protégée par le système.

- 1. Lancer l'application LBK Designer.
- 2. Cliquer sur **Utilisateur** et saisir le mot de passe administrateur.

Remarque : après cinq saisies de mot de passe incorrectes, l'authentification de l'application est bloquée pendant une minute.

3. En fonction de ce que l'on souhaite modifier, suivre les instructions ci-dessous :

Pour modifier	Marche à suivre
Secteur surveillé et configuration des capteurs	Cliquer sur Configuration
ID nœud	Cliquer sur Paramètres > Attribution ID nœud
Fonction des entrées et des sorties	Cliquer sur Paramètres > Entrées-sorties numériques
Configuration des groupes des portées de détection	Cliquer sur Paramètres > Groupes des portées de détection et sélectionner le groupe pour chaque portée de détection de chaque capteur raccordé. Cliquer ensuite sur Paramètres > Entrées-sorties numériques et régler une sortie numérique comme fonction Signal de détection groupe 1 ou Signal de détection groupe 2
Muting	Cliquer sur Paramètres > Muting
Nombre et position des capteurs	Cliquer sur Configuration

- 4. Cliquer sur **APPLIQUER LES MODIFICATIONS**.
- 5. Lorsque la configuration a été transférée à l'unité de contrôle, cliquer sur 📥 pour imprimer le rapport.

Remarque: pour enregistrer le PDF, l'ordinateur nécessite l'installation d'une imprimante.

10.7.4 Afficher les configurations précédentes

Sous **Paramètres**, cliquer sur **Historique des activités** puis sur **Page des rapports de configuration** : l'archive des rapports s'ouvre.

10.8 Autres procédures

10.8.1 Changer de langue

- 1. Cliquer sur .
- 2. Sélectionner la langue souhaitée. La langue est changée automatiquement.

10.8.2 Restaurer la configuration d'usine

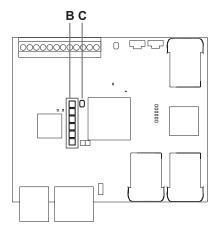
AVERTISSEMENT

Le système est livré sans configuration valide. Par conséquent, le système reste en état de sécurité lors du premier démarrage jusqu'à l'introduction d'une configuration valide via l'application LBK Designer en cliquant sur **APPLIQUER LES MODIFICATIONS**.

AVERTISSEMENT

La procédure réinitialise aussi bien la configuration que le mot de passe de tous les utilisateurs.

Pour réinitialiser les paramètres de configuration aux valeurs par défaut, suivre les procédures ci-dessous :


Procédure avec l'application LBK Designer

- 1. Se connecter à l'application LBK Designer en tant qu'utilisateur Admin.
- 2. Sous Admin > RÉINITIALISATION D'USINE.

Procédure avec le bouton de réinitialisation sur l'unité de contrôle

- 1. Appuyer sur le bouton **[C]** et le maintenir enfoncé pendant au moins 10 secondes : toutes les DEL d'état du système **[B]** s'allument (orange fixe) ; le système est prêt pour la réinitialisation.
- 2. Relâcher le bouton **[C]**: toutes les DEL d'état du système **[B]** s'allument (vert clignotant); la procédure de réinitialisation est lancée. La procédure peut durer jusqu'à 30 secondes. Ne pas éteindre le système pendant la réinitialisation.

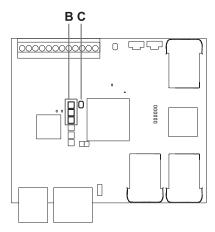
Remarque : si le bouton est enfoncé pendant plus de 30 secondes, les DEL s'allument en rouge et la réinitialisation n'est pas effectuée, même après le relâchement du bouton.

Pour connaître les valeurs par défaut des paramètres, voir Paramètres de configuration de l'application à la page 156.

10.8.3 Réinitialiser les paramètres Ethernet de l'unité de contrôle

- 1. S'assurer que l'unité de contrôle est allumée.
- 2. Maintenir le bouton de réinitialisation des paramètres réseau enfoncé pendant les étapes 3 et 4.
- 3. Patienter cinq secondes.
- 4. Attendre que les six DEL de l'unité de contrôle s'allument en vert fixe : les paramètres Ethernet seront ainsi réglés sur leurs valeurs par défaut (voir Connexion Ethernet (si disponible) à la page 140).
- 5. Configurer à nouveau l'unité de contrôle.

10.8.4 Restaurer les paramètres réseau


/ A

AVERTISSEMENT

Après la procédure de réinitialisation des paramètres réseau, le système passe en état de sécurité. La configuration doit être validée et, si nécessaire, modifiée via l'application LBK Designer en cliquant sur **APPLIQUER LES MODIFICATIONS**.

- 1. Pour réinitialiser les paramètres réseau aux valeurs par défaut, appuyer sur le bouton de réinitialisation [C] sur l'unité de contrôle et le maintenir enfoncé pendant 2 à 5 secondes : les trois premières DEL d'état du système [B] s'allument (orange fixe) et les paramètres réseau sont prêts à être réinitialisés.
- 2. Relâcher le bouton [C] : la réinitialisation est effectuée.

Pour connaître les valeurs par défaut des paramètres, voir Paramètres de configuration de l'application à la page 156.

10.8.5 Identifier un capteur

Dans **Paramètres > Attribution ID nœud** ou **Configuration**, cliquer sur **Identifier avec la DEL** sur la ligne de l'ID nœud du capteur souhaité : la DEL du capteur clignote pendant 5 secondes.

10.8.6 Régler les paramètres réseau

Dans **Admin > Réseau**, définir l'adresse IP, le masque réseau et la passerelle de l'unité de contrôle tel que souhaité.

10.8.7 Régler les paramètres MODBUS

Dans **Admin > Paramètres MODBUS** activer/désactiver la communication MODBUS et changer le port d'écoute.

10.8.8 Régler les paramètres du Fieldbus

Dans Admin > Fieldbus, en fonction de l'interface Fieldbus, régler les paramètres suivants :

- pour l'interface PROFIsafe, les F-address et le boutisme du Fieldbus
- pour l'interface Safety over EtherCAT®, et la Safe address
- pour l'interface CIP Safety™, les paramètres réseau, le nom d'hôte, le SNN et le boutisme du Fieldbus

10.8.9 Définir les étiquettes du système

Dans **Admin > Étiquettes système**, sélectionner les étiquettes souhaitées pour l'unité de contrôle et les capteurs.

11 Dépannage

Technicien de maintenance de la machine

Le technicien de maintenance de la machine est une personne qualifiée qui dispose des droits d'administrateur nécessaires pour modifier la configuration de LBK SBV System via le logiciel et assurer l'entretien et les opérations de dépannage.

11.1 Procédures de dépannage

Remarque : si le support technique le demande, sous Paramètres > Historique des activités, cliquer sur Télécharger les données de débogage des capteurs pour télécharger les fichiers et les transférer vers Leuze pour le débogage.

11.1.1 DEL sur l'unité de contrôle

Pour plus de détails sur les DEL de l'unité de contrôle, voir Unités de contrôle à la page 24 et DEL d'état du système à la page 29.

DEL	État	Messages de l'application	Problème	Solution
S1*	Rouge fixe	CONTROLLER POWER ERROR	Au moins une valeur de tension de l'unité de contrôle incorrecte	Si au moins une entrée numérique est connectée, vérifier que l'entrée SNS et l'entrée GND sont connectées. Vérifier que l'alimentation d'entrée est bien celle spécifiée (voir Caractéristiques
S1 + S3	Rouge fixe	SAUVEGARDE ou RESTORE ERROR	Erreur lors de la sauvegarde et de la restauration	générales à la page 139). Vérifier que la carte microSD est bien insérée.
			vers/depuis la carte microSD	Vérifier que le fichier de configuration est présent sur la carte microSD et qu'il n'est pas corrompu.
S2	Rouge fixe	CONTROLLER TEMPERATURE ERROR	Valeur de température de l'unité de contrôle incorrecte	Vérifier que le système fonctionne à la température de fonctionnement autorisée (voir Caractéristiques générales à la page 139).

DEL	État	Messages de l'application	Problème	Solution
S3	Rouge fixe	OSSD ERROR ou INPUT ERROR	Au moins une entrée ou une sortie en erreur	Si au moins une entrée est utilisée, vérifier que les deux canaux sont connectés et qu'il n'y a pas de courts-circuits sur les sorties. Si le problème
				persiste, contacter le support technique.
S4	Rouge fixe	PERIPHERAL ERROR	Au moins un des périphériques de l'unité de contrôle	Vérifier l'état de la carte et les connexions.
			en erreur	Si le problème persiste, contacter le support technique.
S5	Rouge fixe	CAN ERROR	Erreur de communication avec au moins un capteur	Vérifier les connexions de tous les capteurs de la chaîne en commençant par le dernier capteur en erreur.
				Vérifier que tous les capteurs ont un ID attribué (dans LBK Designer Paramètres > Attribution ID nœud).
				Vérifier que les firmwares de l'unité de contrôle et des capteurs sont mis à jour dans des versions compatibles.
S6	Rouge fixe	FEE ERROR, FLASH ERROR ou RAM ERROR	Erreur de sauvegarde de la configuration, de configuration non effectuée ou de	Reconfigurer ou configurer le système (voir Gérer la configuration à la page 113).
			mémoire	Si l'erreur persiste, contacter le support technique.

DEL	État	Messages de l'application	Problème	Solution
Toutes les DEL de S1 à S6 simultanément	Rouge fixe	FIELDBUS ERROR	Erreur de communication sur le Fieldbus	Au moins une entrée ou une sortie configurées comme Contrôlé par le fieldbus.
				Vérifier que le câble est correctement branché, que la communication avec l'hôte est correctement établie, que le délai du watchdog est correctement configuré et que les données échangées ne sont pas maintenues dans un état de passivation.
Toutes les DEL de S1 à S5 simultanément	Rouge fixe	DYNAMIC CONFIGURATION ERROR	Erreur de sélection de la configuration dynamique : identifiant invalide	Vérifier les configurations par défaut dans l'application LBK Designer.
Toutes les DEL de S1 à S4 simultanément	Rouge fixe	SENSOR CONFIGURATION ERROR	Erreur lors de la configuration des capteurs	Vérifier les capteurs raccordés et essayer de configurer à nouveau le système via l'application LBK Designer.
				Vérifier que les firmwares de l'unité de contrôle et des capteurs sont mis à jour dans des versions compatibles.
Au moins une DEL	Rouge clignotante	Voir DEL sur le capteur à la page suivante	Capteur correspondant à la DEL clignotante en erreur ** (voirDEL sur le capteur à la page suivante)	Vérifier le problème à l'aide de la DEL sur le capteur.
Au moins une DEL	Verte clignotante	Voir DEL sur le capteur à la page suivante	Capteur correspondant à la DEL clignotante en erreur ** (voirDEL sur le capteur à la page suivante)	Si le problème persiste plus d'une minute, contacter le support technique.

DEL	État	Messages de l'application	Problème	Solution
Toutes les DEL	Orange fixe	-	Le système est en cours de démarrage.	Patienter quelques secondes.
Toutes les DEL	Verte clignotante l'une après l'autre dans l'ordre	-	L'unité de contrôle est en état de boot (démarrage).	Ouvrir la dernière version disponible de l'application LBK Designer, connecter le dispositif et lancer la procédure de récupération automatique. Si le problème persiste, contacter le support technique.
Toutes les DEL	Éteinte	Sous Tableau de bord > État du système icônes ⚠	Configuration non encore appliquée à l'unité de contrôle.	Configurer le système.
Toutes les DEL	Éteinte	Icône d'avancement	Transfert de la configuration à l'unité de contrôle en cours.	Attendre que le transfert soit terminé.

Remarque : le signal de défaillance sur l'unité de contrôle (DEL fixe) a la priorité sur le signal de défaillance des capteurs. Pour connaître l'état d'un capteur donné, vérifier la DEL sur le capteur.

Remarque* : S1 est la première à partir du haut.

Remarque**: S1 correspond au capteur avec l'ID 1, S2 correspond au capteur avec l'ID 2, et ainsi de suite.

11.1.2 DEL sur le capteur

État	Messages de l'application	Problème	Solution
Violette fixe	-	Capteur en état de boot (démarrage)	Contacter le support technique.
Violette clignotante *	-	Le capteur est en train de recevoir une mise à jour du firmware	Attendre que la mise à jour soit terminée sans débrancher le capteur.
Rouge clignotante. Deux clignotements suivis d'une pause **	CAN ERROR	Le capteur n'a pas d'identifiant valide attribué	Attribuer un ID nœud au capteur (voir Raccorder les capteurs à l'unité de contrôle à la page 100).
Rouge clignotante. Trois clignotements suivis d'une pause **	CAN ERROR	Le capteur ne reçoit pas de messages valides de l'unité de contrôle	Vérifier la connexion de tous les capteurs de la chaîne et si le nombre de capteurs configuré dans l'application LBK Designer correspond au nombre de capteurs physiquement connectés

État	Messages de l'application	Problème	Solution
Rouge clignotante. Quatre clignotements suivis d'une pause **	SENSOR TEMPERATURE ERROR ou SENSOR POWER ERROR	Capteur en erreur de température ou alimenté avec une tension incorrecte	Vérifier que le capteur est raccordé et que la longueur du câble ne dépasse pas la limite maximale. Vérifier que la température ambiante du site dans lequel le système est installé est conforme aux températures de fonctionnement indiquées dans les caractéristiques techniques de cette notice.
Rouge clignotante. Cinq clignotements suivis d'une pause **	MASKING, SIGNAL PATTERN ERROR ***	Le capteur a détecté un masquage (un sabotage) ou d'autres erreurs du signal radar se sont produites	Non disponible si le capteur est en muting. Vérifier que le capteur est correctement installé et que le secteur est libre de tout objet susceptible d'occulter le champ de vision des capteurs.
	MASKING REFERENCE MISSING	Le capteur n'est pas en mesure d'enregistrer la référence du secteur surveillé en raison de l'occultation	Reconfigurer le système tout en s'assurant de l'absence de tout mouvement dans le secteur surveillé
	MSS ERROR/DSS ERROR	Erreur détectée par le diagnostic des microcontrôleurs internes (MSS et DSS), sur leurs périphériques internes ou sur les mémoires	Si le problème persiste, contacter le support technique.
Rouge clignotante. Six clignotements suivis d'une pause **	TAMPER ERROR	Le capteur a détecté une modification de la rotation autour des axes (sabotage)	Non disponible si le capteur est en muting. Vérifier si le capteur a été altéré ou si les vis latérales ou les vis de montage sont desserrées.

