

Übersetzung der Originalbetriebsanleitung

Sensor LBK SBV (Sensoren mit Reichweite 9 m) Steuerungseinheit LBK ISC Safe Radar System LBK

© 2023-2025

Leuze electronic GmbH + Co. KG

In der Braike 1

73277 Owen / Deutschland

Tel.: +49 7021 573-0 Fax: +49 7021 573 199

www.leuze.com info@leuze.com

1	Glossar der verwendeten Begriffe	14
2	Diese Anleitung	15
	2.1 Informationen zu dieser Anleitung	15
	2.1.1 Zwecke der Betriebsanleitung	15
	2.1.2 Pflichten in Bezug auf diese Betriebsanleitung	15
	2.1.3 Mitgelieferte Dokumentation	15
	2.1.4 Zielpersonen dieser Betriebsanleitung	16
3	Sicherheit	17
	3.1 Sicherheitsinformationen	17
	3.1.1 Sicherheitshinweise	17
	3.1.2 Sicherheitssymbole auf dem Produkt	17
	3.1.3 Kompetenzen des Personals	17
	3.1.4 Sicherheitsbeurteilung	18
	3.1.5 Bestimmungsgemäße Verwendung	18
	3.1.6 Unsachgemäße Verwendung	19
	3.1.7 Elektrische Installation gemäß den Vorschriften zur EMV	19
	3.1.8 Allgemeine Sicherheitshinweise	19
	3.1.9 Sicherheitshinweise für die Wiederanlaufsperre	20
	3.1.10 Haftung	20
	3.1.11 Einschränkungen	20
	3.1.12 Entsorgung	20
	3.2 Konformität	21
	3.2.1 Normen und Richtlinien	21
	3.2.2 CE	21
	3.2.3 UKCA	21
	3.2.4 Sonstige Konformitätsbescheinigungen und nationale Konfigurationen	22
4	Produktbeschreibung von LBK SBV System	23
	4.1 LBK SBV System	23
	4.1.1 Definition	23
	4.1.2 Besondere Merkmale	23
	4.1.3 Hauptkomponenten	24
	4.1.4 Kompatibilität von Steuerungseinheit und Sensoren	24
	4.1.5 Kommunikation Steuerungseinheit – Sensoren	24
	4.1.6 Kommunikation Steuerungseinheit – Maschine	25
	4.1.7 Anwendungsmöglichkeiten	25
	4.2 Steuerungseinheiten	25
	4.2.1 Schnittstellen	25
	4.2.2 Kommunikationsarchitektur	26
	4.2.3 Funktionen	26
	4.2.4 Steuerungseinheiten Typ B	28

4.2.5	LED Systemzustand	30
4.2.6	Zustands-LEDs PROFIsafe-Feldbus	31
4.2.7	Zustands-LEDs FSoE-Feldbus	32
4.2.8	Zustands-LEDs von CIP Safety™	33
4.3	Eingänge der Steuerungseinheit	34
4.3.1	Einleitung	34
4.3.2	Eingangsfunktionen	34
4.3.3	Optional ein- oder zweikanalig	35
4.3.4	Redundanzmodus	35
4.3.5	Entprellfilter Stoppsignal (nur für LBK ISC110E-C)	36
4.3.6	SNS-Eingang	36
4.4	Ausgänge der Steuerungseinheit	
	Ausgänge	
	Ausgangsfunktionen	
	Ausgangskonfigurationen	
	Konfiguration eines zweikanaligen Sicherheitsausgangs	
	Einstellungsoptionen für das Feedback des Wiederanlaufsignals	
4.4.6	Gruppeneinstellungen für Erfassungssignal/Warnung	39
4.4.7	Ausgangszustand des Erfassungssignalausgangs	39
4.4.8	Impulstest für Erfassungssignalausgänge	39
4.4.9	OSSD-Diagnoseprüfungen	40
4.4.10	Externer Widerstand für OSSD-Ausgänge	41
4.5	Sensoren	
	Sensoren mit Reichweite 9 m	
	Funktionen	
	Bügel mit 2 Achsen	42
4.5.4	Bügel mit 3 Achsen	43
4.5.5	Zustands-LED	
4.6	Anwendung LBK Designer	
	Funktionen	
	Kompatibilität der Steuerungseinheit	
	Verwendung der Anwendung LBK Designer	
	Authentifizierung	
	Benutzerebenen	
	Hauptmenü	
4.7	Systemkonfiguration	
	Systemkonfiguration	
	Dynamische Systemkonfiguration	
	Dynamische Parameter der Systemkonfiguration	
	Dynamischer Wechsel der Systemkonfiguration	
	Dynamische Konfigurationen über Digitaleingänge	
176	Dynamische Konfigurationen über Sicherheitsfeldbus	40

5	Syst	emkommunikation	50
	5.1	Feldbuskommunikation (PROFIsafe)	50
	5.1.1	PROFIsafe-Unterstützung	50
	5.1.2	Kommunikation mit der Maschine	50
	5.1.3	Eingangsdaten von der PLC	50
	5.1.4	Datenaustausch über PROFIsafe	51
	5.2	Feldbuskommunikation (Safety over EtherCAT® – FSoE)	52
	5.2.1	FSoE-Unterstützung	52
	5.2.2	Kommunikation mit der Maschine	52
	5.2.3	Datenaustausch über FSoE	52
	5.3	Feldbuskommunikation (CIP Safety™ über Ethernet/IP™)	
		CIP Safety-Unterstützung	
		Kommunikation mit der Maschine	
		Datenaustausch über CIP Safety	
	5.4	MODBUS-Kommunikation	
		Verfügbarkeit der MODBUS-Funktionen	
		Aktivierung der MODBUS-Kommunikation	
	5.4.3	Datenaustausch über MODBUS	56
6	Funk	tionsprinzipien	57
	6.1	Funktionsprinzipien des Sensors	57
		Einleitung	
		Faktoren, die das Sichtfeld des Sensors und die Erfassung von Objekten beeinflussen	
	6.1.3	Faktoren, die das Reflexionssignal beeinflussen	57
	6.1.4	Erfasste Objekte und vernachlässigte Objekte	57
	6.1.5	Störungen in Bezug auf Herzschrittmacher oder andere Medizinprodukte	58
	6.2	Erfassungsbereiche	
		Einleitung	
		Parameter der Erfassungsbereiche	
		Horizontale Winkelabdeckung	
		Erfassungsabstand	
		Abhängigkeit der Erfassungsbereiche und Erzeugung des Erfassungssignals	
	6.2.6	Unabhängige Erfassungsbereiche: ein Anwendungsfall	62
7	Sich	erheitsfunktionen	63
	7.1	Sicherheitsmodi und Sicherheitsfunktionen	63
	7.1.1	Einleitung	63
		Sicherheitsmodus	
	7.1.3	Geschwindigkeitsgrenzen bei der Zugangserfassung	63
	7.2 7.2.1	Sicherheitsmodus: Zugangserfassung und Wiederanlaufsperre (Standardeinstellung) Einleitung	
	7.2.2	Sicherheitsfunktion: Zugangserfassung (Erfassung des menschlichen Körpers oder Erfassung eines benutzerdefinierten Zielobjekts)	64

7.2.3	Sicherheitsfunktion: Wiederanlaufsperre	64
7.2.4	Parameter Timeout Wiederanlauf	65
7.3	Sicherheitsmodus: Immer Zugangserfassung	65
7.3.1	3 3 3 1	
	Erfassung eines benutzerdefinierten Zielobjekts)	
7.3.2	Parameter TOFF	
7.4	Sicherheitsmodus: Immer Wiederanlaufsperre	
	Sicherheitsfunktion: Wiederanlaufsperre	
	Parameter Timeout Wiederanlauf	
7.5	Erfassung eines benutzerdefinierten Zielobjekts	
	Einleitung	
	Vorgehensweise zum Aktivieren der Erfassung eines benutzerdefinierten Zielobjekts	
	Beschreibung des RCS-Grenzwerts	
	Intervall des RCS-Grenzwerts	
	RCS Reader Tool	
	Zeitpunkt für die Aktivierung der Erfassung eines benutzerdefinierten Zielobjekts	
7.6	Wiederanlaufsperre: Option Erfassung statischer Objekte	
	Einleitung	
	Verfügbarkeit	
	Anwendungsmöglichkeiten	
	Funktion	
7.6.5	Einstellungen	
7.7	Merkmale der Wiederanlaufsperre	
	Richtlinien für die Positionierung der Sensoren	
	Verfügbare Typen des Wiederanlaufs	
	Sicherheitsvorkehrungen zur Vorbeugung eines unbeabsichtigten Wiederanlaufs	
7.7.4	Konfiguration des Wiederanlaufs	70
Sons	tige Funktionen	. 72
8.1	Muting	
_	Beschreibung	
	Aktivierung der Muting-Funktion	
	Bedingungen für die Aktivierung der Muting-Funktion	
	Signalcharakteristiken für die Muting-Aktivierung	
	Muting-Zustand	
8.2	Manipulationsschutzfunktionen: Verdrehschutz	
	Verdrehschutz	
	Aktivieren der Verdrehschutzfunktion	
	Zeitpunkt für die Aktivierung der Funktion	
	Durchzuführende Prüfungen bei deaktivierter Verdrehschutzfunktion	
8.3	Manipulationsschutzfunktionen: Verdeckungsschutz	
8.3.1	•	
8.3.2	Speicherung der Umgebung	

8

	8.3.3	Ursachen für Verdeckungen	76
	8.3.4	Verdeckungssignal beim Einschalten	76
	8.3.5	Einstellung	76
	8.3.6	Durchzuführende Prüfungen bei deaktivierter Verdeckungsschutzfunktion	77
	8.3.7	Notwendigkeit einer Deaktivierung	78
	8.4	Automatische Wiederherstellung	78
		Einleitung	
	8.4.2	Grenzen der Funktion	78
	8.5	Robustheit gegenüber Umwelteinflüssen (nur 5.x-Sensoren)	
		Parameter Robustheit gegenüber Umwelteinflüssen	
	8.6	Elektromagnetische Störfestigkeit	
	8.6.1	Parameter Elektromagnetische Störfestigkeit	19
9	Posi	tion des Sensors	80
	9.1	Grundkonzepte	80
		Ausschlaggebende Faktoren	
	9.1.2	Installationshöhe des Sensors	80
	9.1.3	Neigung des Sensors	80
	9.2	Sichtfeld der Sensoren	
	9.2.1	Sichtfeldtypen	80
	9.2.2	Bereiche und Abmessungen des Sichtfelds	80
	9.2.3	Abmessungen für die Zugangserfassung	81
	9.2.4	Abmessungen für die Wiederanlaufsperre	81
	9.2.5	Position des Sichtfelds	82
	9.3	Erweitertes Sichtfeld	83
	9.3.1	Einleitung	83
	9.3.2	Klassisches Sichtfeld	83
	9.3.3	Korridorsichtfeld	84
	9.4	Berechnung des Sicherheitsabstands	
		Einleitung	
		Formel für die stationäre Anwendung	
		Annahmen für die Berechnung der Reichweite	
		Berechnung der Höhe des Erfassungsbereichs und Sensorposition	
		Beispiele	
	9.4.6	Berechnungsbeispiel für den Sicherheitsabstand – parallele Annäherung	89
	9.4.7	Berechnungsbeispiel für den Sicherheitsabstand – rechtwinklige Annäherung	90
	9.4.8	Formel für die bewegliche Anwendung	91
	9.5	Berechnung des Intervalls der Abstände	
		Einleitung	
		Legende	
		Installationskonfigurationen	
		Berechnung des Intervalls der Abstände	
	9.5.5	Berechnung des tatsächlichen Alarmabstandes	93

	, -	ng der Sensorenssung	
		einem Eingang	
	9.7 Installation auf beweglichen Teiler	n (bewegliche Anwendung)	95
	9.7.1 Einleitung		95
	9.7.2 Geschwindigkeitsgrenzen		95
	9.7.3 Bedingungen für die Erzeugung de	es Erfassungssignals	95
	9.7.4 Wiederanlaufsperre		95
	9.7.5 Empfehlungen für die Position des	Sensors	96
	•		
		eckung	
	, -	S Sensors	
	9.8.4 Stellen ohne Niederschlagseinflus	s	97
10	Installation und Verwendung		98
	10.1 Vor der Installation		98
	10.1.1 Erforderliches Material		98
	10.1.2 Erforderliches Betriebssystem		98
	10.1.3 Installation der Anwendung LBK D	Designer	98
	10.1.4 Inbetriebnahme von LBK SBV Sys	stem	98
	•		
	•	on	
		:	
	0		
	·	oren	
		euerungseinheit	
	•		
		einer Genauigkeit von 1°	
	•		
	•		
		auna auf 160°	
	•	gung auf +62°	
		m ation	
		gner	
	•	eichs	
	•	lilfsausgänge	
		onfiguration	
	·	oringuration	
	· ·	einheiten	
	10.7.7 OVI 1011101113161 UTU UGI OLGUGI UTUS		I I J

	10.5 Prüfung der Sicherheitsfunktionen	113
	10.5.1 Prüfung	
	10.5.2 Vorgehensweise bei der Prüfung der Zugangserfassung	114
	10.5.3 Vorgehensweise bei der Prüfung der Wiederanlaufsperre	115
	10.5.4 Prüfung des Systems mit LBK Designer	117
	10.5.5 Zusätzliche Prüfungen für den Sicherheitsfeldbus	117
	10.5.6 Problemlösung im Zusammenhang mit der Prüfung	118
	10.6 Integration in ein Feldbusnetzwerk 10.6.1 Vorgehensweise bei der Integration	
	10.7 Verwaltung der Konfiguration 10.7.1 Prüfsumme der Konfiguration	
	10.7.2 Konfigurationsberichte	119
	10.7.3 Änderung der Konfiguration	119
	10.7.4 Anzeige früherer Konfigurationen	120
	10.8 Sonstige Vorgehensweisen	120
	10.8.1 Ändern der Sprache	120
	10.8.2 Zurücksetzen auf die Werkseinstellungen	120
	10.8.3 Zurücksetzen der Ethernet-Parameter der Steuerungseinheit	121
	10.8.4 Zurücksetzen der Netzwerkparameter	121
	10.8.5 Identifizierung eines Sensors	122
	10.8.6 Festlegen der Netzwerkparameter	122
	10.8.7 Festlegen der MODBUS-Parameter	122
	10.8.8 Festlegen der Feldbusparameter	122
	10.8.9 Festlegen der Systemetiketten	122
11	Problemlösung	123
	11.1 Vorgehensweisen zur Problemlösung	123
	11.1.1 LEDs an der Steuerungseinheit	123
	11.1.2 LED am Sensor	125
	11.1.3 Sonstige Probleme	127
	11.2 Verwaltung des Ereignisprotokolls	
	11.2.1 Einleitung	
	11.2.2 Download des Systemprotokolls	
	11.2.3 Abschnitte der Protokolldatei	
	11.2.4 Aufbau der Protokollzeile	
	11.2.5 Zeitstempel (Sekundenzähler seit dem letzten Start)	
	11.2.6 Zeitstempel (Absolut-/Relativwert)	
	11.2.7 Beschreibung des Ereignisses	
	11.2.8 Beispiel für eine Protokolldatei	
	11.2.9 Ereignisliste	
	11.2.10 Ausführlichkeitsgrad	
	11.2.11Ausführlichkeitsgrad für die Ereignisse Erfassungsbeginn und Erfassungsende	131

11.3 INFO-Ereignisse	
11.3.1 System Boot	
11.3.2 System configuration	
11.3.3 Factory reset	
11.3.4 Stop signal	
11.3.5 Restart signal	
11.3.6 Detection access	
11.3.7 Detection exit	
11.3.8 Dynamic configuration in use	
11.3.9 Muting status	
11.3.10 Fieldbus connection	133
11.3.11 MODBUS connection	133
11.3.12 Session authentication	134
11.3.13 Validation	134
11.3.14 Log download	134
11.4 FEHLER-Ereignisse (Steuerungseinheit)	
11.4.1 Einleitung	134
11.4.2 Temperaturfehler (TEMPERATURE ERROR)	134
11.4.3 Spannungsfehler Steuerungseinheit (POWER ERROR)	134
11.4.4 Fehler Peripheriefunktionen (PERIPHERAL ERROR)	135
11.4.5 Konfigurationsfehler (FEE ERROR)	135
11.4.6 Fehler der Ausgänge (OSSD ERROR)	135
11.4.7 Flash-Fehler (FLASH ERROR)	135
11.4.8 Fehler bei der dynamischen Konfiguration (DYNAMIC CONFIGURATION ERROR) \dots	135
11.4.9Fehler bei der internen Kommunikation (INTERNAL COMMUNICATION ERROR)	135
11.4.10 Eingangsfehler (INPUT ERROR)	136
11.4.11 Feldbusfehler (FIELDBUS ERROR)	136
11.4.12 RAM-Fehler (RAM ERROR)	136
11.4.13Fehler bei der Sicherung oder Wiederherstellung über SD-Karte (SD BACKUP OR RESTORE ERROR)	136
11.4.14 Konfigurationsfehler der Sensoren (SENSOR CONFIGURATION ERROR)	136
11.5 FEHLER-Ereignisse (Sensor)	137
11.5.1 Einleitung	137
11.5.2 Konfigurationsfehler der Sensoren (SENSOR CONFIGURATION ERROR)	137
11.5.3 Konfigurationsfehler (MISCONFIGURATION ERROR)	138
11.5.4 Zustandsfehler und Ausfall (STATUS ERROR/FAULT ERROR)	138
11.5.5 Protokollfehler (PROTOCOL ERROR)	138
11.5.6 Spannungsfehler Sensor (POWER ERROR)	138
11.5.7 Manipulationsschutzsensor (TAMPER ERROR)	138
11.5.8 Signalfehler (SIGNAL ERROR)	138
11.5.9 Temperaturfehler (TEMPERATURE ERROR)	139
11.5.10 MSS-Fehler und DSS-Fehler (MSS ERROR/DSS ERROR)	139