Remarque * : clignotements toutes les 100 ms sans pause

Remarque ** : clignotements toutes les 200 ms, puis 2 s de pause.

Leuze 11 Dépannage

11.1.3 Autres problèmes

Problème	Cause	Solution
Détections intempestives	Passage de personnes ou d'objets à proximité de la portée de détection	Modifier la configuration (voir Modification de la configuration à la page 113).
Mise en sécurité de	Absence d'alimentation	Vérifier le raccordement électrique.
la machine sans mouvements dans		Si nécessaire, contacter le support technique.
la portée de détection	Défaillance de l'unité de contrôle ou bien d'un ou de	Vérifier l'état des DEL sur l'unité de contrôle (voir DEL sur l'unité de contrôle à la page 117).
	plusieurs capteurs	Accéder à l'application LBK Designer. Dans la page Tableau de bord , passer la souris sur ② au niveau de l'unité de contrôle ou du capteur.
La valeur de tension détectée sur l'entrée SNS est nulle	Défaillance de la puce qui détecte les entrées	Contacter le support technique.
Le système ne fonctionne pas	Erreur de l'unité de contrôle	Vérifier l'état des DEL sur l'unité de contrôle (voir DEL sur l'unité de contrôle à la page 117).
correctement		Accéder à l'application LBK Designer. Dans la page Tableau de bord , passer la souris sur ② au niveau de l'unité de contrôle ou du capteur.
	Erreur du capteur	Vérifier l'état des DEL sur le capteur (voir DEL sur le capteur à la page 120).
		Accéder à l'application LBK Designer. Dans la page Tableau de bord , passer la souris sur 3 au niveau de l'unité de contrôle ou du capteur.

11.2 Gestion du journal des événements

11.2.1 Introduction

Le journal des événements enregistrés par le système peut être téléchargé sous forme de fichier PDF à partir de l'application LBK Designer. Le système stocke jusqu'à 4 500 événements, divisés en deux sections. Dans chaque section, les événements sont affichés du plus récent au moins récent. Au-delà de cette limite, les événements les plus anciens sont écrasés.

11.2.2 Télécharger le journal du système

AVERTISSEMENT

Lors du téléchargement du fichier journal, le temps de réponse du système n'est pas garanti.

- 1. Lancer l'application LBK Designer.
- 2. Cliquer sur Paramètres puis sur Historique des activités.
- 3. Cliquer sur TÉLÉCHARGER JOURNAL.

Remarque: pour enregistrer le PDF, l'ordinateur nécessite l'installation d'une imprimante.

11.2.3 Sections du fichier journal

La première ligne du fichier indique l'identifiant réseau (NID) du dispositif et la date du téléchargement.

Le reste du fichier journal est divisé en deux sections :

Section	Description	Contenu	Taille	Réinitialisation
1	Journal des événements	Événements d'information Événements d'erreur	3500	Après chaque mise à jour du firmware ou sur demande formulée via l'application LBK Designer
2	Journal des événements de diagnostic	Événements d'erreur	1000	Non autorisé

11.2.4 Structure de ligne de journal

Chaque ligne du fichier journal contient les informations suivantes, séparées par le caractère de tabulation :

- Estampille temporelle (compteur des secondes depuis le dernier démarrage)
- Estampille temporelle (valeur absolue/relative)
- Type d'événement :
 - ∘ [ERROR] = événement de diagnostic
 - ∘ [INFO] = événement d'information
- Source
 - o CONTROLLER = si l'événement est généré par l'unité de contrôle
 - SENSOR ID = si l'événement est généré par un capteur. Dans ce cas, l'ID nœud du capteur est également fourni
- Description de l'événement

11.2.5 Estampille temporelle (compteur des secondes depuis le dernier démarrage)

Une indication de l'instant où l'événement s'est produit est donnée sous forme de temps relatif depuis le dernier démarrage, en secondes.

Exemple: 92

Signification: l'événement s'est produit 92 secondes après le dernier démarrage

11.2.6 Estampille temporelle (valeur absolue/relative)

Une indication du moment où l'événement s'est produit est donnée.

• Après une nouvelle configuration du système, l'indication est donnée sous forme de temps absolu.

Format: YYYY/MM/DD hh:mm:ss

Exemple: 2020/06/05 23:53:44

 Après un redémarrage du dispositif, l'indication est donnée sous forme de temps relatif par rapport au dernier redémarrage.

Format: Rel. x d hh:mm:ss

Exemple: Rel. 0 d 00:01:32

Remarque : lorsqu'une nouvelle configuration du système est effectuée, les estampilles temporelles les plus anciennes sont elles aussi actualisées sous forme de temps absolu.

Remarque : lors de la configuration du système, l'unité de contrôle acquiert l'heure locale de la machine sur laquelle le logiciel est en cours d'exécution.

11.2.7 Description de l'événement

Une description complète de l'événement est donnée. Dans la mesure du possible, des paramètres supplémentaires sont indiqués en fonction de l'événement.

S'il s'agit d'un événement de diagnostic, un code d'erreur interne est également ajouté, utile à des fins de débogage. Si l'événement diagnostique est supprimé, l'étiquette « (Disappearing) » est indiquée comme paramètre supplémentaire.

Exemples

Detection access (field #3, 1300 mm/40°)

System configuration #15

CAN ERROR (Code: 0x0010) COMMUNICATION LOST

CAN ERROR (Disappearing)

11.2.8 Exemple de fichier journal

Journal des événements d'ISC NID UP304 mis à jour le 2020/11/18 16:59:56 [Section 1 - Event logs]

380 2020/11/18 16:53:49 [ERROR] SENSOR#1 CAN ERROR (Disappearing)

375 2020/11/18 16:53:44 [ERROR] SENSOR#1 CAN ERROR (Code: 0x0010) COMMUNICATION LOST

356 2020/11/18 16:53:25 [INFO] CONTROLLER System configuration #16

30 2020/11/18 16:53:52 [ERROR] SENSOR#1 ACCELEROMETER ERROR (Disappearing)

27 2020/11/18 16:47:56 [ERROR] SENSOR#1 ACCELEROMETER ERROR (Code: 0x0010) TILT ANGLE ERROR

5 2020/11/18 16:47:30 [ERROR] SENSOR#1 SIGNAL ERROR (Code: 0x0012) MASKING

0 2020/11/18 16:47:25 [INFO] CONTROLLER Dynamic configuration #1

0 2020/11/18 16:47:25 [INFO] CONTROLLER System Boot #60

92 Rel. 0 d 00:01:32 [INFO] CONTROLLER Detection exit (field #2)

90 Rel. 0 d 00:01:30 [INFO] CONTROLLER Detection exit (field #1)

70 Rel. 0 d 00:01:10 [INFO] SENSOR#1 Detection access (field #2, 3100 mm/20°)

61 Rel. 0 d 00:01:01 [INFO] SENSOR#1 Detection access (field #1, 1200 mm/30°)

0 Rel. 0 d 00:00:00 [INFO] CONTROLLER Dynamic configuration #1

0 0 d 00:00:00 [INFO] CONTROLLER System Boot #61

[Section 2 - Diagnostic events log]

380 Rel. 0 d 00:06:20 [ERROR] SENSOR #1 CAN ERROR (Disappearing)

375 Rel. 0 d 00:06:15 [ERROR] SENSOR #1 CAN ERROR (Code: 0x0010) COMMUNICATION LOST

356 Rel. 0 d 00:05:56 [INFO] CONTROLLER System configuration #16

30 Rel. 0 d 00:00:30 [ERROR] SENSOR #1 ACCELEROMETER ERROR (Disappearing)

27 Rel. 0 d 00:00:27 [ERROR] SENSOR #1 ACCELEROMETER ERROR (Code: 0x0012) TILT ANGLE ERROR

5 Rel. 0 d 00:00:05 [ERROR] SENSOR #1 SIGNAL ERROR (Code: 0x0014) MASKING

11.2.9 Liste des événements

Les journaux des événements sont répertoriés ci-dessous :

Événement	Type
Diagnostic errors	ERROR
System Boot	INFO
System configuration	INFO
Factory reset	INFO
Stop signal	INFO
Restart signal	INFO
Detection access	INFO
Detection exit	INFO
Dynamic configuration in use	INFO

Événement	Туре
Muting status	INFO
Fieldbus connection	INFO
MODBUS connection	INFO
Session authentication	INFO
Validation	INFO
Log download	INFO

Pour plus d'informations sur les événements, voir Événements INFO à la page suivante et Événements d'ERREUR (unité de contrôle) à la page 130.

11.2.10 Niveau de verbosité

Le journal comporte six niveaux de verbosité. Le niveau de verbosité peut être défini lors de la configuration du système via l'application LBK Designer (**Paramètres > Historique des activités > Niveau de verbosité des journaux**).

En fonction du niveau de verbosité sélectionné, les événements sont enregistrés comme indiqué dans le tableau suivant :

Événement	Niveau 0 (par défaut)	Niveau 1	Niveau 2	Niveau 3	Niveau 4	Niveau 5
Diagnostic errors	x	х	х	х	х	х
System Boot	х	Х	х	х	х	Х
System configuration	x	Х	Х	х	х	Х
Factory reset	х	Х	Х	х	Х	Х
Stop signal	х	Х	х	х	х	Х
Restart signal	х	Х	х	х	х	Х
Detection access	-	Voir Niveau		pour les évér détection en		ébut et de fin
Detection exit	-	Voir Niveau		pour les évér détection en		ébut et de fin
Dynamic configuration in use	-	-	-	-	х	Х
Muting status	-	-	-	-	-	Х

11.2.11 Niveau de verbosité pour les événements de début et de fin de détection

En fonction du niveau de verbosité sélectionné, les événements de début et de fin de détection sont enregistrés comme suit :

- NIVEAU 0 : aucune information de détection enregistrée
- NIVEAU 1 : les événements sont enregistrés au niveau de l'unité de contrôle et les informations supplémentaires sont la distance de détection (en mm) et l'angle de détection (en °)*au début de la détection

Format:

CONTROLLER Detection access (distance mm/azimuth°)

CONTROLLER Detection exit

• NIVEAU 2 : les événements sont enregistrés pour chaque portée de détection au niveau de l'unité de contrôle et les informations supplémentaires sont : la portée de détection, la distance de détection (en mm) et l'angle de détection (en °)*au début de la détection, la portée de détection à la fin de la détection

Format:

CONTROLLER Detection access (field #n, distance mm/azimuth°)

CONTROLLER Detection exit (field #n)

- NIVEAU 3/NIVEAU 4/NIVEAU 5 Les événements sont enregistrés :
 - pour chaque portée de détection au niveau de l'unité de contrôle et les informations supplémentaires sont : la portée de détection, la distance de détection (en mm) et l'angle de détection (en °)* au début de la détection, la portée de détection à la fin de la détection
 - au niveau du capteur et les informations supplémentaires lues par le capteur sont : la distance de détection (en mm) et l'angle de détection (en °)* au début de la détection, la portée de détection à la fin de la détection

Format:

CONTROLLER #k Detection access (field #n, distance mm/azimuth°)

SENSOR #k Detection access (distance mm/azimuth°)

CONTROLLER Detection exit (field #n)

SENSOR #k Detection exit

Remarque*: voir Conventions relatives à l'angle de la position de la cible à la page 147.

11.3 Événements INFO

11.3.1 System Boot

Chaque fois que le système est mis en marche, l'événement est enregistré et fait état du nombre incrémentiel de démarrages depuis le début de la vie du dispositif.

Format: System Boot #n

Exemple:

0 2020/11/18 16:47:25 [INFO] CONTROLLER SYSTEM BOOT #60

11.3.2 System configuration

Chaque fois que le système est configuré, l'événement est enregistré et fait état du nombre incrémentiel de configurations depuis le début de la vie du dispositif.

Format: System configuration #3

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER System configuration #3

11.3.3 Factory reset

Chaque fois qu'une réinitialisation d'usine est effectuée, l'événement est enregistré.

Format: Factory reset

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Factory reset

11.3.4 Stop signal

Si l'événement est configuré, tout changement du signal d'arrêt est enregistré comme ACTIVATION ou DEACTIVATION.

Format: Stop signal ACTIVATION/DEACTIVATION

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Stop signal ACTIVATION

11.3.5 Restart signal

S'il est configuré, chaque fois que le système est en attente du signal de redémarrage ou que le signal de redémarrage est reçu, l'événement est enregistré comme WAITING ou RECEIVED.

Format: Restart signal WAITING/RECEIVED

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Restart signal RECEIVED

11.3.6 Detection access

Chaque fois qu'un mouvement est détecté, un début de détection est enregistré avec des paramètres supplémentaires en fonction du niveau de verbosité sélectionné : le numéro de la portée de détection, le capteur qui a détecté le mouvement, la distance de détection (en mm) et l'angle de détection (°)* (voir Niveau de verbosité pour les événements de début et de fin de détection à la page 126).

Format: Detection access (field #n, distance mm/azimuth°)

Remarque*: voir Conventions relatives à l'angle de la position de la cible à la page 147.

Exemple:

20 2020/11/18 16:47:25 [INFO] SENSOR #1 Detection access (field #1, 1200 mm/30°)

11.3.7 Detection exit

Après au moins un événement de début de détection, un événement de fin de détection associé au même champ est enregistré lorsque le signal de détection revient à son état par défaut d'absence de mouvement.

En fonction du niveau de verbosité sélectionné, des paramètres supplémentaires sont enregistrés : le numéro de la portée de détection, le capteur qui a détecté le mouvement.

Format: Detection exit (field #n)

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Detection exit (field #1)

11.3.8 Dynamic configuration in use

À chaque changement de la configuration dynamique, le nouvel ID de la configuration dynamique sélectionnée est enregistré.

Format: Dynamic configuration #1

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Dynamic configuration #1

11.3.9 Muting status

Chaque changement de l'état de muting des différents capteurs est enregistré comme disabled ou enabled.

Remarque : l'événement indique un changement de l'état de muting du système. Il ne correspond pas à la demande de muting.

Format: Muting disabled/enabled

Exemple:

20 2020/11/18 16:47:25 [INFO] SENSOR#1 Muting enabled

11.3.10 Fieldbus connection

L'état de la communication Fieldbus est enregistré comme CONNECTED, DISCONNECTED ou FAULT.

Format: Fieldbus connection CONNECTED/DISCONNECTED/FAULT

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Fieldbus connection CONNECTED

11.3.11 MODBUS connection

L'état de la communication MODBUS est enregistré comme CONNECTED ou DISCONNECTED.

Format: MODBUS connection CONNECTED/DISCONNECTED

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER MODBUS connection CONNECTED

11.3.12 Session authentication

L'état de la session d'authentification et l'interface utilisée (USB/ETH) sont enregistrés.

Format: Session OPEN/CLOSE/WRONG PASSWORD/UNSET PASSWORD/TIMEOUT/CHANGER DE MOT DE PASSE via USB/ETH

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Session OPEN via USB

11.3.13 Validation

Chaque fois qu'une activité de validation sur le dispositif commence ou se termine, l'événement est enregistré. L'interface utilisée (USB/ETH) est également enregistrée.

Format: Validation STARTED/ENDED via USB/ETH

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Validation STARTED via USB

11.3.14 Log download

Chaque fois qu'un journal est téléchargé, l'événement est enregistré. L'interface utilisée (USB/ETH) est également enregistrée.

Format: Log download via USB/ETH

Exemple:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Log download via USB

11.4 Événements d'ERREUR (unité de contrôle)

11.4.1 Introduction

Une erreur de diagnostic est enregistrée chaque fois que les fonctions périodiques de diagnostic détectent une erreur d'entrée ou de sortie dans l'unité de contrôle .

11.4.2 Erreurs de température (TEMPERATURE ERROR)

Erreur	Signification
BOARD TEMPERATURE TOO LOW	Température de la carte inférieure au minimum
BOARD TEMPERATURE TOO HIGH	Température de la carte supérieure au maximum

11.4.3 Erreurs de tension sur l'unité de contrôle (POWER ERROR)

Erreur	Signification
Tensions de l'unité de contrôle UNDERVOLTAGE	Erreur de sous-tension pour la tension indiquée
Tensions de l'unité de contrôle OVERVOLTAGE	Erreur de surtension pour la tension indiquée
ADC CONVERSION ERROR	Erreur de conversion du CAN interne du microcontrôleur

Le tableau ci-dessous décrit les tensions de l'unité de contrôle :

Sérigraphie	Description
VIN	Tension d'alimentation (+24 V CC)
V12	Tension d'alimentation interne
V12 sensors	Tension d'alimentation des capteurs
VUSB	Tension du port USB
VREF	Tension de référence pour les entrées (VSNS Error)
CAN	Convertisseur analogique-numérique

11.4.4 Erreur périphériques (PERIPHERAL ERROR)

Erreur détectée par le diagnostic du microcontrôleur, sur ses périphériques internes ou ses mémoires.

11.4.5 Erreurs de configuration (FEE ERROR)

Il indique que le système n'a pas encore été configuré. Ce message peut s'afficher lors de la première mise en marche du système ou après la réinitialisation aux valeurs d'usine. Il peut également indiquer d'autres erreurs FEE (mémoire interne).

11.4.6 Erreurs sorties (OSSD ERROR)

Erreur	Signification
OSSD 1 SHORT- CIRCUIT	Erreur de court-circuit sur la sortie MOS 1
OSSD 2 SHORT- CIRCUIT	Erreur de court-circuit sur la sortie MOS 2
OSSD 3 SHORT- CIRCUIT	Erreur de court-circuit sur la sortie MOS 3
OSSD 4 SHORT- CIRCUIT	Erreur de court-circuit sur la sortie MOS 4
OSSD 1 NO LOAD	Aucune charge sur la OSSD 1
OSSD 2 NO LOAD	Aucune charge sur la OSSD 2
OSSD 3 NO LOAD	Aucune charge sur la OSSD 3
OSSD 4 NO LOAD	Aucune charge sur la OSSD 4

11.4.7 Erreurs flash (FLASH ERROR)

Une erreur flash représente une erreur sur la mémoire flash externe.

11.4.8 Erreur de configuration dynamique (DYNAMIC CONFIGURATION ERROR)

Une erreur de configuration dynamique indique un identifiant de la configuration dynamique invalide.

11.4.9 Erreur de communication interne (INTERNAL COMMUNICATION ERROR)

Indique qu'il y a une erreur de communication interne.

11.4.10 Erreur d'entrée (INPUT ERROR)

Erreur	Signification
INPUT 1 REDUNDANCY	Erreur de redondance de l'entrée 1
INPUT 2 REDUNDANCY	Erreur de redondance de l'entrée 2
ENCODING	Codage non valide si l'option à canal codé est activée
PLAUSIBILITY	Passage 0->1->0 non conforme aux spécifications de la fonctionnalité des entrées

11.4.11 Erreur Fieldbus (FIELDBUS ERROR)

Au moins une des entrées ou des sorties a été configurée comme **Contrôlé par le fieldbus**, mais la communication Fieldbus n'a pas été établie ou n'est pas valide.

Erreur	Signification
NOT VALID COMMUNICATION	Erreur sur le Fieldbus

11.4.12 Erreur RAM (RAM ERROR)

Erreur	Signification
INTEGRITY ERROR	Contrôle d'intégrité incorrect sur la RAM

11.4.13 Erreur de sauvegarde ou de restauration via SD (SD BACKUP OR RESTORE ERROR)

Erreur	Signification
GENERIC FAIL	Erreur inconnue
TIMEOUT	Délai d'écriture et de lecture de l'opération interne
NO_SD	microSD non présente
WRITE OPERATION FAILED	Erreur d'écriture sur la carte microSD
CHECK OPERATION FAILED	Fichier corrompu ou indisponible lors de la restauration à partir d'une carte microSD

11.4.14 Erreurs de configuration des capteurs (SENSOR CONFIGURATION ERROR)

Une erreur des capteurs s'est produite pendant le processus de configuration ou lors de la mise en marche du système. Au moins un des capteurs raccordés n'a pas été configuré correctement.

La description détaillée contient la liste des capteurs non configurés.

11.5 Événements d'ERREUR (capteur)

11.5.1 Introduction

Une erreur de diagnostic est enregistrée chaque fois que les fonctions périodiques de diagnostic détectent une erreur d'entrée ou de sortie sur le capteur.

AVERTISSEMENT

Les erreurs du capteur ne sont pas disponibles si le capteur est en muting.

Remarque : si le support technique le demande, sous Paramètres > Historique des activités, cliquer sur Télécharger les données de débogage des capteurs pour télécharger les fichiers et les transférer vers Leuze pour le débogage.

11.5.2 Erreur de configuration des capteurs (SENSOR CONFIGURATION ERROR)

Une erreur des capteurs s'est produite pendant le processus de configuration ou lors de la mise en marche du système. Au moins l'un des capteurs raccordés n'est pas configuré correctement.

La liste des erreurs de configuration des capteurs est la suivante :

Erreur	Signification
UNKNOWN MODEL-TYPE	Modèle-type inconnu
WRONG MODEL- TYPE	Modèle-type différent de celui défini lors de la configuration du système
RADIO BANDWIDTH n.a.	Largeur de bande radio sélectionnée non prise en charge
STATIC OBJECT DETECTION n.a.	Détection d'objet statique non prise en charge
CUSTOM TARGET DETECTION n.a.	Détection de cible personnalisée non prise en charge

Erreur	Signification
ADVANCED FOV n.a.	Champ de vision avancé non pris en charge
ANTI-MASKING REF	Erreur lors de l'acquisition de la référence pour l'anti-masquage
ANTI-ROTATION REF	Erreur lors de l'acquisition de la référence pour l'anti-rotation autour des axes
TIMEOUT	Erreur de temporisation lors de la réinitialisation opérationnelle du système
ASSIGN NODE ID ERROR	Erreur lors du paramétrage du nœud ID pendant la réinitialisation opérationnelle du système
SEQUENCE, STREAM SEQUENCE, STREAM END, STREAM CRC	Erreur de séquence lors de la configuration des capteurs
MISSING SENSORS	Trop de capteurs manquants lors de la réinitialisation opérationnelle du système

11.5.3 Erreur de configuration (MISCONFIGURATION ERROR)

L'erreur de configuration se produit lorsque le capteur n'a pas de configuration valide ou a reçu une configuration invalide de l'unité de contrôle.

11.5.4 Erreur d'état et défaillance (STATUS ERROR/FAULT ERROR)

L'erreur d'état se produit lorsque le capteur est dans un état interne invalide ou est entré dans une condition de défaillance interne.

11.5.5 Erreur de protocole (PROTOCOL ERROR)

L'erreur de protocole se produit lorsque le capteur reçoit des commandes dans un format inconnu.

11.5.6 Erreurs de tension du capteur (POWER ERROR)

Erreur	Signification
Tension capteur UNDERVOLTAGE	Erreur de sous-tension pour la tension indiquée
Tension capteur OVERVOLTAGE	Erreur de surtension pour la tension indiquée

Le tableau ci-après décrit les tensions du capteur :

Sérigraphie	Description
VIN	Tension d'alimentation (+12 V CC)
V3.3	Tension d'alimentation des puces internes
V1.2	Tension d'alimentation du microcontrôleur
V1.8	Tension d'alimentation des puces internes (1,8 V)
V1	Tension d'alimentation des puces internes (1 V)

11.5.7 Capteur d'autoprotection (TAMPER ERROR)

Erreur	Signification
TILT ANGLE ERROR	Rotation du capteur autour de l'axe x
ROLL ANGLE ERROR	Rotation du capteur autour de l'axe z
PAN ANGLE ERROR	Rotation du capteur autour de l'axe y

Remarque: la valeur indiquée est celle de l'angle (en degrés).

11.5.8 Erreur du signal (SIGNAL ERROR)

L'erreur de signal se produit lorsque le capteur a détecté une erreur dans la partie des signaux RF, en particulier :

Erreur	Signification
MASKING	Le capteur est occulté
MASKING REFERENCE MISSING	La référence de masquage n'a pas pu être obtenue pendant la procédure de configuration
SIGNAL PATTERN ERROR	Défaillance interne du radar ou séquence de signaux imprévue

11.5.9 Erreurs de température (TEMPERATURE ERROR)

Erreur	Signification
BOARD TEMPERATURE TOO LOW	Température de la carte inférieure au minimum
BOARD TEMPERATURE TOO HIGH	Température de la carte supérieure au maximum
CHIP TEMPERATURE TOO LOW	Puce interne en dessous de la valeur minimale
CHIP TEMPERATURE TOO HIGH	Puce interne au-dessus de la valeur maximale
IMU TEMPERATURE TOO LOW	IMU en dessous de la valeur minimale
IMU TEMPERATURE TOO HIGH	IMU au-dessus de la valeur maximale

11.5.10 Erreur MSS et erreur DSS (MSS ERROR/DSS ERROR)

Erreur détectée par le diagnostic des microcontrôleurs internes (MSS et DSS), sur leurs périphériques internes ou sur les mémoires

11.6 Événements d'ERREUR (BUS CAN)

11.6.1 Introduction

Une erreur de diagnostic est enregistrée chaque fois que les fonctions périodiques de diagnostic détectent une erreur d'entrée ou de sortie dans la communication bus CAN.

En fonction de la communication côté bus, la source enregistrée peut être l'unité de contrôle ou un capteur donné.

11.6.2 Erreurs CAN (CAN ERROR)

Erreur	Signification
TIMEOUT	Délai d'attente dépassé sur un message au capteur ou à l'unité de contrôle
CROSS CHECK	Deux messages redondants ne coïncident pas
SEQUENCE NUMBER	Message avec un numéro de séquence différent de celui prévu
CRC CHECK	Code de contrôle du paquet non conforme
COMMUNICATION LOST	Impossible de communiquer avec le capteur
PROTOCOL ERROR	Les versions du firmware de l'unité de contrôle et des capteurs sont différentes et incompatibles
POLLING TIMEOUT	Délai de scrutation des données

AVIS

Il est fortement recommandé d'insérer un câble blindé entre l'unité de contrôle et le premier capteur et entre les différents capteurs. En tout état de cause, les câbles CAN doivent être posés séparément des lignes électriques à haut potentiel ou dans une goulotte dédiée.

12 Entretien Leuze

12 Entretien

12.1 Entretien courant

Technicien de maintenance générale

Le technicien de maintenance générale est une personne autorisée uniquement à effectuer l'entretien de base et ne dispose pas des droits d'administrateur nécessaires pour modifier la configuration de LBK SBV System via l'application.

12.1.1 Nettoyage

Veiller constamment à ce que le capteur soit propre et exempt de tout déchet d'usinage et de tout matériau conducteur afin d'éviter tout masquage et/ou dysfonctionnement du système.

12.2 Entretien exceptionnel

12.2.1 Technicien de maintenance de la machine

Le technicien de maintenance de la machine est une personne qualifiée qui dispose des droits d'administrateur nécessaires pour modifier la configuration de LBK SBV System via l'application LBK Designer et assurer l'entretien et les opérations de dépannage.

12.2.2 Mise à jour du firmware de l'unité de contrôle

- 1. Télécharger la dernière version de l'application LBK Designer à partir du site www.leuze.com et l'installer sur l'ordinateur.
- 2. Se connecter à l'unité de contrôle via Ethernet et accéder au compte en tant qu'Admin.

Remarque: la mise à jour via USB n'est disponible que pour les modèles LBK ISC-03 et LBK ISC110.