	11.6 FEHLER-Ereignisse (CAN-BUS)	
	11.6.1 Einleitung	
	11.6.2 CAN-Fehler (CAN ERROR)	139
12	Wartung	140
	12.1 Planmäßige Wartung	140
	12.1.1 Reinigung	140
	12.2 Außerplanmäßige Wartung	
	12.2.1 Wartungspersonal der Maschine	
	12.2.2 Firmware-Update der Steuerungseinheit	
	12.2.3 Austausch eines Sensors: Funktion Systemwiederherstellung	
	12.2.4 Sicherung der Konfiguration auf einen PC	141
	12.2.5 Sicherung der Konfiguration auf eine microSD-Karte	141
	12.2.6 Laden einer Konfiguration von einem PC	141
	12.2.7 Laden einer Konfiguration von einer microSD-Karte	142
	12.2.8 Spezifikationen der microSD-Karte	142
13	Technische Spezifikationen	143
	13.1 Technische Daten	143
	13.1.1 Allgemeine Merkmale	143
	13.1.2 Sicherheitsparameter	143
	13.1.3 Ethernet-Verbindung (falls verfügbar)	144
	13.1.4 Technische Daten Steuerungseinheit	144
	13.1.5 Technische Daten Sensor	146
	13.1.6 Empfohlene Spezifikationen für CAN-Bus-Kabel	146
	13.1.7 Spezifikation manipulationssichere Schrauben	147
	13.1.8 Spezifikation manipulationssichere Schrauben	147
	13.1.9 Spezifikation der unteren Schrauben	147
	13.2 Pinbelegung der Anschlussleisten und des Steckers	148
	13.2.1 Anschlussleiste Digitaleingänge und -ausgänge	148
	13.2.2 Spannungs- und Stromgrenzwerte für die Digitaleingänge	149
	13.2.3 Anschlussleiste Spannungsversorgung	149
	13.2.4 Anschlussleiste CAN-Bus	149
	13.2.5 M12-Steckverbinder CAN-Bus	150
	13.3 Winkelkonventionen für die Zielobjektposition	
	13.4 Elektrische Anschlüsse	151
	13.4.1 Anschluss der Sicherheitsausgänge an die Programmable Logic Controller (PLC)	151
	13.4.2 Anschluss der Sicherheitsausgänge zu einem externen Sicherheitsrelais	152
	13.4.3 Anschluss des Stoppsignals (Not-Aus-Taste)	153
	13.4.4 Anschluss des Wiederanlaufsignals (zweikanalig)	154
	13.4.5 Anschluss des Ein- und Ausgangs für das Muting (eine Sensorgruppe)	155
	13.4.6 Anschluss des Ein- und Ausgangs für das Muting (zwei Sensorgruppen)	156

	13.4.7 Anschluss des Erfassungssignals 1 und 2	157
	13.4.8 Anschluss des Diagnoseausgangs	158
	13.5 Konfiguration der Anwendungsparameter	159
	13.5.1 Parameterliste	159
	13.6 Digitaleingangssignale	
	13.6.1 Stoppsignal	
	13.6.2 Muting (mit/ohne Impuls)	
	13.6.3 Wiederanlaufsignal (zweikanalig, kohärenter Redundanzmodus)	
	13.6.4 Wiederanlaufsignal (zweikanalig, inverser Redundanzmodus)	
	13.6.5 Wiederanlaufsignal (einkanalig)	
	13.6.6 Systemwiederherstellung (zweikanalig, kohärenter Redundanzmodus)	
	13.6.7 Systemwiederherstellung (zweikanalig, inverser Redundanzmodus)	
	13.6.8 Systemwiederherstellung (einkanalig)	170
	13.6.9Wiederanlaufsignal + Systemwiederherstellung (zweikanalig, kohärenter Redundanzmodus)	171
	13.6.10Wiederanlaufsignal + Systemwiederherstellung (zweikanalig, inverser Redundanzmodus)	172
	13.6.11 Wiederanlaufsignal + Systemwiederherstellung (einkanalig)	172
	13.6.12 Dynamischer Konfigurationswechsel (kohärenter Redundanzmodus)	173
	13.6.13 Dynamischer Konfigurationswechsel (inverser Redundanzmodus)	174
14	Anhang 14.1 Systemsoftware	
	14.1.1 Einleitung	175
	14.1.2 Konfiguration	175
	14.1.3 Kompetenzen	175
	14.1.4 Installationsanleitung	175
	14.1.5 Bekannte Fehler	175
	14.1.6 Abwärtskompatibilität	175
	14.1.7 Änderungskontrolle	175
	14.1.8 Implementierte Sicherheitsmaßnahmen	175
	14.2 Entsorgung	176
	14.3 Kundendienst und Support	
	14.3.1 Servicehotline	
	14.4 Geistiges Eigentum	
	14.4.1 Marken	
	14.4.2 US-Patente	
	14.5 Checkliste für die Installation von berührungslos wirkenden Schutzeinrichtungen (engl.: ESPE)	177
	14.5.1 Einleitung	
	14.5.2 Checkliste	
	14.6 1 Separate	
	14.6.1 Sensoren	
	14.6.2 Steuerungseinheiten	178

Contents

14.7 Zubehör	179
14.7.1 Anschlusstechnik – Anschlusskabel	179
14.7.2 Anschlusstechnik – Verbindungskabel	180
14.7.3 Anschlusstechnik – USB-Verbindungskabel	180
14.7.4 Anschlusstechnik – Abschlusswiderstände	180
14.7.5 Montagetechnik – Montagebügel	180
14.7.6 Montagetechnik – Schutzkomponenten	180

Contents

1 Glossar der verwendeten Begriffe

Aktivierter Ausgang (ON-state)	Ausgang, der von OFF-state zu ON-state wechselt.
Gefahrenbereich	Aufgrund der für Personen bestehenden Gefahr zu überwachender Bereich.
Deaktivierter Ausgang (OFF-state)	Ausgang, der von ON-state zu OFF-state wechselt.
Erfassungsabstand x	Tiefe des für den Erfassungsbereich x konfigurierten Sichtfelds.
Erfassungssignal x	Ausgangssignal, das den Überwachungszustand des Erfassungsbereichs x beschreibt.
ESPE (Electro-Sensitive Protective Equipment)	Einrichtung oder System von Einrichtungen, die für die Erfassung von Personen oder Körperteilen aus Sicherheitsgründen verwendet wird/werden. ESPE ermöglichen den Personenschutz bei Maschinen und Anlagen/Systemen, bei denen ein Risiko für Verletzungen besteht. Diese Einrichtungen/Systeme erzwingen für die Maschine oder die Anlage/das System einen sicheren Zustand, bevor eine Person einer Gefährdungssituation ausgesetzt wird.
Sichtfeld	Sichtbereich des Sensors, charakterisiert durch eine bestimmte Winkelabdeckung.
Fieldset	Struktur des Sichtfelds, das bis zu vier Erfassungsbereiche beinhalten kann.
FMCW	Frequency Modulated Continuous Wave
Horizontale Winkelabdeckung	Eigenschaft des Sichtfelds, die der Abdeckung auf der Horizontalebene entspricht.
Neigung	Drehung des Sensors um die x-Achse. Die Neigung des Sensors ist definiert als Winkel zwischen zwei Linien, von denen eine senkrecht zum Sensor und die andere parallel zum Boden verläuft.
Maschine	System, dessen Gefahrenbereich überwacht wird.
Überwachungsbereich	Von LBK SBV System überwachter Bereich. Dieser besteht aus allen Schutzfeldern aller Sensoren.
Erfassungsbereich x	Teil des Sichtfelds des Sensors. Der Erfassungsbereich 1 ist der dem Sensor am nächsten gelegene Bereich.
OSSD	Output Signal Switching Device
RCS	Radar Cross Section. Misst die Entdeckungswahrscheinlichkeit eines Objekts durch das Radar. Hängt unter anderem vom Material, von den Abmessungen und von der Position des Objekts ab.
Toleranzbereich	Bereich des Sichtfelds, in dem die Erfassung oder Nichterfassung eines Gegenstandes oder einer Person in Bewegung von den Merkmalen des Objekts abhängt.

2 Diese Anleitung Leuze

2 Diese Anleitung

2.1 Informationen zu dieser Anleitung

2.1.1 Zwecke der Betriebsanleitung

In dieser Anleitung wird erklärt, wie LBK SBV System mit Sensoren mit einer Reichweite von 9 m zum Schutz des Bedienungspersonals der Maschine integriert wird und wie diese sicher installiert, verwendet und gewartet werden.

Dieses Dokument enthält alle Informationen des Sicherheitshandbuchs gemäß der IEC-Norm 61508-2/3 Anhang D. Siehe insbesondere Sicherheitsparameter auf Seite 143 und Systemsoftware auf Seite 175.

Die Funktionen und die Sicherheit der Maschine, an die LBK SBV System angeschlossen ist, fallen nicht in den Anwendungsbereich dieses Dokuments.

2.1.2 Pflichten in Bezug auf diese Betriebsanleitung

HINWEIS

Diese Anleitung ist vollwertiger Bestandteil des Produkts und muss über dessen gesamte Lebensdauer aufbewahrt werden. Für alle mit dem Lebenszyklus des Produkts zusammenhängenden Situationen ab dem Zeitpunkt der Übergabe bis zur Außerbetriebnahme muss in der Anleitung nachgeschlagen werden. Sie muss an einem sauberen, für die Bediener zugänglichen Ort aufbewahrt und in gutem Zustand erhalten werden. Bei Verlust oder Beschädigung der Anleitung den technischen Kundendienst kontaktieren. Im Fall der Veräußerung des Geräts ist die Betriebsanleitung stets beizulegen.