- 3. Sous Paramètres > Généraux, vérifier si une nouvelle mise à jour est disponible.
- 4. Effectuer la mise à jour sans déconnecter ou éteindre le dispositif.

12.2.3 Remplacement d'un capteur : fonction Réinitialisation opérationnelle du système

La fonction de réinitialisation opérationnelle du système est utile pour remplacer un capteur existant sans modifier les paramètres actuels. La fonction peut être activée via les entrées numériques (**Réinitialisation opérationnelle du système**) ou bien via Fieldbus (uniquement **Réinitialisation opérationnelle du système**).

AVERTISSEMENT

Si la fonction de réinitialisation opérationnelle du système a été configurée via le Fieldbus de sécurité et les entrées numériques, cette fonctionnalité peut être utilisée par les deux.

Remarque : maintenir la scène statique pendant que la fonction de réinitialisation opérationnelle du système est en cours d'exécution afin que les fonctions d'autoprotection puissent enregistrer leurs références respectives.

Remarque : lors de l'exécution de la fonction de réinitialisation opérationnelle du système, le système passe en état de sécurité, désactivant les OSSD, jusqu'à la fin du processus.

- 1. Configurer les entrées numériques ou le Fieldbus pour exécuter la fonction de réinitialisation opérationnelle du système.
- 2. Connecter un capteur sans ID nœud dans la même position de la ligne bus CAN que le capteur remplacé.

12 Entretien Leuze

Remarque : pour mener à bien cette procédure, il est nécessaire de ne connecter qu'un seul capteur à la fois.

3. Activer la fonction (via les entrées numériques ou le Fieldbus) et attendre que l'opération soit exécutée. Voir DEL sur l'unité de contrôle à la page 117 pour connaître l'état du système.

Les opérations suivantes sont effectuées :

- Attribution au nouveau capteur du premier ID nœud disponible.
- Application de la configuration précédente du système (opération APPLIQUER LES MODIFICATIONS). L'opération est enregistrée dans le journal des événements en tant qu'événement System configuration standard.
- L'événement est enregistré dans l'archive des rapports (Paramètres > Historique des activités >
 Page des rapports de configuration) avec les chaînes suivantes dans la colonne Utilisateur, PC :
 - « sys-recondition-i » si la fonction est exécutée via l'entrée numérique
 - o w sys-recondition-f wen cas d'utilisation du Fieldbus

Remarque: pour plus de détails, voir Signaux d'entrée numérique à la page 161.

12.2.4 Sauvegarde de la configuration sur PC

La configuration actuelle, avec les paramètres d'entrée/sortie, peut être sauvegardée. La configuration est sauvegardée dans un fichier .cfg qui peut être utilisé pour restaurer la configuration ou pour faciliter la configuration de plusieurs LBK SBV System.

- 1. Dans Paramètres > Généraux cliquer sur SAUVEGARDE.
- 2. Sélectionner la destination du fichier et sauvegarder.

Remarque : lors de l'utilisation de ce mode de sauvegarde, les identifiants de connexion de l'utilisateur ne sont pas enregistrés.

12.2.5 Sauvegarde de la configuration sur carte microSD

Si l'unité de contrôle dispose d'un emplacement microSD, un fichier de sauvegarde des paramètres système et (en option) des identifiants de connexion de tous les utilisateurs peut être enregistré sur une carte microSD. La fonction de sauvegarde via SD peut être activée/désactivée à l'aide de l'application LBK Designer, tout comme la sauvegarde des identifiants de connexion de tous les utilisateurs. Par défaut, les deux options sont désactivées.

- 1. Pour activer la fonction de sauvegarde via SD, sous **Admin > Carte SD**, sélectionner **Création** automatique de sauvegarde.
- 2. Pour activer la sauvegarde des identifiants de connexion de tous les utilisateurs, sélectionner **Inclure les données des utilisateurs**.
- 3. Pour effectuer la sauvegarde, insérer une carte microSD dans l'emplacement de la carte mémoire de l'unité de contrôle.

Remarque : la carte microSD n'est pas livrée avec l'unité de contrôle. Pour plus de détails sur les spécifications de la carte microSD, voir Spécifications de la carte microSD à la page suivante

4. Dans l'application LBK Designer, cliquer sur **APPLIQUER LES MODIFICATIONS** : la sauvegarde se fait automatiquement.

Remarque : les paramètres des options **Création automatique de sauvegarde** ne sont pas enregistrés lors de la sauvegarde sur microSD.

12.2.6 Chargement d'une configuration depuis le PC

- 1. Dans Paramètres > Généraux cliquer sur RESTAURER.
- 2. Sélectionner le fichier .cfg précédemment enregistré (voir Sauvegarde de la configuration sur PC en haut) et l'ouvrir.

12 Entretien Leuze

Remarque : une configuration réimportée devra être à nouveau téléchargée sur l'unité de contrôle et approuvée comme prévu par le plan de sécurité.

12.2.7 Chargement d'une configuration depuis une carte microSD

Si l'unité de contrôle dispose d'un emplacement microSD, l'administrateur peut restaurer tant les paramètres système que (le cas échéant) les identifiants de connexion de tous les utilisateurs. Pour ce faire, un fichier de sauvegarde valide enregistré sur une carte microSD sera nécessaire. La fonction de restauration via SD peut être activée/désactivée à l'aide de l'application LBK Designer. Par défaut, l'option est activée.

Remarque : la fonction de restauration via SD comprend également l'opération de réinitialisation opérationnelle du système, voir Remplacement d'un capteur : fonction Réinitialisation opérationnelle du système à la page 136.

1. Pour effectuer la restauration, insérer la carte microSD contenant la configuration sauvegardée dans l'emplacement de la carte mémoire de la nouvelle unité de contrôle.

Remarque : la carte microSD n'est pas livrée avec l'unité de contrôle. Pour plus de détails sur les spécifications de la carte microSD, voir Spécifications de la carte microSD en bas

2. Appuyer sur le bouton de restauration via SD sur l'unité de contrôle pendant au moins 5 secondes : les DEL d'état du système s'éteignent. Après la restauration, les DEL reprennent leur état précédent.

Remarque: pour désactiver la fonction de restauration via SD, sous **Admin > Carte SD**, désactiver **Activer la réinitialisation par bouton**

Les opérations suivantes sont effectuées :

- La configuration du système est appliquée (opération APPLIQUER LES MODIFICATIONS).
- L'événement est enregistré dans l'archive des rapports (Paramètres > Historique des activités > Page des rapports de configuration) avec la chaîne Restaurer via carte SD.

12.2.8 Spécifications de la carte microSD

Туре	microSD
File system	FAT32
Capacité recommandée	32 Go ou moins

13 Références techniques

13.1 Données techniques

13.1.1 Caractéristiques générales

Méthode de détection	Algorithme de détection de mouvement fondé sur la technologie radar FMCW
Fréquence	Bande d'utilisation : 60,6–62,8 GHz
	Puissance maximale rayonnée : voir National configuration addendum
	Modulation : FMCW
Plage de détection	De 0 à 5 m
RCS cible détectable (détection du corps humain)	0,17 m ²
Champ de vision	Couverture d'angle horizontale : programmable de 10° à 100°.
	Couverture d'angle verticale : 20°
Decision probability	> 1-(2,5E-07)
CRT (Certified Restart Timeout)	4 s
Temps de réponse garanti	Détection d'accès : < 100 ms *
	Prévention du redémarrage : 4 000 ms
	AVERTISSEMENT
	Lors de la validation en temps réel et du téléchargement du fichier journal, le temps de réponse n'est pas garanti.
Consommation globale	Max. 25,4 W (unité de contrôle et six capteurs)
Protections électriques	Inversion de polarité
	Surintensité par fusible réarmable intégré (max. 5 s @ 8 A)
Catégorie de surtension	II
Altitude	Max. 1500 m au-dessus du niveau de la mer
Humidité de l'air	Max. 95 %
Émissions sonores	Non pertinentes**

Remarque* : la valeur dépend du niveau de robustesse électromagnétique défini avec l'application LBK Designer, voir Robustesse électromagnétique à la page 74.

Remarque**: le niveau de pression acoustique pondéré A ne dépasse pas 70 dB(A).

13.1.2 Paramètres de sécurité

SIL (Safety Integrity Level)	2
HFT	0
SC*	2
TYPE	В
PL (Performance Level)	d
ESPE Type (EN 61496-1)	3
Catégorie (EN ISO 13849)	3 équivalente
Classe (CEI TS 62998-1)	D
Protocole de communication (capteurs-unité de contrôle)	CAN selon la norme EN 50325-5
Mission time	20 ans
MTTF _D	42 ans

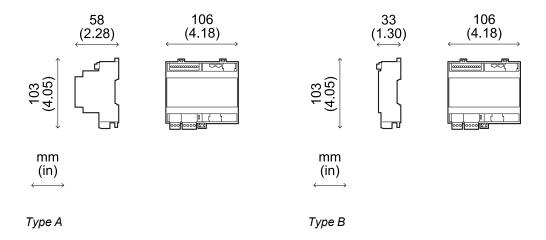
PFH _D	Avec communication Fieldbus :
	 Détection d'accès : 1,40E-08 [1/h]
	Prévention du redémarrage : 1,40E-08 [1/h]
	Muting: 6,37E-09 [1/h]
	Signal d'arrêt : 6,45E-09 [1/h]
	Signal de redémarrage : 6,45E-09 [1/h]
	Activation de la configuration dynamique : 6,37E-09 [1/h]
	Contrôlé par le Fieldbus : 6,45E-09 [1/h]
	Sans communication Fieldbus:
	Détection d'accès : 1,30E-08 [1/h]
	Prévention du redémarrage : 1,30E-08 [1/h]
	Muting: 5,37E-09 [1/h]
	Signal d'arrêt : 5,45E-09 [1/h]
	Signal de redémarrage : 5,45E-09 [1/h]
	Activation de la configuration dynamique : 5,37E-09 [1/h]
	Contrôlé par le Fieldbus : 5,45E-09 [1/h]
SFF	≥99,89 %
DCavg	≥ 99,46 %
MTTR**	< 10 min
État de sécurité en cas de défaillance	Au moins un canal de chaque sortie de sécurité est sur OFF-state. Message d'arrêt envoyé via Fieldbus (si disponible) ou communication interrompue

Remarque* : la fonctionnalité du système n'est garantie que si l'utilisateur utilise le produit conformément aux instructions de la présente notice et dans un environnement approprié.

Remarque**: le MTTR considéré est le Temps Technique Moyen de Réparation (Technical Mean Repair Time), c'est-à-dire qu'il prend en compte la disponibilité de personnel qualifié, d'outils adéquats et de pièces de rechange. Compte tenu du type de dispositif, le MTTR est le temps nécessaire pour remplacer le dispositif.

13.1.3 Connexion Ethernet (si disponible)

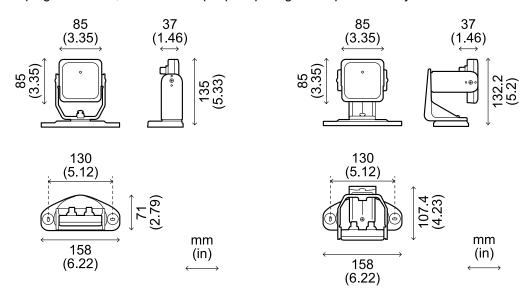
Adresse IP par défaut	192.168.0.20
Port TCP par défaut	80
Masque réseau par défaut	255.255.255.0
Passerelle par défaut	192.168.0.1


13.1.4 Caractéristiques de l'unité de contrôle

Sorties	Configurables comme suit : • 4 OSSD (Output Signal Switching Devices), utilisées comme canaux simples • 2 sorties de sécurité à deux canaux • 1 sortie de sécurité à deux canaux et 2 OSSD (Output Signal Switching Devices)
Caractéristiques OSSD	 Charge résistive maximale : 100 kΩ Charge résistive minimale : 70 Ω Charge capacitive maximale : 1 000 nF Charge capacitive minimale : 10 nF
Sorties de sécurité	Sorties high-side (avec fonction de protection étendue) Courant maximal : 0,4 A Puissance maximale : 11,2 W Les OSSD fournissent ce qui suit : ON-state : de Uv-1 V à Uv (Uv = 24 V +/- 4 V) OFF-state : de 0 V à 2,5 V r.m.s.

Entrées	Configurables comme suit :
	4 entrées numériques de type 3 (cat. 2) à un canal avec GND commun
	2 entrées numériques de type 3 (cat. 3) à deux canaux avec GND commun
	1 entrée numérique de type 3 (cat. 3) à deux canaux et 2 entrées numériques de type 3 (cat. 2) à un seul canal avec GND commun
	Voir Limites de tension et de courant des entrées numériques à la page 145.
Interface Fieldbus (si disponible)	Interface basée sur l'Ethernet avec plusieurs Fieldbus standards
Alimentation	24 V cc (20–28 V cc) *
	Courant maximal: 1,2 A
Consommation	Max. 5 W
Montage	Sur rail DIN
Poids	Pour le type A : avec capot : 170 g
	Pour le type B : avec capot : 160 g
Indice de protection	IP20
Bornes	Section: 1 mm ² max.
	Courant maximal : 4 A avec câbles de 1 mm ²
Essai de résistance aux chocs	Pour le type A : 0,5 J, bille de 0,25 kg à 20 cm de haut
	Pour le type B : 1 J, bille de 0,25 kg à 40 cm de haut
Secousses/chocs	Pour le type A : conformément à la norme CEI/EN 61496-1:2013, paragraphe 5.4.4.2 (CEI 60068-2-27)
	Pour le type B : conformément à la norme CEI/EN 61496-1:2020, paragraphe 5.4.4.2, classe 5M3 (CEI 60068-2-27)
Vibrations	Pour le type A : conformément à la norme CEI/EN 61496-1:2013, paragraphe 5.4.4.1 (CEI 60068-2-6)
	Pour le type B : conformément à la norme CEI/EN 61496-1:2020, paragraphe 5.4.4.1 classe 5M3 (CEI 60068-2-6 et CEI 60068-2-64)
Degré de pollution	2
Utilisation en extérieur	Non
Température de fonctionnement	De -30 à +60 °C
Température de stockage	De -40 à +80 °C

Remarque* : l'unité doit être alimentée par une source d'alimentation isolée conforme à la norme IEC/EN 60204-1 et répondant aux exigences suivantes :


- Circuit à énergie limitée conformément aux normes CEI/UL/CSA 61010-1/ CEI/UL/CSA 61010-2-201 ou bien
- Source à puissance limitée, ou LPS (Limited Power Source), conformément à la norme CEI/UL/CSA 60950-1 ou bien
- (Amérique du Nord et/ou Canada uniquement) Une source d'alimentation de classe 2 conforme au National Electrical Code (NEC), NFPA 70, clause 725.121 et au Canadian Electrical Code (CEC), partie I, C22.1. (des exemples typiques sont un transformateur de classe 2 ou une source d'alimentation de classe 2 conformes à la norme UL 5085-3/ CSA-C22.2 N° 66.3 ou UL 1310/CSA-C22.2 N° 223).