2.1.3 Mitgelieferte Dokumentation

Dokument	Kennung	Datum	Format der Bereitstellung
Übersetzung der Originalbetriebsanleitung – Sensoren mit Reichweite 9 m (diese Anleitung)	UM_LBK- SBV200-9m_ de_50150604	31-07-2025	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden
Übersetzung der Originalbetriebsanleitung – Sensoren mit Reichweite 5 m	UM_LBK- SBV200_5m_ de_50149155	31-07-2025	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden
Installationsanleitung	UM_LBK- Install_de_ 50149168	31-07-2025	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden
PROFIsafe-Kommunikation Übersetzung der Originalbetriebsanleitung	UM_LBK- PROFIsafe_de_ 50149164	15-08-2023	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden
MODBUS-Kommunikation Übersetzung der Originalbetriebsanleitung	UM_LBK- MODBUS_de_ 50149166	15-08-2023	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden

2 Diese Anleitung Leuze

Dokument	Kennung	Datum	Format der Bereitstellung
FSoE-Kommunikation Übersetzung der Originalbetriebsanleitung	UM_LBK- FSoE_de_ 50150613	15-08-2023	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden
RCS Tool instructions	UM_RCS- Reader-Soft_ en-50149169	15-12-2022	Online als PDF Die PDF-Datei kann über die Website www.leuze.com heruntergeladen werden (verfügbar in Englisch)
Tool für die Kabelprüfung	-	-	Online als Excel-Datei Die Excel-Datei kann über die Website www.leuze.com heruntergeladen werden

2.1.4 Zielpersonen dieser Betriebsanleitung

Die Zielpersonen dieser Betriebsanleitung sind:

- Hersteller der Maschine, an der das System installiert wird
- Monteur des Systems
- Wartungspersonal der Maschine

Sicherheit 3

3.1 Sicherheitsinformationen

3.1.1 Sicherheitshinweise

Nachstehend sind die in diesem Dokument verwendeten Sicherheitshinweise für den Benutzer und das Gerät aufgeführt:

Weist auf eine Gefährdungssituation hin, die, wenn sie nicht vermieden wird, zum Tod oder zu schwersten Verletzungen führen kann.

HINWEIS

Weist auf Verpflichtungen hin, bei deren Nichteinhaltung Schäden am Gerät möglich sind.

3.1.2 Sicherheitssymbole auf dem Produkt

Dieses Symbol ist auf dem Produkt aufgedruckt und weist darauf hin, dass die Betriebsanleitung konsultiert werden muss. Insbesondere ist auf folgende Punkte zu achten:

- Ausführung der Anschlüsse (siehe Pinbelegung der Anschlussleisten und des Steckers auf Seite 148 und Elektrische Anschlüsse auf Seite 151)
- Betriebstemperatur der Kabel (siehe Pinbelegung der Anschlussleisten und des Steckers auf Seite 148)
- · Abdeckung der Steuerungseinheit, die einer Stoßprüfung mit verringerter Energie unterzogen wurde (siehe Technische Daten auf Seite 143)

3.1.3 Kompetenzen des Personals

Dieses Handbuch richtet sich an die nachstehend genannten Zielpersonen mit den aufgeführten Kompetenzen:

Zielpersonen	Tätigkeit	Kompetenzen
Hersteller der Maschine	Legt fest, welche Schutzeinrichtungen installiert werden sollen, und definiert die Anforderungen für die Installation	 Kenntnis der von der Maschine ausgehenden signifikanten Gefährdungen, die entsprechend der Risikobeurteilung gemindert werden sollen Kenntnis des gesamten Sicherheitssystems der Maschine und der Anlage, an denen dieses installiert ist
Monteur des Schutzsystems	 Installiert das System Konfiguriert das System Druckt die Konfigurationsberichte 	 Fortgeschrittenes Fachwissen im elektrischen Bereich und im Bereich der industriellen Sicherheitstechnik Kenntnis der Abmessungen des Gefahrenbereichs der zu überwachenden Maschine Erhält Anweisungen vom Hersteller der Maschine
Wartungspersonal der Maschine	Führt die Wartung des Systems durch	Fortgeschrittenes Fachwissen im elektrischen Bereich und im Bereich der industriellen Sicherheitstechnik

3.1.4 Sicherheitsbeurteilung

Vor der Verwendung eines Geräts muss eine Sicherheitsbeurteilung gemäß der Maschinenrichtlinie vorgenommen werden.

Da es sich bei dem Produkt um ein Einzelbauteil handelt, erfüllt es die funktionalen Sicherheitsanforderungen gemäß den unter Normen und Richtlinien auf Seite 21 aufgeführten Normen und Vorschriften. Die funktionale Sicherheit der gesamten Anlage/Maschine wird dadurch jedoch nicht gewährleistet. Bei der Beurteilung des Sicherheitsniveaus der für die gesamte Anlage/Maschine geforderten Sicherheitsfunktionen ist jede Sicherheitsfunktion einzeln zu betrachten.

3.1.5 Bestimmungsgemäße Verwendung

LBK SBV System ist ein Erfassungssystem für den menschlichen Körper, das nach IEC/EN 62061 für SIL 2, nach EN ISO 13849-1 für PL d und nach IEC TS 62998-1 für Performance-Klasse D zertifiziert ist.

Es erfüllt folgende Sicherheitsfunktionen:

• Zugangserfassung:

MARNUNG

Die Sicherheitsfunktionen schließen einander aus: Wenn die Erfassung eines benutzerdefinierten Zielobjekts aktiviert wird, ist die Erfassung des menschlichen Körpers nicht mehr sichergestellt.

- Durch den Zugang einer oder mehrerer Personen zu einem Gefahrenbereich werden die Sicherheitsausgänge deaktiviert, um die beweglichen Teile der Maschine anzuhalten (Erfassung des menschlichen Körpers), oder
- durch den Zugang einer oder mehrerer Zielobjekte mit einem RCS, der über einem voreingestellten Grenzwert liegt, zu einem Gefahrenbereich werden die Sicherheitsausgänge deaktiviert, um die beweglichen Teile der Maschine anzuhalten (Erfassung benutzerdefiniertes Zielobjekt)
- **Wiederanlaufsperre**: Verhindert den unbeabsichtigten Anlauf oder Wiederanlauf der Maschine. Wenn Bewegungen innerhalb des Gefahrenbereichs erfasst werden, werden die Sicherheitsausgänge im deaktivierten Zustand gehalten, um den Anlauf der Maschine zu verhindern.

Es erfüllt die folgenden zusätzlichen sicherheitsrelevanten Funktionen:

- Stoppsignal (Kategorie 3 gemäß EN ISO 13849-1): Erzwingt für alle Sicherheitsausgänge den OFF-state. Nur bei LBK ISC BUS PS, LBK ISC100E-F, LBK ISC110E-P, LBK ISC110E-C und LBK ISC110E-F: Meldet einen Stoppanforderungszustand mit einer entsprechenden Sicherheitsmeldung über die Schnittstelle des Feldbusausgangs.
- Wiederanlaufsignal: Spricht die Steuerungseinheit an, um die Sicherheitsausgänge für alle bewegungsfreien Erfassungsbereiche in den ON-state zu schalten. Nur bei LBK ISC BUS PS, LBK ISC100E-F, LBK ISC110E-P, LBK ISC110E-P und LBK ISC110E-F: Beseitigt einen Stoppanforderungszustand mit einer entsprechenden Sicherheitsmeldung über die Schnittstelle des Feldbusausgangs. Es wird wie folgt ausgeführt:
 - über einkanalige Eingänge/OSSDs (Kategorie 2 gemäß EN ISO 13849-1)
 - ∘ über zweikanalige Eingänge/OSSDs (Kategorie 3 gemäß EN ISO 13849-1)
- **Muting** (Kategorie 3 gemäß EN ISO 13849-1): Blockiert die Erfassungsfähigkeit eines Sensors oder einer Sensorgruppe (siehe Muting auf Seite 72).
- Dynamischer Konfigurationswechsel (Kategorie 3 gemäß EN ISO 13849-1): Ermöglicht den dynamischen Wechsel zwischen voreingestellten Konfigurationen (siehe Systemkonfiguration auf Seite 46).
- **Gesteuert über Feldbus**: Überwacht den Zustand der Eingänge mittels Feldbuskommunikation. Es wird wie folgt ausgeführt:
 - über einkanalige Eingänge/OSSDs (Kategorie 2 gemäß EN ISO 13849-1): Sorgt dafür, dass der Wert der mit dem Feldbusmaster ausgetauschten Eingabedaten sicher in einen physischen Zustand der OSSDs umgewandelt werden kann.

 über zweikanalige Eingänge/OSSDs (Kategorie 3 gemäß EN ISO 13849-1): Sorgt dafür, dass der Zustand der Digitaleingänge sicher in Ausgabedaten umgewandelt werden kann, die mit dem Feldbusmaster ausgetauscht werden.

♠ WARNUNG

Die folgenden Fehler führen dazu, dass die sicherheitsrelevante Funktion **Gesteuert über Feldbus** nicht zur Verfügung steht: **POWER ERROR**, **TEMPERATURE ERROR**, **FIELDBUS ERROR**, **PERIPHERAL ERROR**, **FEE ERROR** und **FLASH ERROR**.

↑ WARNUNG

Nur für **Stoppsignal**, **Wiederanlaufsignal**, **Muting** und **Dynamischer Konfigurationswechsel**. Jeder Fehler der Sensoren oder der Steuerungseinheit versetzt das System in den sicheren Zustand und führt dazu, dass die sicherheitsrelevanten Funktionen nicht zur Verfügung stehen.

LBK SBV System eignet sich zum Schutz des menschlichen Körpers in folgenden Szenarien:

- · Schutz in Gefahrenbereichen bei stationären und beweglichen Anwendungen
- Anwendungen in Innen- und Außenbereichen

LBK SBV System erfüllt die Anforderungen an Sicherheitsfunktionen von Anwendungen, die eine Risikominderung gemäß folgenden Vorschriften erfordern:

- bis SIL 2, HFT = 0 gemäß IEC/EN 62061
- bis PL d, Kategorie 3, gemäß EN ISO 13849-1
- bis Performance-Klasse D gemäß IEC TS 62998-1

LBK SBV System kann in Kombination mit anderen Mitteln zur Risikominderung für die Sicherheitsfunktionen von Anwendungen verwendet werden, die einen höheren Grad der Risikominderung erfordern.

3.1.6 Unsachgemäße Verwendung

Insbesondere gilt Folgendes als unsachgemäße Verwendung:

- jede technische oder elektrische Veränderung bzw. jede Veränderung der Bauteile des Produkts
- die Verwendung des Produkts außerhalb der in diesem Dokument beschriebenen Bereiche
- die Verwendung des Produkts unter Missachtung der vorgeschriebenen technischen Daten, siehe Technische Daten auf Seite 143

3.1.7 Elektrische Installation gemäß den Vorschriften zur EMV

HINWEIS

Das Produkt ist für die Verwendung im industriellen Umfeld ausgelegt. Wenn es in einem anderen Umfeld installiert wird, kann das Produkt Störungen verursachen. Bei Installation in einer anderen Umgebung müssen Maßnahmen ergriffen werden, um die Einhaltung der für den jeweiligen Installationsort in Bezug auf Störungen geltenden Normen und Richtlinien sicherzustellen.

3.1.8 Allgemeine Sicherheitshinweise

• Durch die falsche Installation und Konfiguration des Systems wird dessen Schutzfunktion beeinträchtigt bzw. verhindert. Die in diesem Handbuch enthaltenen Anweisungen für die ordnungsgemäße Installation, Konfiguration und Prüfung des Systems sind zu befolgen.

• Änderungen an der Konfiguration des Systems können zu einer Beeinträchtigung der Schutzfunktion des Systems führen. Nach jeder Änderung an der Konfiguration muss die ordnungsgemäße Funktion des Systems anhand der Anweisungen in diesem Handbuch geprüft werden.

- Wenn die Konfiguration des Systems das Betreten des Gefahrenbereichs ohne Erfassung zulässt, sind zusätzliche Sicherheitsmaßnahmen umzusetzen (z. B. trennende Schutzeinrichtungen).
- Die Präsenz von statischen Objekten, insbesondere metallischen Objekten, innerhalb des Sichtfeldes kann zu Einschränkungen bei der Erfassungsgenauigkeit des Sensors führen. Daher muss das Sichtfeld des Sensors frei von Objekten gehalten werden.
- Die Sicherheitsstufe des Systems (SIL 2, PL d) muss mit den Anforderungen gemäß Risikobeurteilung kompatibel sein.
- Prüfen, ob die Umgebungstemperatur im Lagerungs- und Installationsbereich des Systems mit den in den Technischen Daten in diesem Handbuch angegebenen Lagerungs- und Betriebstemperaturen kompatibel ist.
- Die Strahlungen dieses Geräts wirken sich nicht störend auf Herzschrittmacher oder andere Medizinprodukte aus.

3.1.9 Sicherheitshinweise für die Wiederanlaufsperre

- Die Funktion der Wiederanlaufsperre ist bei toten Winkeln nicht gewährleistet. Wenn dies in der Risikobeurteilung vorgesehen ist, sind geeignete Sicherheitsmaßnahmen in den betreffenden Bereichen umzusetzen.
- Der Wiederanlauf der Maschine darf nur unter sicheren Bedingungen freigegeben werden. Falls erforderlich, muss die Taste für das Wiederanlaufsignal in folgenden Bereichen installiert sein:
 - o außerhalb des Gefahrenbereichs
 - o nicht zugänglich aus dem Gefahrenbereich
 - o an einer Stelle, von der der Gefahrenbereich gut einzusehen ist

3.1.10 Haftung

Der Hersteller der Maschine und der Monteur des Systems führen folgende Maßnahmen aus:

- Vorsehung einer geeigneten Integration der vom System ausgehenden Sicherheitssignale.
- Prüfung des Überwachungsbereichs des Systems auf Grundlage der Anwendungserfordernisse und der Risikobeurteilung.
- Die Anweisungen in diesem Handbuch befolgen.

3.1.11 Einschränkungen

- Wenn die Option Erfassung statischer Objekte deaktiviert ist, erfasst das System keine völlig unbeweglichen Personen, die nicht atmen, oder unbewegliche Objekte im Gefahrenbereich.
- Das System bietet keinen Schutz vor Teilen, die von der Maschine weggeschleudert werden, vor Strahlungen und vor herabfallenden Objekten.
- Die Bedienung der Maschine muss mit einer elektrischen Steuerung ausgeführt sein.

3.1.12 Entsorgung

Für Sicherheitsanwendungen ist die Lebensdauer entsprechend den Angaben in Allgemeine Merkmale auf Seite 143 einzuhalten.

Für die Entsorgung sind die Anweisungen im Abschnitt Entsorgung auf Seite 176 einzuhalten.

3.2 Konformität

3.2.1 Normen und Richtlinien

Richtlinien	2006/42/EG (DM - Maschinen)				
	2014/53/EU (Funkanlagen)				
Harmonisierte	EN ISO 13849-1: 2023 PL d				
Normen	EN ISO 13849-2: 2012				
	EN IEC 62061: 2021				
	ETSI EN 305 550-2 V1.2.1				
	IEC/EN 61010-1:2010, A1:2019				
	ETSI EN 301 489-1 v2.2.3 (nur Emissionen)				
	ETSI EN 301 489-3 v2.1.1 (nur Emissionen)				
	EN IEC 61000-6-2:2019				
Nicht	EN IEC 61326-3-1:2017				
harmonisierte Normen	EN IEC 61496-1: 2020				
Normen	IEC/EN 61508: 2010 Teil 1-7 SIL 2				
	ETSI EN 305 550-1 V1.2.1				
	IEC TS 62998-1:2019				
	UL 61010-1:2023 *				
	CAN/CSA 61010-1:2023 *				
	UL 61496-1:2021 *				
	EN IEC 61784-3-3:2021 für den PROFIsafe-Feldbus				
	IEC/EN 61784-3-12:2010, A1:2019 für den FSoE-Feldbus				
	IEC/EN 61784-3-2:2021 für den CIP Safety™-Feldbus				
	IEC TS 61496-5:2023				

Info: Bei der Analyse und Planung des Systems wurde keine Ausfallart ausgeschlossen.

Alle aktuellen Zertifizierungen können von der Website www.leuze.com (im produktbezogenen Downloadbereich) heruntergeladen werden.

3.2.2 CE

Leuze erklärt hiermit, dass LBK SBV System (Safety Radar Equipment) den Richtlinien 2014/53/EU und 2006/42/EG entspricht. Die vollständige EU-Konformitätserklärung ist über die Website des Unternehmens abrufbar: www.leuze.com (im produktbezogenen Downloadbereich).

3.2.3 UKCA

Leuze erklärt hiermit, dass LBK SBV System (Safety Radar Equipment) den Radio Equipment Regulations 2017 und den Supply of Machinery (Safety) Regulations 2008 entspricht. Die vollständige UKCA-Konformitätserklärung ist über die Website des Unternehmens abrufbar: www.leuze.com (im produktbezogenen Downloadbereich).

3.2.4 Sonstige Konformitätsbescheinigungen und nationale Konfigurationen

Für eine vollständige und aktuelle Auflistung der Konformitätsbescheinigungen für die Produkte und der nationalen Konfigurationen siehe das Dokument National configuration addendum. Die PDF-Datei kann von der Website www.leuze.com heruntergeladen werden.

4 Produktbeschreibung von LBK SBV System

Beschreibung des Typenschilds

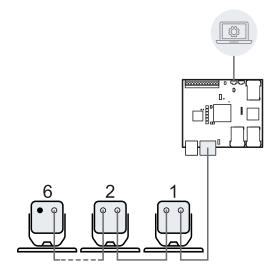
Die nachstehende Tabelle beschreibt die auf dem Typenschild angegebenen Informationen:

Teil	Beschreibung
SID	ID am Sensor
DC	"JJ/WW": Jahr und Woche der Fertigung des Produkts
SRE	Safety Radar Equipment
Modell	Modell des Produkts (z. B. LBK SBV-01, LBK ISC-03)
Тур	Produktvariante, nur für kommerzielle Zwecke verwendet
S/N	Seriennummer

4.1 LBK SBV System

4.1.1 Definition

LBK SBV System ist ein Radarsystem mit aktiven technischen Schutzmaßnahmen, das die Gefahrenbereiche einer Maschine überwacht.