13.1.5 Caractéristiques du capteur

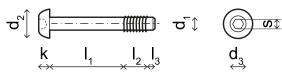
Connecteurs	2 connecteurs M12 à 5 broches (1 mâle et 1 femelle)
Résistance de terminaison bus CAN	120 Ω (non fournie, à installer avec une terminaison de bus)
Alimentation	12 V CC ± 20 %, via l'unité de contrôle
Consommation	Moyenne 2,2 W
	Pointe 3,4 W
Indice de protection	Boîtier de type 3, selon UL 50E, en plus de l'indice de protection IP 67
Matériau	Capteur : PA66
	Étrier : PA66 et fibre de verre (GF)
Frame rate	62 fps
Poids	Avec étrier 2 axes : 300 g
	Avec étrier 3 axes : 355 g
Secousses/chocs	Conformément à la norme CEI/EN 61496-1:2013, paragraphe 5.4.4.2 (CEI 60068-2-27)
Vibrations	Conformément à la norme CEI/EN 61496-1:2013, paragraphe 5.4.4.1 (CEI 60068-2-6)
Degré de pollution	4
Utilisation en extérieur	Oui
Température de fonctionnement	De -30 à +60 °C*
Température de stockage	De -40 à +80 °C

Remarque * : dans des conditions environnementales où la température de fonctionnement peut dépasser la plage autorisée, installer un capot pour protéger le capteur des rayons solaires.

13.1.6 Spécifications recommandées pour les câbles bus CAN

Section	2 x 0,50 mm² alimentation 2 x 0,22 mm² ligne de données
Туре	Deux fils torsadés (alimentation et données) et un fil de terre (ou blindé)
Connecteurs	M12 5 pôles (voir Connecteurs M12 bus CAN à la page 146) Les connecteurs doivent être de type 3 (étanches)
Impédance	120 Ω ± 12 Ω (f = 1 MHz)
Blindage	Blindage par fils de cuivre étamés tressés. À raccorder à la terre sur le bornier d'alimentation de l'unité de contrôle.
Normes	Les câbles doivent être répertoriés en fonction de l'application, comme décrit dans le National Electrical Code NFPA 70 et le Canadian Electrical Code C22.1. Longueur totale maximale de la ligne bus CAN : 80 m

13.1.7 Spécifications des vis inviolables

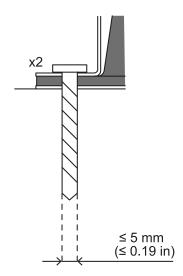

Vis de sécurité hexagonale à tête bouton

d ₁	M4
I	10 mm
d ₂	7,6 mm
k	2,2 mm
t	min 1,3 mm
s	2,5 mm
d ₃	max. 1,1 mm

13.1.8 Spécifications des vis non inviolables

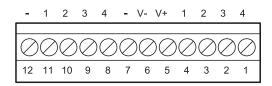
Vis hexagonale à tête bouton

d ₁	M4
I ₁	19 mm
I ₂	6 mm
I ₃	2 mm
d_2	7,6 mm
k	3 mm
s	2,5 mm
d ₃	4 mm


13.1.9 Spécifications des vis inférieures

Les vis inférieures peuvent être :

- à tête cylindrique
- à tête bouton


Remarque : éviter d'utiliser des vis à tête fraisée.

13.2 Brochage des borniers et connecteur

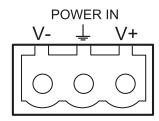
13.2.1 Bornier des entrées et des sorties numériques

Remarque : en regardant l'unité de contrôle de manière à ce que le bornier se trouve en haut à gauche, le numéro 12 est le plus proche du coin de l'unité de contrôle.

Bornier	Symbole	Description	Broche
Digital In	4	Entrée 2, Canal 2, 24 V CC type 3 - INPUT #2-2	1
	3	Entrée 2, Canal 1, 24 V CC type 3 - INPUT #2-1	2
	2	Entrée 1, Canal 2, 24 V CC type 3 - INPUT #1-2	3
	1	Entrée 1, Canal 1, 24 V CC type 3 - INPUT #1-1	4
	V+	V+ (SNS), 24 V CC pour le diagnostic des entrées numériques (obligatoire si au moins une entrée est utilisée)	5
	V-	V- (SNS), référence commune à toutes les entrées numériques (obligatoire si au moins une entrée est utilisée)	6

Bornier	Symbole	Description	Broche
Digital Out	-	GND, référence commune à toutes les sorties numériques	7
	4	Sortie 4 (OSSD4)	8
	3	Sortie 3 (OSSD3)	9
	2	Sortie 2 (OSSD2)	10
	1	Sortie 1 (OSSD1)	11
	-	GND, référence commune à toutes les sorties numériques	12

Remarque : les câbles utilisés doivent avoir une longueur maximale de 30 m et une température de service maximale d'au moins 80 °C.

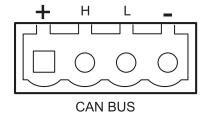

Remarque: utiliser uniquement des fils de cuivre ayant une section minimale de 18 AWG et un couple de serrage de 0,62 Nm.

13.2.2 Limites de tension et de courant des entrées numériques

Les entrées numériques (tension d'entrée 24 V CC) respectent les limites de tension et de courant suivantes, conformément à la norme CEI/EN 61131-2:2003.

	Type 3
Limites de tension	
0	de -3 à 11 V
1	de 11 à 30 V
Limites de courant	
0	15 mA
1	de 2 à 15 mA

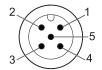
13.2.3 Bornier d'alimentation


Remarque: connecteurs vus de face.

Symbole	Description
V-	GND
<u></u>	Terre
V+	+ 24 V CC

Remarque : les câbles doivent avoir une température de service maximale d'au moins 70 °C.

Remarque: utiliser uniquement des fils de cuivre ayant une section minimale de 18 AWG et un couple de serrage de 0,62 Nm.

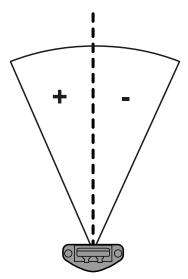

13.2.4 Bornier bus CAN

Symbole	Description	
+	Sortie + 12 V cc	
Н	CAN H	
L	CAN L	
-	GND	

Remarque : les câbles doivent avoir une température de service maximale d'au moins 70 °C.

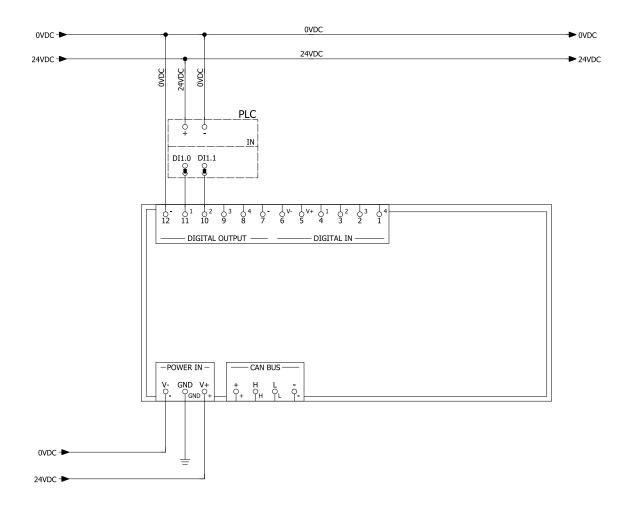
13.2.5 Connecteurs M12 bus CAN

Connecteur femelle


Broche	Fonction
1	Blindage à raccorder pour la mise à la terre du bornier d'alimentation de l'unité de contrôle.
2	+12 V cc
3	GND
4	CAN H
5	CAN L

13.3 Conventions relatives à l'angle de la position de la cible

13.3.1 Signe de l'angle


La convention suivante s'applique à l'angle de la position de la cible :

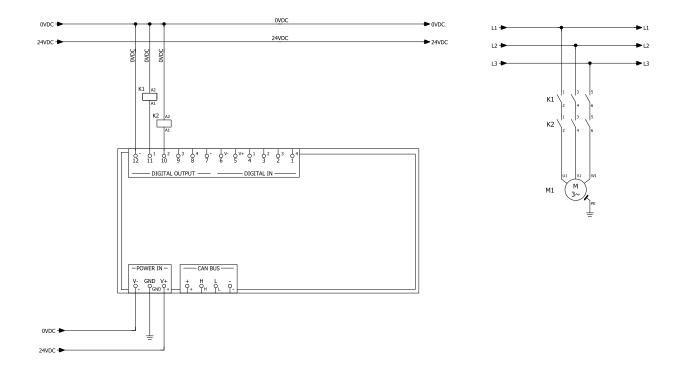
- l'angle a un signe plus (+) lorsque la cible se trouve du côté gauche du capteur.
- l'angle a un signe moins (-) lorsque la cible se trouve du côté droit du capteur.

13.4 Raccordements électriques

13.4.1 Raccordement des sorties de sécurité au Programmable Logic Controller

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré


Entrée numérique #2 Non configuré

Sortie numérique #1 Signal de détection 1

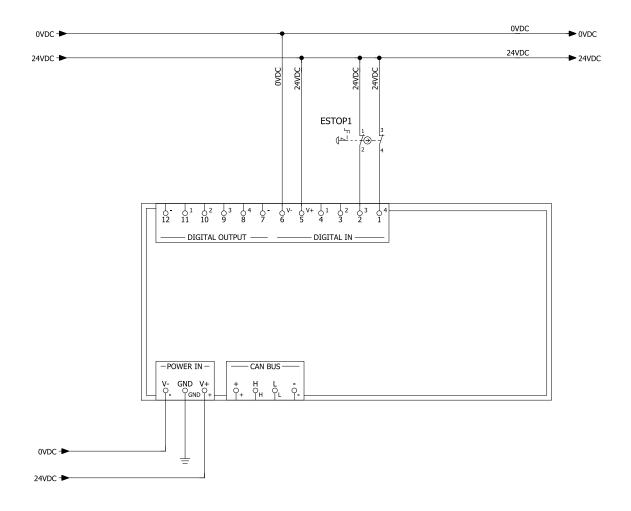
Sortie numérique #2 Signal de détection 1

Sortie numérique #3 Non configuré

13.4.2 Raccordement des sorties de sécurité à un relais de sécurité externe

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré


Entrée numérique #2 Non configuré

Sortie numérique #1 Signal de détection 1

Sortie numérique #2 Signal de détection 1

Sortie numérique #3 Non configuré

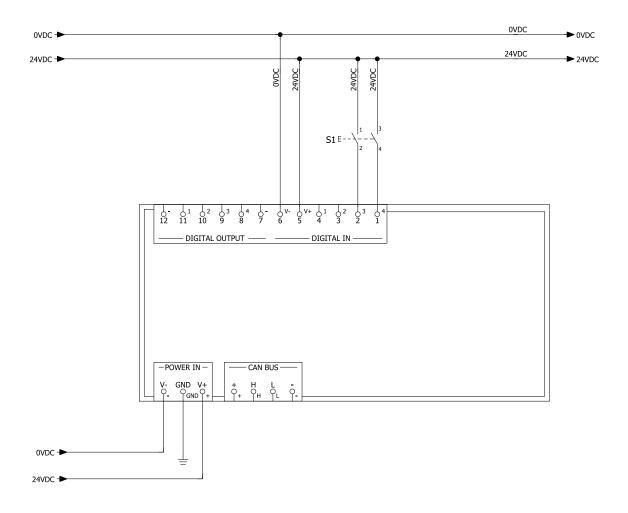
13.4.3 Raccordement du signal d'arrêt (bouton d'arrêt d'urgence)

Remarque : le bouton d'arrêt d'urgence montré ouvre le contact lorsqu'il est enfoncé.

Remarque : les câbles utilisés pour le câblage des entrées numériques doivent avoir une longueur maximale de 30 m.

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré


Entrée numérique #2 Signal d'arrêt

Sortie numérique #1 Non configuré

Sortie numérique #2 Non configuré

Sortie numérique #3 Non configuré

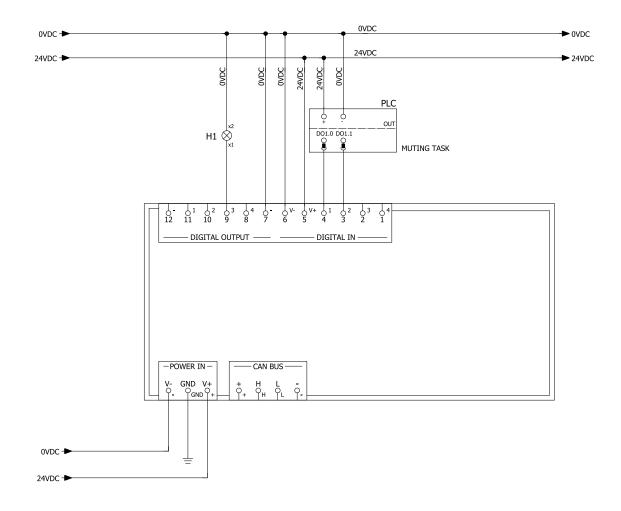
13.4.4 Raccordement du signal de redémarrage (à deux canaux)

Remarque : le poussoir indiqué pour le signal de redémarrage ferme le contact lorsqu'il est enfoncé.