4.1.2 Besondere Merkmale

Nachstehend sind einige besondere Merkmale dieses Schutzsystems aufgeführt:

- Erfassung des aktuellen Abstands und Winkels der von jedem Sensor erfassten Zielobjekte
- individuelle Einstellung des Erfassungsbereichs mit erweiterten Formen (falls verfügbar)
- bis zu vier sichere Erfassungsbereiche zur Festlegung verschiedener Verhaltensweisen der Maschinen
- programmierbare Winkelabdeckung für jeden Erfassungsbereich
- Drehung um drei Achsen bei der Installation zwecks Gewährleistung einer optimalen Abdeckung der Erfassungsbereiche
- Sicherheitsfeldbus für die sichere Kommunikation mit der Maschinen-PLC (falls verfügbar)
- Möglichkeit zur dynamischen Umschaltung zwischen verschiedenen voreingestellten Konfigurationen (max. 32 über Feldbus, falls verfügbar, und max. 8 mit Digitaleingängen)
- Muting-Funktion für das gesamte System oder nur für einige Sensoren
- · Unempfindlichkeit gegenüber Staub und Rauch
- · Reduzierung der durch Wasser oder Fertigungsabfälle ausgelösten unerwünschten Alarme
- Kommunikation und Datenaustausch über MODBUS (falls verfügbar)

4.1.3 Hauptkomponenten

LBK SBV System besteht aus einer Steuerungseinheit und bis zu sechs Sensoren. Mithilfe der Systemanwendung kann die Funktion des Systems konfiguriert und geprüft werden.

4.1.4 Kompatibilität von Steuerungseinheit und Sensoren

Nachstehend sind die Modelle und Typen der Steuerungseinheit und der Sensoren mit den entsprechenden Kompatibilitäten angegeben.

Steuerungseinheiten					
Тур А	Тур В				
LBK ISC BUS PS	LBK ISC110E-P				
LBK ISC100E-F	LBK ISC110E-F				
LBK ISC-02	LBK ISC110E-C				
LBK ISC-03	LBK ISC110E				
	LBK ISC110				
	<u> </u>				

• • • • • • • • • • • • • • • • • • •
Sensoren
[S201A-MLR]

HINWEIS

Die Steuerungseinheit nicht mit anderen Sensortypen verbinden (z. B. Sensoren mit Reichweite 5 m).

4.1.5 Kommunikation Steuerungseinheit – Sensoren

Die Sensoren kommunizieren mit der Steuerungseinheit via CAN-Bus und nutzen dabei Diagnosemechanismen, die der Norm EN 50325-5 zur Erfüllung der Anforderungen bezüglich SIL 2 und PL d entsprechen.

Um die ordnungsgemäße Funktion sicherzustellen, muss jedem Sensor eine Kennung (Node-ID) zugewiesen werden.

Sensoren am selben Bus müssen unterschiedliche Node-IDs aufweisen. Der Sensor hat keine standardmäßig zugewiesene Node-ID.

4.1.6 Kommunikation Steuerungseinheit – Maschine

Die Steuerungseinheiten kommunizieren mit der Maschine über E/A (siehe Eingänge der Steuerungseinheit auf Seite 34 und Ausgänge der Steuerungseinheit auf Seite 36).

Darüber hinaus verfügt die Steuerungseinheit je nach Modell-Typ über Folgendes:

- eine sichere Kommunikation über eine Feldbusschnittstelle. Die Feldbusschnittstelle ermöglicht der Steuerungseinheit die Echtzeitkommunikation mit der Maschinen-PLC, um Informationen über das System an die PLC zu senden (z. B. Position des erfassten Zielobjekts) oder Informationen von der PLC zu empfangen (z. B. dynamische Änderung der Konfiguration). Für weitere Informationen siehe Feldbuskommunikation (PROFIsafe) auf Seite 50, Feldbuskommunikation (CIP Safety™ über Ethernet/IP™) auf Seite 53 oder siehe Feldbuskommunikation (Safety over EtherCAT® – FSoE) auf Seite 52.
- einen Ethernet-Anschluss, der die ungesicherte Kommunikation über eine MODBUS-Schnittstelle ermöglicht (siehe MODBUS-Kommunikation auf Seite 55).

4.1.7 Anwendungsmöglichkeiten

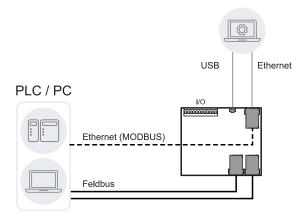
LBK SBV System lässt sich in das Steuerungssystem der Maschine integrieren: Bei der Ausführung der Sicherheitsfunktionen oder bei der Erfassung von Ausfällen deaktiviert LBK SBV System die Sicherheitsausgänge und hält diese im deaktivierten Zustand, sodass das Steuerungssystem den Bereich in einen sicheren Zustand versetzen und/oder den Wiederanlauf der Maschine sperren kann.

Wenn keine weiteren Steuerungssysteme vorhanden sind, kann LBK SBV System an die Einrichtungen zur Steuerung der Spannungsversorgung oder des Anlaufs der Maschine angeschlossen werden.

LBK SBV System führt keine normalen Maschinensteuerungsfunktionen aus.

Für Anschlussbeispiele siehe Elektrische Anschlüsse auf Seite 151.

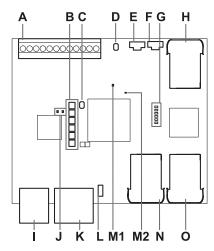
4.2 Steuerungseinheiten

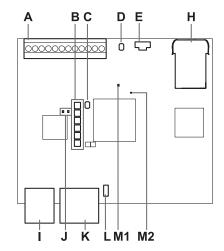

4.2.1 Schnittstellen

LBK SBV System unterstützt verschiedene Steuerungseinheiten. Der Hauptunterschied zwischen den Einheiten besteht in den Verbindungsanschlüssen und in weiterer Folge in den verfügbaren Kommunikationsschnittstellen sowie darin, ob ein microSD-Slot vorhanden ist oder nicht:

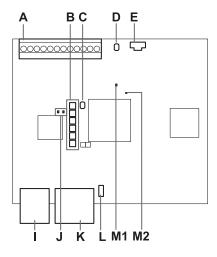
	Steuerungseinheit	Micro-USB- Anschluss	Ethernet- Anschluss	Feldbusanschluss	microSD- Slot
Тур А	LBK ISC BUS PS	х	х	x (PROFIsafe)	-
	LBK ISC100E-F	Х	х	x (FSoE)	-
	LBK ISC-02	х	х	-	-
	LBK ISC-03	Х	-	-	-
Тур В	LBK ISC110E-P	х	х	x (PROFIsafe)	х
	LBK ISC110E-F	х	х	x (FSoE)	х
	LBK ISC110E-C	Х	х	x (CIP Safety™)	х
	LBK ISC110E	х	х	-	х
	LBK ISC110	х	-	-	х

4.2.2 Kommunikationsarchitektur


Entsprechend dem Modell-Typ sieht die Kommunikationsarchitektur zwischen Steuerungseinheit, PLC und PC wie folgt aus.

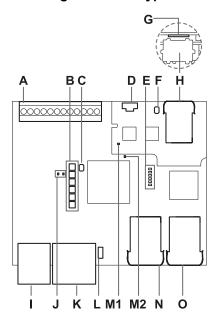

4.2.3 Funktionen

Die Steuerungseinheit führt die folgenden Funktionen aus:

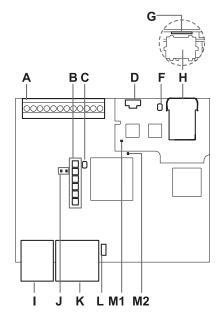

- Sie sammelt die Informationen von allen Sensoren über CAN-Bus.
- Sie vergleicht die Position der erfassten Bewegung mit den eingestellten Werten.
- Sie deaktiviert den gewählten Sicherheitsausgang, wenn mindestens ein Sensor im Erfassungsbereich eine Bewegung feststellt.
- Sie deaktiviert alle Sicherheitsausgänge, wenn ein Ausfall an einem der Sensoren oder an der Steuerungseinheit festgestellt wird.
- Sie verwaltet die Eingänge und Ausgänge.
- Sie kommuniziert mit der Anwendung LBK Designer bezüglich aller Konfigurations- und Diagnosefunktionen.
- Sie ermöglicht den dynamischen Wechsel zwischen verschiedenen Konfigurationen.
- Sie kommuniziert mit einer Sicherheits-PLC über den sicheren Feldbusanschluss (falls verfügbar).
- Sie kommuniziert über das MODBUS-Protokoll und tauscht Daten darüber aus (falls verfügbar).
- Sie führt eine Sicherung und Wiederherstellung von Systemkonfiguration und Passwort über eine microSD-Karte durch (falls verfügbar).

LBK ISC BUS PS, LBK ISC100E-F

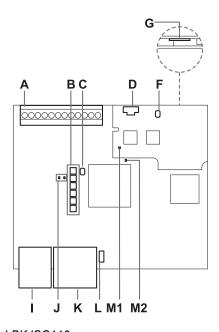
LBK ISC-02


LBK ISC-03

Teil	Beschreibung	LBK ISC BUS PS	LBK ISC100E- F	LBK ISC-02	LBK ISC-03
Α	Anschlussleiste E/A	x	х	x	х
В	LED Systemzustand	x	х	x	х
С	Reset-Taste für die Netzwerkparameter/Taste zum Zurücksetzen auf Werkseinstellungen	Х	x	x	х
D	Reserviert für die interne Verwendung. Reset-Taste für die Ausgänge	Х	x	х	Х
E	Micro-USB-Anschluss (Typ Micro-B) für die Verbindung mit dem PC und die Kommunikation mit der Anwendung LBK Designer	Х	х	х	х
F	Micro-USB-Anschluss, falls montiert (reserviert)	х	х	-	-
G	LED Feldbuszustand	Х	Х	-	-
	Siehe Zustands-LEDs PROFIsafe-Feldbus auf Seite 31 oder Zustands-LEDs FSoE-Feldbus auf Seite 32.				
Н	Ethernet-Anschluss mit LED für die Verbindung mit dem PC, für die Kommunikation mit der Anwendung LBK Designer und für die MODBUS-Kommunikation	Х	Х	х	-
I	Anschlussleiste Spannungsversorgung	х	х	х	х
J	LEDs Spannungsversorgung (Grün, Dauerlicht)	Х	х	х	х
К	CAN-Bus-Anschlussleiste für den Anschluss des ersten Sensors	Х	х	х	Х
L	DIP-Schalter zum Einschalten/Ausschalten des Busabschlusses:	Х	х	х	Х
	 On (obere Stellung, Standardeinstellung) = Widerstand eingeschaltet Off (untere Stellung) = Widerstand ausgeschaltet 				


Teil	Beschreibung	LBK ISC BUS PS	LBK ISC100E- F	LBK ISC-02	LBK ISC-03
M1	Zustands-LED für die Hardwarefunktionen des sekundären Mikrocontrollers:	х	x	х	х
	 orange, langsam blinkend: normales Verhalten anderer Zustand: Technischen Kundendienst kontaktieren 				
M2	Zustands-LED für die Hardwarefunktionen des primären Mikrocontrollers:	х	х	х	Х
	aus: normales Verhaltenrot, Dauerlicht: Technischen Kundendienst kontaktieren				
N	Feldbusanschluss Nr. 1 mit LEDs (PROFIsafe oder FSoE IN)	х	х	-	-
0	Feldbusanschluss Nr. 2 mit LEDs (PROFIsafe oder FSoE OUT)	Х	х	-	-

Info: nur für LBK ISC100E-F: Die Verarbeitungsrichtung geht vom Anschluss N zum Anschluss O. Im normalen Betrieb empfängt das Gerät die Daten von der Steuerungseinheit über N und sendet die Ausgabedaten über O.


4.2.4 Steuerungseinheiten Typ B

LBK ISC110E-P, LBK ISC110E-F , LBK ISC110E-C $\,$

LBK ISC110E

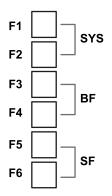
LBK ISC110

Teil	Beschreibung	LBK ISC110E- P	LBK ISC110E- F	LBK ISC110E- C	LBK ISC110E	LBK ISC110
Α	Anschlussleiste E/A	х	х	х	х	х
В	LED Systemzustand	х	х	х	х	х
С	Reset-Taste für die Netzwerkparameter/Taste zum Zurücksetzen auf Werkseinstellungen	Х	х	Х	Х	Х
D	Micro-USB-Anschluss (Typ Micro-B) für die Verbindung mit dem PC und die Kommunikation mit der Anwendung LBK Designer	х	х	х	х	х
E	LED Feldbuszustand Siehe Zustands-LEDs PROFIsafe- Feldbus auf Seite 31 oder Zustands- LEDs FSoE-Feldbus auf Seite 32 oder Zustands-LEDs von CIP Safety™ auf Seite 33.	X	X	х	-	-
F	Taste für die Wiederherstellung von SD-Karte	x	х	х	х	Х
G	microSD-Slot	х	х	х	х	х
Н	Ethernet-Anschluss mit LED für die Verbindung mit dem PC, für die Kommunikation mit der Anwendung LBK Designer und für die MODBUS- Kommunikation	х	X	х	х	-

Teil	Beschreibung	LBK ISC110E- P	LBK ISC110E- F	LBK ISC110E- C	LBK ISC110E	LBK ISC110
I	Anschlussleiste Spannungsversorgung	х	х	х	х	х
J	LEDs Spannungsversorgung (Grün, Dauerlicht)	х	Х	х	х	Х
K	CAN-Bus-Anschlussleiste für den Anschluss des ersten Sensors	х	Х	Х	х	х
L	DIP-Schalter zum Einschalten/Ausschalten des Busabschlusses:	х	х	х	х	х
	 On (obere Stellung, Standardeinstellung) = Widerstand eingeschaltet Off (untere Stellung) = Widerstand ausgeschaltet 					
M1	 Zustands-LED für die Hardwarefunktionen des sekundären Mikrocontrollers: orange, langsam blinkend: normales Verhalten anderer Zustand: Technischen Kundendienst kontaktieren 	X	X	X	x	X
M2	Zustands-LED für die Hardwarefunktionen des primären Mikrocontrollers: • aus: normales Verhalten • rot, Dauerlicht: Technischen Kundendienst kontaktieren	х	X	х	X	х
N	Feldbusanschluss Nr. 1 mit LEDs (PROFIsafe, CIP Safety™ oder FSoE IN)	Х	Х	Х	-	-
0	Feldbusanschluss Nr. 2 mit LEDs (PROFIsafe, CIP Safety™ oder FSoE OUT)	х	х	х	-	-

Info: nur für LBK ISC110E-F: Die Verarbeitungsrichtung geht vom Anschluss N zum Anschluss O. Im normalen Betrieb empfängt das Gerät die Daten von der Steuerungseinheit über N und sendet die Ausgabedaten über O.

4.2.5 LED Systemzustand


Die einzelnen jeweils einem Sensor zugeordneten LEDs können folgende Zustände annehmen:

Zustand	Bedeutung	
Grün, Dauerlicht	Normaler Betrieb des Sensors und keine Bewegung erfasst	
Orange	Normaler Betrieb des Sensors und Bewegung erfasst	
Rot blinkend	Sensorfehler (siehe LED am Sensor auf Seite 125)	
Rot, Dauerlicht	Systemfehler (siehe LEDs an der Steuerungseinheit auf Seite 123)	
Grün blinkend	Sensor im Boot-Zustand (siehe LEDs an der Steuerungseinheit auf Seite 123)	

4.2.6 Zustands-LEDs PROFIsafe-Feldbus

Die LEDs zeigen den Zustand des PROFIsafe-Feldbusses an; ihre Bedeutung wird nachstehend erläutert.

LEDs

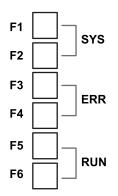
LEDs	Тур	Beschreibung
F1	SYS	Systemzustand
F2		
F3	BF	Busausfall
F4		
F5	SF	Systemausfall
F6		

Bedeutung der SYS-LEDs

Zustand F1	Zustand F2	Bedeutung
Grün, Dauerlicht	Aus	Normales Verhalten
Grün blinkend	Aus	Den technischen Kundendienst kontaktieren
Aus	Gelb blinkend	Den technischen Kundendienst kontaktieren
Aus	Gelb, Dauerlicht	Den technischen Kundendienst kontaktieren
Aus	Aus	Den technischen Kundendienst kontaktieren

Bedeutung der BF-LEDs

Zustand F3	Zustand F4	Bedeutung
Aus	Aus (nicht verwendet)	Datenaustausch mit dem Host wird ausgeführt
Rot blinkend	Aus (nicht verwendet)	Kein Datenaustausch
Rot, Dauerlicht	Aus (nicht verwendet)	Kein physischer Anschluss


Bedeutung der SF-LEDs

Zustand F5	Zustand F6	Bedeutung
Aus	Aus (nicht verwendet)	Normales Verhalten
Rot, Dauerlicht	Aus (nicht verwendet)	Diagnosefehler auf PROFIsafe-Ebene (F_Dest_Add nicht korrekt, Watchdog-Timeout oder CRC nicht korrekt) oder auf PROFINET-Ebene (Watchdog-Timeout; allgemeine oder erweiterte Kanaldiagnose vorhanden oder Systemfehler)
Rot blinkend	Aus (nicht verwendet)	DCP-Signal-Service wird über den Bus ausgelöst

4.2.7 Zustands-LEDs FSoE-Feldbus

Die LEDs zeigen den Zustand des FSoE-Feldbusses an; ihre Bedeutung wird nachstehend erläutert.