Remarque : les câbles utilisés pour le câblage des entrées numériques doivent avoir une longueur maximale de 30 m.

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré


Entrée numérique #2 Signal de redémarrage

Sortie numérique #1 Non configuré

Sortie numérique #2 Non configuré

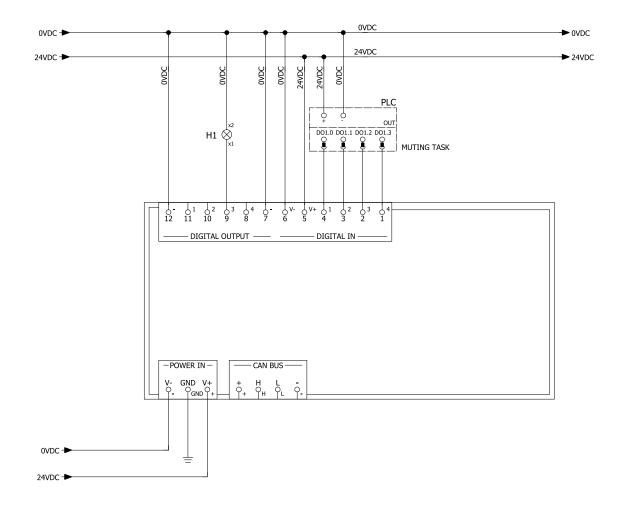
Sortie numérique #3 Non configuré

13.4.5 Raccordement de l'entrée et de la sortie de muting (un groupe de capteurs)

Remarque : les câbles utilisés pour le câblage des entrées numériques doivent avoir une longueur maximale de 30 m.

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Muting groupe 1


Entrée numérique #2 Non configuré

Sortie numérique #1 Non configuré

Sortie numérique #2 Non configuré

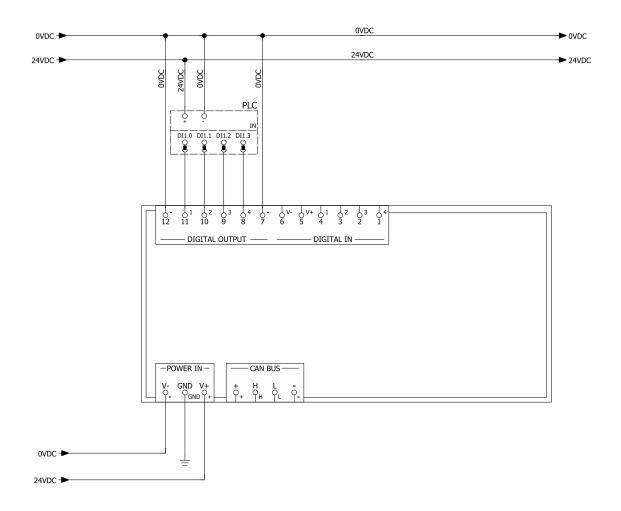
Sortie numérique #3 Signal de rétroaction d'activation muting

13.4.6 Raccordement de l'entrée et de la sortie de muting (deux groupes de capteurs)

Remarque : les câbles utilisés pour le câblage des entrées numériques doivent avoir une longueur maximale de 30 m.

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Muting groupe 1


Entrée numérique #2 Muting groupe 2

Sortie numérique #1 Non configuré

Sortie numérique #2 Non configuré

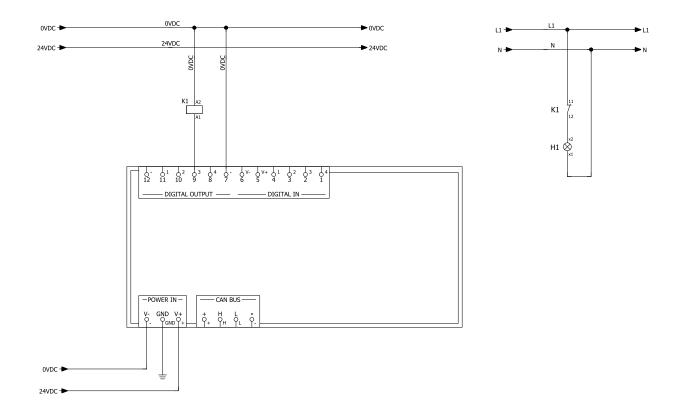
Sortie numérique #3 Signal de rétroaction d'activation muting

13.4.7 Raccordement du signal de détection 1 et 2

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré

Entrée numérique #2 Non configuré


Sortie numérique #1 Signal de détection 1

Sortie numérique #2 Signal de détection 1

Sortie numérique #3 Signal de détection 2

Sortie numérique #4 Signal de détection 2

13.4.8 Raccordement de la sortie de diagnostic

Remarque : les câbles utilisés pour le câblage des entrées numériques doivent avoir une longueur maximale de 30 m.

Paramétrages des E/S numériques (via l'application LBK Designer)

Entrée numérique #1 Non configuré

Entrée numérique #2 Non configuré

Sortie numérique #1 Non configuré

Sortie numérique #2 Non configuré

Sortie numérique #3 Signal de diagnostic du système

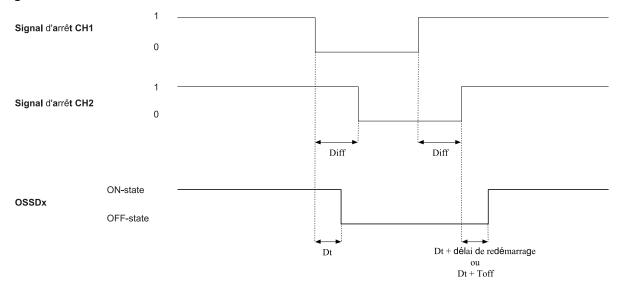
13.5 Paramètres de configuration de l'application

13.5.1 Liste des paramètres

Paramètre	Min	Max	Valeur par défaut	
Paramètres > Compte				
Mot de passe	-	-	Non disponible	
P	aramètres > Généra	ux		
Système	LBK S-01 System, L	BK SBV System	LBK S-01 System	
Modèle et type de capteur	capteurs avec plage capteurs avec plage		Capteurs avec plage de 5 mètres	
Pays	Europe, Reste des p de pays	ays certifiés ou liste	Europe, Reste des pays certifiés	
Sélection du type d'application	Applications fixes, A Véhicule	pplications mobiles,	Applications fixes	
	Configuration			
Nombre de capteurs installés	1	6	1	
Plan	Dim. X : 1000 mm	Dim. X : 65000 mm	Dim. X : 10000 mm	
	Dim. Y : 1000 mm	Dim. Y : 65000 mm	Dim. Y : 7000 mm	
Position (pour chaque capteur)	X : 0 mm	X : 65000 mm	Position par défaut	
	Y:0 mm	Y : 65000 mm	du capteur #1 :	
			X : 2000 mm	
			Y: 3000 mm	
Rotation 1 (pour chaque capteur)	0°, 90°, 180°, 270°		0°	
Rotation 2 (pour chaque capteur)	0°	359°	180°	
Rotation 3 (pour chaque capteur)	-90°	90°	0°	
Hauteur de montage des capteurs (pour chaque capteur)	0 mm	10 000 mm	0 mm	
Distance de détection 1, Distance de détection 2 (pour chaque capteur)	Remarque: la valeur minimale de la première portée de détection avec une distance > 0 est de 500 mm pour les capteurs 3.x et de 200 mm pour les capteurs 5.x.	Remarque : la somme de toutes les distances de détection (pour chaque capteur) ne doit pas dépasser 5 000 mm.	1000 mm	

Paramètre	Min	Max	Valeur par défaut
Distance de détection 3, Distance de	0 mm	5000 mm	0 mm
détection 4 (pour chaque capteur)	Remarque: la valeur minimale de la première portée de détection avec une distance > 0 est de 500 mm pour les capteurs 3.x et de 200 mm pour les capteurs 5.x.	Remarque : la somme de toutes les distances de détection (pour chaque capteur) ne doit pas dépasser 5 000 mm.	
Pour capteurs 5.x - Forme de la zone de détection	Classique, Couloir		Classique
Couverture d'angle horizontale à gauche (forme Classique)	Remarque : la couverture d'angle horizontale minimale (gauche + droite) est de 10°.	50°	45°
Couverture d'angle horizontale à droite (forme Classique)	0° Remarque : la couverture d'angle horizontale minimale (gauche + droite) est de 10°.	50°	45°
Pour capteurs 5.x (forme Couloir) – Côté gauche	0 mm Remarque: la largeur minimale du couloir (gauche + droite) est de 200 mm.	4000 mm	500 mm
Pour capteurs 5.x (forme Couloir) – Côté droit	0 mm Remarque : la largeur minimale du couloir (gauche + droite) est de 200 mm.	4000 mm	500 mm
Fonctionnement de sécurité (pour chaque portée de détection de chaque capteur)	Détection d'accès et prévention du redémarrage, Toujours détecter l'accès, Toujours empêcher le redémarrage		Détection d'accès et prévention du redémarrage
Détection d'objet statique (pour chaque portée de détection de chaque capteur)	Activé, Désactivé		Désactivé
Délai de redémarrage (pour chaque portée de détection de chaque capteur)	100 ms	60000 ms	4000 ms
T _{OFF}	100 ms	60000 ms	100 ms
P	aramètres > Avancé	es	
Dépendance des portées de détection	Activé, Désactivé		Activé
Robustesse environnementale	Activé, Désactivé		Désactivé

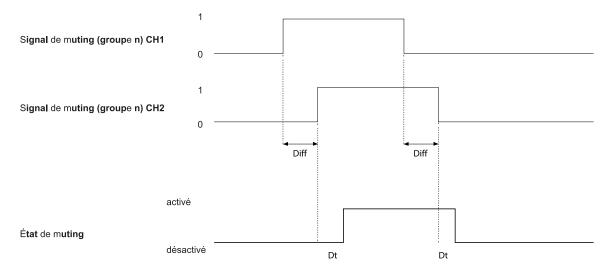
Paramètre	Min	Max	Valeur par défaut
Robustesse électromagnétique	Standard, Élevée, Très élevée		Standard
Sensibilité de détection d'objet statique	-20 dB +20 dB		0 dB
Filtre anti-rebond du signal d'arrêt	Activé, Désactivé		Désactivé
Paramètres > Avancées > Sy	nchronisation entre	plusieurs unités de	contrôle
Canal de l'unité de contrôle	0	3	0
Para	mètres > Autoprote	ction	
Sensibilité anti-masquage (pour chaque capteur)	Désactivé, Faible, M	oyenne, Élevée	Faible
Distance anti-masquage (pour chaque capteur)	200 mm	1000 mm	1000 mm
Anti-rotation autour des axes (pour chaque capteur)	Désactivé, Activé		Désactivé
Anti-rotation autour des axes - Activer l'axe spécifique - Tilt (pour chaque capteur)	Désactivé, Activé		Désactivé
Anti-rotation autour des axes - Activer l'axe spécifique -Roll (pour chaque capteur)	spécifique -Roll (pour chaque		Désactivé
Anti-rotation autour des axes - Activer l'axe spécifique - Pan (pour chaque capteur)	Désactivé, Activé		Désactivé
Paramètre	s > Entrées-sorties ı	numériques	
Entrée numérique (pour chaque entrée)	Non configuré, Signal d'arrêt, Signal de redémarrage, Groupe muting « N », Activer la configuration dynamique, Contrôlé par le fieldbus, Réinitialisation opérationnelle du système, Signal de redémarrage + réinitialisation opérationnelle du système, À un canal (Catégorie 2), Enregistrement de la référence anti-masquage, Enregistrement de la référence anti-rotation		Non configuré
Canal d'entrée numérique (pour chaque canal de chaque entrée)	Non configuré, Signal de redémarrage, Contrôlé par le fieldbus, Réinitialisation opérationnelle du système, Signal de redémarrage + réinitialisation opérationnelle du système		Non configuré
Mode de redondance	Cohérente, Inversée		Cohérente
À canal codé	Activé, Désactivé Remarque: disponil deux entrées numéri configurées comme configuration dynam	Activer la	Désactivé


Paramètre	Min	Max	Valeur par défaut	
Sortie numérique (pour chaque sortie) Largeur d'impulsion OSSD Court-circuit/Diagnostic circuit ouvert	Non configuré, Signal système, Signal de re d'activation muting, C fieldbus, Rétroaction redémarrage, Signal Avertissement de dé de rétroaction de dét statique, Signal de désignal de détection gavertissement de dé Avertissement de dé Courte (300 µs), Lon Activé, Désactivé	étroaction Contrôlé par le du signal de de détection « N », tection « N », Signal tection d'objet étection groupe 1, groupe 2, tection groupe 1, tection groupe 2 *	Non configuré Courte (300 µs) Désactivé	
	Paramètres > Muting			
Groupe pour fonction de muting (pour chaque capteur)	Aucun, Groupe 1, Gr	oupe 2, les deux	Groupe 1	
Largeur d'impulsion (pour chaque entrée)	0 μs (= Période et Déphasage désactivés) 200 μs	2 000 µs	0 μs	
Période (pour chaque entrée)	200 ms	2000 ms	200 ms	
Déphasage (pour chaque entrée)	0,4 ms	1000 ms	0,4 ms	
	es > Fonction de rec			
Portée de détection 1, 2, 3, 4	Automatique, Manue		Automatique	
Paramèt	res > Historique des	activités		
Niveau de verbosité des journaux	0	5	0	
Paramètres >	Groupes des portée	es de détection		
Portée de détection 1, 2, 3, 4 (pour chaque capteur)	Aucun, Groupe 1, Gr	roupe 2, Les deux	Aucun	
	Admin > Réseau			
Adresse IP	-		192.168.0.20	
Masque de réseau	-		255.255.255.0	
Gateway	-		192.168.0.1	
Port TCP	1	65534	80	
	Admin > Fieldbus			
PROFINET/PROFIsafe				
Configuration et état du système PS2v6	1	65535	145	
Informations sur les capteurs PS2v6	1	65535	147	
État de détection du capteur 1 PS2v6	1	65535	149	
État de détection du capteur 2 PS2v6	1	65535	151	
État de détection du capteur 3 PS2v6	1	65535	153	
État de détection du capteur 4 PS2v6	1	65535	155	
État de détection du capteur 5 PS2v6	1	65535	157	
État de détection du capteur 6 PS2v6	1	65535	159	

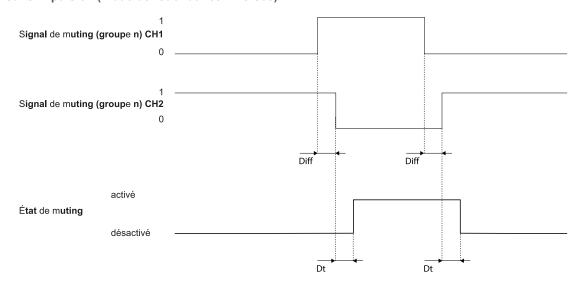
Paramètre	Min	Max	Valeur par défaut
Configuration et état du système PS2v4	1	65535	146
Informations sur les capteurs PS2v4	1	65535	148
État de détection du capteur 1 PS2v4	1	65535	150
État de détection du capteur 2 PS2v4	1	65535	152
État de détection du capteur 3 PS2v4	1	65535	154
État de détection du capteur 4 PS2v4	1	65535	156
État de détection du capteur 5 PS2v4	1	65535	158
État de détection du capteur 6 PS2v4	1	65535	160
Boutisme du fieldbus	Big Endian,	Little Endian	Big Endian
	FSol	E	
FSoE Safe Address	1	65535	145
Etl	hernet/IP™ - 0	CIP Safety™	,
Adresse IP	-		DHCP
Masque de réseau	-		DHCP
Gateway	-		DHCP
Nom hôte	-		[vide]
Safety Network Number (SNN)	-		0xFFFFFFFFFF
Boutisme du fieldbus (uniquement pour les connexions non sécurisées)	Big Endian, Little Endian		Big Endian
<u> </u>	 nin > Paramèi	tres MODBUS	
Activer MODBUS	Activé, Désa		Activé
Port d'écoute	1	65534	502
	min > Étiquet		
Unité de contrôle	-		-
Capteur 1	-		-
Capteur 2	-		-
Capteur 3	-		-
Capteur 4	-		-
Capteur 5	-		-
Capteur 6	-		-
<u>·</u>	in > Gestion o	des utilisateurs	
Nom d'utilisateur	-		-
Niveau d'accès	Admin, Engi Service	neer, Expert, Observer,	Observer
	Admin > C	arte SD	
Création automatique de sauvegarde	Activé, Désa		Désactivé
Inclure les données des utilisateurs	Activé, Désactivé		Désactivé
Activer la réinitialisation par bouton	Activé, Désactivé		Activé

Remarque* : Avertissement de détection « N », Avertissement de détection groupe 1 et Avertissement de détection groupe 2 sont disponibles uniquement pour LBK ISC110E-C.

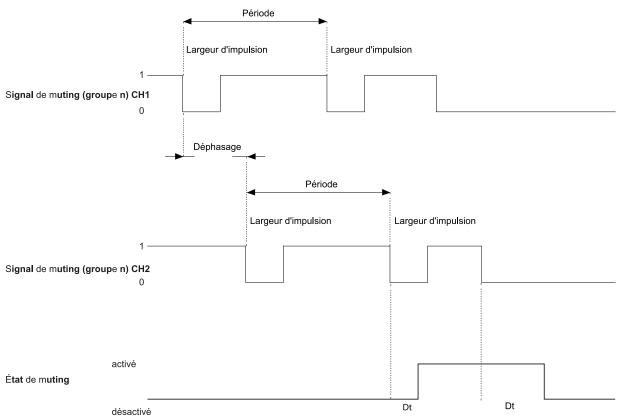
13.6 Signaux d'entrée numérique


13.6.1 Signal d'arrêt

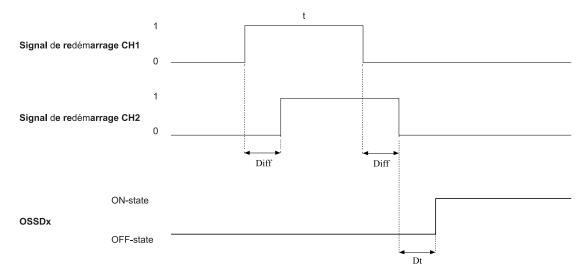
Élément	Description
OSSDx:	Les sorties du signal de détection se désactivent sur le front descendant du signal
Signal de détection « N »/Signal de détection groupe « N »	d'entrée d'au moins un des deux canaux d'entrée. Ils restent sur OFF-state tant qu'un des deux canaux d'entrée reste dans l'état logique bas (0).
Signal d'arrêt CH1	Canal interchangeable. Lorsqu'un canal passe au niveau logique bas (0), le signal de détection 1 et le signal de détection 2 sont réglés sur OFF-state.
Signal d'arrêt CH2	
Diff	Inférieur à 50 ms. Si la valeur est supérieure à 50 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
Dt	Délai d'activation. Si le filtre anti-rebond du signal d'arrêt est désactivé, moins de 5 ms. Si le filtre anti-rebond du signal d'arrêt est activé, moins de 50 ms.


13.6.2 Muting (avec/sans impulsion)

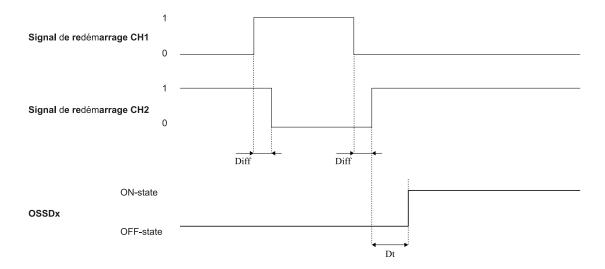
Sans impulsion (mode de redondance cohérente)


Élément	Description
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
Signal de muting (groupe n) CH 1	Canal interchangeable.
Signal de muting (groupe n) CH 2	
État de muting	Activés tant que les deux canaux sont au niveau logique haut (1) et désactivés lorsque les deux canaux passent au niveau logique bas (0).
Dt	Délai d'activation/désactivation. Inférieur à 50 ms.

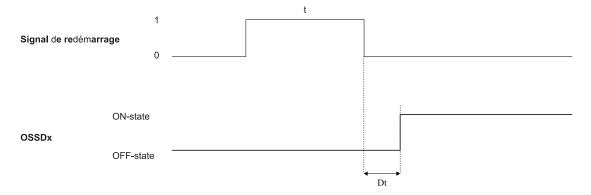
Sans impulsion (mode de redondance inversée)


Élément	Description
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
État de muting	Activés tant que le canal 1 du signal de muting est au niveau logique haut (1) et que le canal 2 est au niveau logique bas (0). Désactivés tant que le canal 1 est au niveau logique bas (0) et que le canal 2 est au niveau logique haut (1).
Dt	Délai d'activation/désactivation. Inférieur à 50 ms.

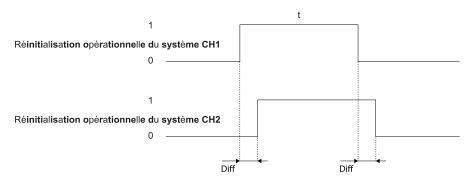
Avec impulsion


Élément	Description
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
Signal de muting (groupe n) CH 1	Canal interchangeable.
Signal de muting (groupe n) CH 2	
État de muting	Activés tant que les deux signaux d'entrée suivent les paramètres de muting configurés (largeur, période et déphasage de l'impulsion).
Dt	Délai d'activation/désactivation. Inférieur à trois fois la période.

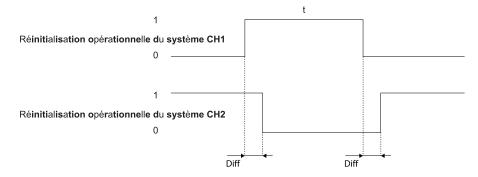
13.6.3 Signal de redémarrage (à deux canaux, mode de redondance cohérente)


Élément	Description
OSSDx:	Les sorties du signal de détection passent sur ON-state dès que le dernier canal a
Signal de détection « N »/Signal de détection groupe « N »	terminé avec succès le passage 0 -> 1 -> 0.
Signal de redémarrage CH1	Canal interchangeable. Les deux canaux du Signal de redémarrage doivent effectuer un passage du niveau logique 0 -> 1 ->0. Ils doivent rester à un niveau logique haut pendant une période de temps (t) supérieure à 200 ms et inférieure à 5 s.
Signal de redémarrage CH2	
Dt	Délai d'activation. Inférieur à 50 ms.
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

13.6.4 Signal de redémarrage (à deux canaux, mode de redondance inversée)


Élément	Description
OSSDx:	Les sorties du signal de détection passent sur ON-state dès que le dernier canal a
Signal de détection « N »/Signal de détection groupe « N »	terminé le passage avec succès.
Signal de redémarrage CH1	Le canal 1 du signal de redémarrage doit effectuer un passage du niveau logique 0 -> 1 -> 0. Le canal 2 du signal de redémarrage doit effectuer un passage du niveau logique 1 -> 0 -> 1. Le laps de temps pendant lequel le canal 1 reste à un niveau logique haut et le
Signal de redémarrage CH2	canal 2 reste à un niveau logique bas (t) doit être supérieur à 200 ms et inférieur à 5 s.
Dt	Délai d'activation. Inférieur à 50 ms.
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

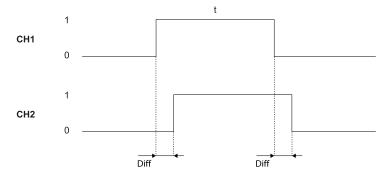
13.6.5 Signal de redémarrage (à un canal)


Élément	Description
OSSDx : Signal de détection « N »/Signal de détection groupe « N »	Les sorties du signal de détection passent sur ON-state dès que le signal de redémarrage a terminé avec succès le passage 0 -> 1 -> 0.
Signal de redémarrage	Le canal doit effectuer un passage du niveau logique 0 -> 1 ->0. Ils doivent rester à un niveau logique haut pendant une période de temps (t) supérieure à 200 ms et inférieure à 5 s.
Dt	Délai d'activation. Inférieur à 50 ms.

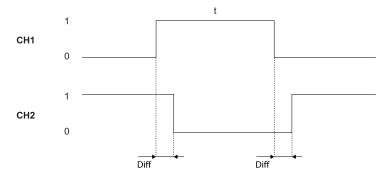
13.6.6 Réinitialisation opérationnelle du système (à deux canaux, mode de redondance cohérente)

Élément	Description
Réinitialisation opérationnelle	Canal interchangeable. Les deux canaux de la réinitialisation opérationnelle du système doivent effectuer un passage du niveau logique 0 -> 1 ->0. Ils doivent rester à
_	un niveau logique haut pendant une période de temps (t) supérieure à 10 s et inférieure
Réinitialisation opérationnelle du système CH2	à 30 s.
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

13.6.7 Réinitialisation opérationnelle du système (à deux canaux, mode de redondance inversée)


Élément	Description
du système CH1	Le canal 1 de la réinitialisation opérationnelle du système doit effectuer un passage du niveau logique 0 -> 1 -> 0. Le canal 2 de la réinitialisation opérationnelle du système doit effectuer un passage du niveau logique 1 -> 0 -> 1. Le laps de temps pendant lequel le canal 1 reste à un niveau logique haut et le canal 2 reste à un niveau logique bas (t) doit
Réinitialisation opérationnelle du système CH2	être supérieur à 10 s et inférieur à 30 s.
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

13.6.8 Réinitialisation opérationnelle du système (à un canal)

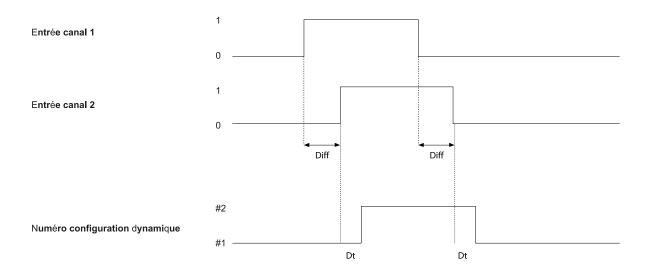

Élément	Description
Réinitialisation	Le canal doit effectuer un passage du niveau logique 0 -> 1 ->0. Il doit rester à un
opérationnelle	niveau logique haut pendant une période de temps (t) supérieure à 10 s et inférieure à
du système	30 s.

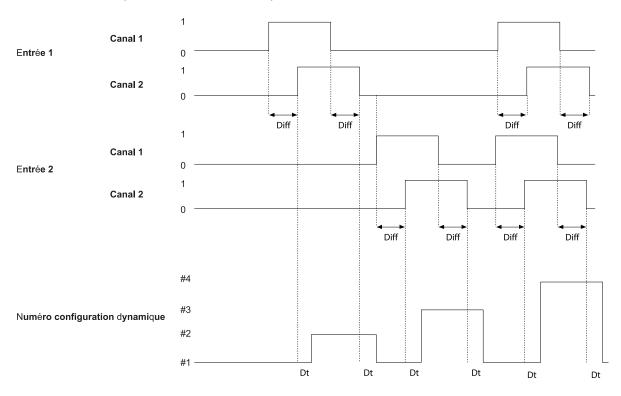
13.6.9 Signal de redémarrage + réinitialisation opérationnelle du système (à deux canaux, mode de redondance cohérente)

Élément	Description
CH1	Canal interchangeable. Les deux canaux doivent effectuer un passage du niveau
CH2	logique 0 -> 1 -> 0. Ils doivent rester à un niveau logique haut pendant une période de temps (t) supérieure à 200 ms et inférieure à 5 s.
(Signal de redémarrage)	Pour plus de détails sur le comportement des sorties Signal de détection 1 et Signal de détection 2 et le délai de désactivation, voir Signal de redémarrage (à deux canaux, mode de redondance cohérente) à la page 164.
CH1	Canal interchangeable. Les deux canaux doivent effectuer un passage du niveau
CH2	logique 0 -> 1 -> 0. Ils doivent rester à un niveau logique haut pendant une période de temps (t) supérieure à 10 s et inférieure à 30 s.
(Réinitialisation opérationnelle du système)	temps (t) superioure a 10 s et illiene a 50 s.
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

13.6.10 Signal de redémarrage + réinitialisation opérationnelle du système (à deux canaux, mode de redondance inversée)

Élément	Description
CH1	Le canal 1 du signal de redémarrage doit effectuer un passage du niveau logique 0 -> 1
CH2	->0. Le canal 2 du signal de redémarrage doit effectuer un passage du niveau logique 1
(Signal de redémarrage)	-> 0 -> 1. Le laps de temps pendant lequel le canal 1 reste à un niveau logique haut et le canal 2 reste à un niveau logique bas (t) doit être supérieur à 200 ms et inférieur à 5 s.
reuemarrage)	Pour plus de détails sur le comportement des sorties Signal de détection 1 et Signal de détection 2 et le délai de désactivation, voir Signal de redémarrage (à deux canaux, mode de redondance inversée) à la page 165.
CH1	Le canal 1 de la réinitialisation opérationnelle du système doit effectuer un passage du
CH2	niveau logique 0 -> 1 ->0. Le canal 2 de la réinitialisation opérationnelle du système doit effectuer un passage du niveau logique 1 -> 0 ->1. Le laps de temps pendant lequel le canal 1 reste à un niveau logique haut et le canal 2 reste à un niveau logique bas (t) doit être supérieur à 10 s et inférieur à 30 s.
(Réinitialisation opérationnelle du système)	
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, le système maintient les sorties désactivées.

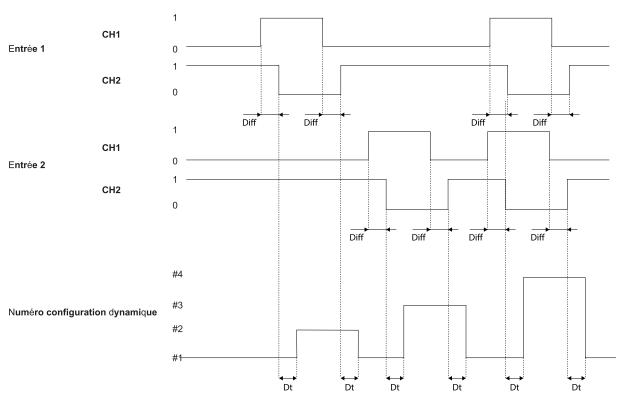

13.6.11 Signal de redémarrage + réinitialisation opérationnelle du système (à un canal)


Élément	Description
Signal de redémarrage	Le canal doit effectuer un passage du niveau logique 0 -> 1 ->0. Il doit rester à un niveau logique haut pendant une période de temps (t) supérieure à 200 ms et inférieure à 5 s.
	Pour plus de détails sur le comportement des sorties Signal de détection 1 et Signal de détection 2 et le délai de désactivation, voir Signal de redémarrage (à un canal) à la page 166.
Réinitialisation opérationnelle du système	Le canal doit effectuer un passage du niveau logique 0 -> 1 ->0. Il doit rester à un niveau logique haut pendant une période de temps (t) supérieure à 10 s et inférieure à 30 s.

13.6.12 Activation de la configuration dynamique (mode de redondance cohérente)

Avec une entrée


Avec deux entrées (canaux codés désactivés)


Élément	Description
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
Numéro configuration dynamique	Pour plus de détails sur le numéro de la configuration dynamique et sur l'option à canal codé, voir Configuration dynamique via les entrées numériques à la page 46.
Dt	Délai d'activation/désactivation. Inférieur à 50 ms.

13.6.13 Activation de la configuration dynamique (mode de redondance inversée)

Avec une entrée

Avec deux entrées

Élément	Description
Diff	Inférieur à 100 ms. Si la valeur est supérieure à 100 ms, l'alarme de diagnostic se déclenche et le système désactive les sorties de sécurité.
Numéro configuration dynamique	Pour plus de détails sur le numéro de la configuration dynamique et sur l'option à canaux codés, voir Configuration dynamique via les entrées numériques à la page 46.
Dt	Délai d'activation/désactivation. Inférieur à 50 ms.

14 Appendice

14.1 Logiciel du système

14.1.1 Introduction

Cette annexe a pour but de donner des informations claires sur le logiciel du système. Elle comprend les informations dont l'intégrateur a besoin pour installer et intégrer le système conformément à l'annexe D de la norme CEI 61508-3.

Étant donné que LBK SBV System est un système intégré fourni avec un firmware déjà implémenté, ni l'installateur ni l'utilisateur final ne doivent procéder à une intégration supplémentaire du logiciel. Les paragraphes suivants illustrent toutes les informations visées à l'annexe D de la norme CEI 61508-3.

14.1.2 Configuration

La configuration du système peut être effectuée à l'aide d'un outil de configuration basé sur PC et désigné sous le nom d'application LBK Designer.

La configuration du système est décrite dans Procédures d'installation et utilisation à la page 93.

14.1.3 Compétences

Bien qu'aucune compétence spécifique ne soit requise pour l'intégration du logiciel, l'installation et la configuration du système doivent être confiées à une personne qualifiée, comme décrit dans Procédures d'installation et utilisation à la page 93.

14.1.4 Instructions d'installation

Le firmware est déjà implémenté dans le matériel. L'outil de configuration basé sur PC comprend un programme d'installation de la configuration auto-explicatif.

14.1.5 Anomalies évidentes

À la date de la première édition de ce document, aucune anomalie ou bogue du logiciel/firmware n'a été constaté.

14.1.6 Compatibilité rétroactive

La compatibilité rétroactive est garantie.

14.1.7 Contrôle des modifications

Toute proposition de modification émanant de l'intégrateur ou de l'utilisateur final doit être adressée à Leuze et évaluée par le Product Owner.

14.1.8 Mesures de sécurité mises en œuvre

Les paquets de mise à jour du firmware sont gérés par le support technique Leuze et sont marqués pour empêcher l'utilisation de fichiers binaires non vérifiés.

14.2 Mise au rebut

LBK SBV System contient des pièces électriques. Tel que défini par la directive 2012/19/UE du Parlement européen et du conseil, ce produit ne doit pas être éliminé avec les déchets municipaux non triés.

Il est de la responsabilité du propriétaire/distributeur de mettre ces produits et autres équipements électriques et électroniques au rebut dans les sites de collecte désignés par les services de voirie.

En éliminant et en recyclant ce produit conformément à la réglementation en vigueur, vous contribuez à protéger l'environnement et la santé humaine contre les effets potentiellement nocifs d'une manipulation inappropriée des déchets.

Pour de plus amples informations quant à l'élimination du produit, veuillez contacter le service de la voirie ou votre revendeur.

14.3 Support technique

14.3.1 Hotline d'assistance

Les informations pour contacter la hotline de votre pays sont disponibles sur notre site web www.leuze.com sous **Contact et assistance**.

Service de réparation et retour

Les appareils défectueux sont réparés de manière compétente et rapide dans notre Centre de service clientèle. Nous vous proposons un ensemble complet de services afin de réduire au minimum les éventuels temps d'arrêt des installations. Notre centre de service clientèle nécessite les informations suivantes :

- · Code client
- · Description du produit ou du composant
- Numéro de série et numéro de lot
- Motif de la demande d'assistance et description de celle-ci

Nous vous demandons de bien vouloir enregistrer les marchandises concernées. Il vous suffit d'enregistrer le retour de la marchandise sur notre site web www.leuze.com sous **Contact et assistance** > **Service de réparation et retour**.

Afin que votre demande soit traitée rapidement et sans faille, nous vous enverrons un bon de retour avec l'adresse de retour au format numérique.

14.4 Propriété intellectuelle

14.4.1 Marques

EtherCAT® et EtherCAT P® sont des marques déposées et des technologies brevetées sous licence de Beckhoff Automation GmbH, Allemagne.

14.4.2 Brevets US

Les produits Leuze electronic GmbH + Co. KG sont protégés par les brevets US suivants :

- Brevet US n° 10761205
- Brevet US n° 11402481
- Brevet US n° 11282372
- Brevet US n° 11422227
- Brevet US n° 11579249
- Brevet US n° 11835616

- Brevet US n° 11982983
- Brevet US n° 11846724
- Brevet US n° 11988739
- Brevet US n° 11041937

D'autres brevets sont en cours d'enregistrement.

14.5 Liste de contrôle pour l'installation d'ESPE

14.5.1 Introduction

La collecte des données relatives aux éléments suivants est obligatoire et doit avoir lieu au plus tard lors de la première mise en service du système.

La liste de contrôle doit être conservée avec la documentation de la machine et utilisée comme référence lors des tests périodiques.

Cette liste de contrôle ne remplace pas la mise en service initiale ni les inspections périodiques effectuées par du personnel de sécurité qualifié.

14.5.2 Liste de contrôle

Question	Oui	Non
Les normes et les règles de sécurité ont-elles été respectées conformément aux directives et aux normes applicables à la machine ?		
Les directives et normes appliquées sont-elles répertoriées dans la déclaration de conformité ?		
L'ESPE respecte-t-il les limites PL/SIL et PFHd déclarées selon la norme EN ISO 13849-1/EN 62061 et le type requis selon la norme EN 61496-1 ?		
L'accès à la zone dangereuse n'est-il possible qu'à travers la portée de détection de l'ESPE?		
Des mesures adéquates ont-elles été prises pour détecter les personnes se trouvant dans la zone dangereuse ?		
Les dispositifs de sécurité ont-ils été fixés ou verrouillés pour empêcher leur retrait ?		
Des mesures de protection mécanique supplémentaires contre la manipulation ont-elles été mises en place pour empêcher d'atteindre la zone en dessous, au-dessus ou autour de l'ESPE ?		
Le temps d'arrêt maximal de la machine a-t-il été mesuré, spécifié et documenté ?		
L'ESPE a-t-il été monté de manière à ce que la distance minimale requise par rapport au point dangereux le plus proche soit respectée ?		
Les dispositifs ESPE ont-ils été correctement montés et protégés contre la manipulation après le réglage ?		
Les mesures de protection prévues contre les chocs électriques (classe de protection) ontelles été prises ?		
L'interrupteur de commande pour la réinitialisation des dispositifs de protection (ESPE) ou le redémarrage de la machine est-il présent et correctement installé ?		
Les sorties de l'ESPE sont-elles intégrées conformément au PL/SIL requis selon la norme EN ISO 13849-1/EN 62061 et l'intégration correspond-elle aux schémas électriques ?		
La fonction de protection a-t-elle été contrôlée conformément aux notes d'essai de la présente documentation ?		
Les fonctions de protection spécifiées sont-elles efficaces dans tous les modes de fonctionnement configurables ?		
L'ESPE active-t-il les éléments de commutation ?		
L'ESPE est-il efficace pendant toute la durée de l'état de danger ?		
Une fois commencé, l'état de danger prend-il fin si l'on allume ou éteint l'ESPE, si l'on modifie le mode de fonctionnement ou si l'on passe à un autre dispositif de protection ?		

14.6 Guide de commande

14.6.1 Capteurs

Code composant	Article	Description
50147249	LBK SBV-01	Capteur 60 GHz, 5 m
50150223	LBK SBV201	Capteur 60 GHz, 5 m, caractéristiques avancées

14.6.2 Unités de contrôle

Code composant	Article	Description
50145355	LBK ISC BUS PS	Unité de contrôle PROFIsafe
50149650	LBK ISC100E-F	Unité de contrôle FSoE
50147250	LBK ISC-02	Unité de contrôle Ethernet, USB
50147251	LBK ISC-03	USB sur l'unité de contrôle
50145356	LBK ISC110E-P	Unité de contrôle PROFIsafe, Carte SD
50149651	LBK ISC110E-F	Unité de contrôle FSoE, Carte SD
50149652	LBK ISC110E	Unité de contrôle, Ethernet, USB, Carte SD
50149653	LBK ISC110	Unité de contrôle, USB, Carte SD

14.7 Accessoires

14.7.1 Technique de raccordement – Câbles de raccordement

Code composant	Article	Description
50143389	KD DN-M12-5W-P1- 150	Câble de raccordement, M12 coudé, 5 broches, 15 m
50114696	KB DN/CAN-5000 BA	Câble de raccordement, M12 axial, 5 broches, 5 m
50114699	KB DN/CAN-10000 BA	Câble de raccordement, M12 axial, 5 broches, 10 m

Raccordement électrique

Broche	Couleur du conducteur	Fonction
1	-	Blindage, à raccorder pour la mise à la terre du bornier d'alimentation de l'unité de contrôle.
2	Rouge	+12 V cc
3	Noir	GND
4	Blanc	CAN H
5	Bleue	CAN L

14.7.2 Technique de raccordement – Câbles d'interconnexion

Code composant	Article	Description
50143385	KDS DN-M12-5W- M12-5W-P3-030	Câble d'interconnexion, M12 coudé, 3 m
50143386	KDS DN-M12-5W- M12-5W-P3-050	Câble d'interconnexion, M12 coudé, 5 m
50143387	KDS DN-M12-5W- M12-5W-P3-100	Câble d'interconnexion, M12 coudé, 10 m
50143388	KDS DN-M12-5W- M12-5W-P3-150	Câble d'interconnexion, M12 coudé, 15 m

14.7.3 Technique de raccordement – Câbles d'interconnexion USB

Code composant	Article	Description
50143459	KSS US-USB2-A-mic- B-V0-018	Câble USB, USB-A – micro-USB, 1,8 m

14.7.4 Technique de raccordement – Terminateurs

Code composant	Article	Description
50040099	TS 01-5-SA	Connecteur de terminaison, M12

14.7.5 Technique de montage – Étriers de montage

Code composant	Article	Description
50150141	BTU0700P	Étrier de montage pour le capteur SBV (pièce de rechange)

14.7.6 Technique de montage – Protections

Code composant	Article	Description
50150219		Protection mécanique pour le capteur