LEDs

LEDs	Тур	Beschreibung
F1	SYS	Systemzustand
F2		
F3	ERR	Error code
F4		
F5	RUN	Aktueller Zustand der
F6		Maschine

Bedeutung der SYS-LEDs

Zustand F1	Zustand F2	Bedeutung
Grün, Dauerlicht	Aus	Normales Verhalten
Grün blinkend	Aus	Den technischen Kundendienst kontaktieren
Aus	Gelb blinkend	Den technischen Kundendienst kontaktieren
Aus	Gelb, Dauerlicht	Den technischen Kundendienst kontaktieren
Aus	Aus	Den technischen Kundendienst kontaktieren

Bedeutung der ERR-LEDs

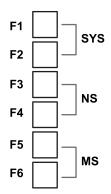
Zustand F3	Zustand F4	Bedeutung
Aus	Aus (nicht verwendet)	Normales Verhalten
Rot blinkend	Aus (nicht verwendet)	Ungültige Konfiguration: Allgemeiner Konfigurationsfehler. Mögliche Ursache: Vom Master befohlener Zustandswechsel ist wegen Register- oder Objekteinstellungen nicht möglich
Rot, einmaliges Blinken	Aus (nicht verwendet)	Lokaler Fehler: Der EtherCAT-Zustand wurde von der Slave- Gerät-Anwendung selbstständig geändert. Mögliche Ursache 1: Ein Timeout des Host-Watchdogs ist aufgetreten. Mögliche Ursache 2: Synchronisierungsfehler, das Gerät geht automatisch in den sicheren Betrieb
Rot, zweimaliges Blinken	Aus (nicht verwendet)	Timeout des Anwendungswatchdogs. Mögliche Ursache: Timeout des Sync-Manager-Watchdogs

Bedeutung der RUN-LEDs

Zustand F5	Zustand F6	Bedeutung
Aus (nicht verwendet)	Aus	In INIT
Aus (nicht verwendet)	Grün, Dauerlicht	In BETRIEB

Zustand F5	Zustand F6	Bedeutung
Aus (nicht verwendet)	Grün, einmaliges Blinken	Im SICHEREN BETRIEB
Aus (nicht verwendet)	Grün blinkend	Im SICHEREN BETRIEB

4.2.8 Zustands-LEDs von CIP Safety™


Die LEDs zeigen den Zustand des CIP Safety-Feldbusses an; ihre Bedeutung wird nachstehend erläutert.

MARNUNG

Die Zustands-LEDs von CIP Safety sind KEINE verlässlichen Anzeigen und liefern keine zuverlässigen Informationen. Sie sollten NUR für die allgemeine Diagnose während der Inbetriebnahme oder Problemlösung verwendet werden. Die LEDs nicht als Betriebsanzeigen verwenden.

LEDs

LEDs	Тур	Beschreibung
F1	SYS	Systemzustand
F2		
F3	NS	Netzwerkstatus
F4		
F5	MS	Modulstatus
F6		

Bedeutung der SYS-LEDs

Zustand F1	Zustand F2	Bedeutung
Grün, Dauerlicht	Aus	Normales Verhalten
Grün blinkend	Aus	Den technischen Kundendienst kontaktieren
Aus	Gelb blinkend	Den technischen Kundendienst kontaktieren
Aus	Gelb, Dauerlicht	Den technischen Kundendienst kontaktieren
Aus	Aus	Den technischen Kundendienst kontaktieren

Bedeutung der NS-LEDs

Zustand F3	Zustand F4	Bedeutung
Rot, Dauerlicht	Aus	IP-Adresse duplizieren
Rot blinkend	Aus	Verbindungs-Timeout: Eine IP-Adresse wurde konfiguriert und es ist ein Timeout bei einer Verbindung vom Typ Exclusive Owner aufgetreten, bei der dieses Gerät das Target ist
Aus	Grün, Dauerlicht	Verbunden: Eine IP-Adresse wurde konfiguriert, mindestens eine CIP-Verbindung wurde eingerichtet und es ist kein Timeout bei einer Verbindung des Typs Exklusive Owner aufgetreten

Zustand F3	Zustand F4	Bedeutung
Aus	Grün blinkend	Keine CIP-Verbindungen
Rot blinkend	Grün blinkend	[Sequenz F4-F3-Off] Selbsttest: Das Gerät führt einen Einschalttest durch
Aus	Aus	Nicht eingeschaltet oder keine IP-Adresse

Bedeutung der MS-LEDs

Zustand F5	Zustand F6	Bedeutung
Rot, Dauerlicht	Aus	Größerer nicht behebbarer Fehler
Rot blinkend	Aus	Größerer behebbarer Fehler, z.B. eine falsche oder widersprüchliche Konfiguration
Aus	Grün, Dauerlicht	Das Gerät funktioniert ordnungsgemäß
Aus	Grün blinkend	Stand-by: Das Gerät wurde nicht konfiguriert
Rot blinkend	Grün blinkend	[Sequenz F6-F5-Off] Selbsttest: Das Gerät führt einen Einschalttest durch. Die Testsequenz für die MS-Anzeige wird vor der Testsequenz für die NS-Anzeige durchgeführt
Aus	Aus	Nicht eingeschaltet

4.3 Eingänge der Steuerungseinheit

4.3.1 Einleitung

Das System verfügt über zwei zweikanalige Digitaleingänge des Typs 3 (nach IEC/EN 61131-2). Alternativ können die vier Kanäle als einkanalige Digitaleingänge (Kategorie 2) verwendet werden. Alle Eingänge besitzen eine gemeinsame Bezugsmasse (siehe Technische Spezifikationen auf Seite 143).

Wenn Digitaleingänge verwendet werden, muss der zusätzliche SNS-Eingang "V+ (SNS)" an 24 V DC und der GND-Eingang "V- (SNS)" an die Erde angeschlossen sein, um

- die korrekte Diagnose der Eingänge durchführen zu können;
- das Sicherheitsniveau des Systems zu gewährleisten.

4.3.2 Eingangsfunktionen

Die Funktion eines jeden Digitaleingangs muss über die Anwendung LBK Designer programmiert werden. Folgende Funktionen sind verfügbar:

- **Stoppsignal**: zusätzliche sicherheitsrelevante Funktion zur Verwaltung eines bestimmten Signals, um für alle Sicherheitsausgänge (Erfassungssignale, falls vorhanden) den OFF-state zu erzwingen.
- **Wiederanlaufsignal**: zusätzliche sicherheitsrelevante Funktion zur Verwaltung eines bestimmten Signals, das die Steuerungseinheit anspricht, um die Sicherheitsausgänge für alle bewegungsfreien Erfassungsbereiche in den ON-state zu schalten.
- **Muting-Gruppe** "N": zusätzliche sicherheitsrelevante Funktion zur Verwaltung eines bestimmten Signals, das es der Steuerungseinheit ermöglicht, die Informationen von einer ausgewählten Sensorgruppe zu ignorieren.
- **Dynamischer Konfigurationswechsel**: zusätzliche sicherheitsrelevante Funktion, die es der Steuerungseinheit ermöglicht, eine bestimmte dynamische Konfiguration auszuwählen.
- **Gesteuert über Feldbus** (falls verfügbar): zusätzliche sicherheitsrelevante Funktion zur Überwachung des Zustands der Eingänge mittels Feldbuskommunikation. Beispielsweise kann an den Eingang unter Einhaltung der elektrischen Spezifikationen eine allgemeine BWS angeschlossen werden.
- Systemwiederherstellung: Konfiguriert das System ohne Änderung irgendwelcher Einstellungen.
- **Wiederanlaufsignal + Systemwiederherstellung**: Führt entsprechend der Eingangssignaldauer die Funktionen **Wiederanlaufsignal** oder **Systemwiederherstellung** aus.

- Speichern der Referenz für den Verdeckungsschutz: Speichern einer neuen Referenz für die Verdeckungsschutzfunktion.
- Speichern der Referenz für den Verdrehschutz: Speichern einer neuen Referenz für die Verdrehschutzfunktion.

Für weitere Informationen über die Signale der Digitaleingänge siehe Digitaleingangssignale auf Seite 164.

4.3.3 Optional ein- oder zweikanalig

Standardmäßig benötigt jede Digitaleingangsfunktion auf beiden Kanälen ein Signal, um die für Kategorie 3 geforderte Redundanz zu gewährleisten.

Die folgenden Digitaleingangsfunktionen können auch einkanalig (Kategorie 2) verwendet werden:

- · Wiederanlaufsignal
- Gesteuert über Feldbus
- Systemwiederherstellung
- Wiederanlaufsignal + Systemwiederherstellung
- Speichern der Referenz für den Verdeckungsschutz
- Speichern der Referenz für den Verdrehschutz

In der Anwendung LBK Designer unter **Einstellungen > Digitaleingang/-ausgang** die Digitaleingangsfunktion auf **Einkanalig (Kategorie 2)** setzen und danach die Eingangsfunktion für jeden Kanal auswählen.

4.3.4 Redundanzmodus

Für die zweikanaligen Eingangsfunktionen stehen zwei Redundanzmodi zur Verfügung:

Kohärente Redundanz

Eingang Kanal 1	Eingang Kanal 2	Logischer Pegel der Eingänge
0	0	Gering
1	1	Hoch
0	1	Fehler
1	0	Fehler

• Inverse Redundanz

Eingang Kanal 1	Eingang Kanal 2	Logischer Pegel der Eingänge
0	1	Gering
1	0	Hoch
0	0	Fehler
1	1	Fehler

Standardmäßig ist die kohärente Redundanz eingestellt. Für die folgenden Eingangsfunktionen kann der Modus Inverse Redundanz eingestellt werden, um die Kompatibilität mit den verschiedenen angeschlossenen Geräten sicherzustellen:

- Muting-Gruppe "N" (nur bei Impulsbreite = 0)
- · Wiederanlaufsignal
- · Gesteuert über Feldbus
- Dynamischer Konfigurationswechsel
- Systemwiederherstellung
- · Wiederanlaufsignal + Systemwiederherstellung

- Speichern der Referenz für den Verdeckungsschutz
- · Speichern der Referenz für den Verdrehschutz

4.3.5 Entprellfilter Stoppsignal (nur für LBK ISC110E-C)

Der Entprellfilter ermöglicht das Filtern von Testimpulsen bei einem als **Stoppsignal** konfigurierten Digitaleingang. Seine Aktivierung wird empfohlen, wenn eine mit OSSD ausgestattete BWS an den Digitaleingang angeschlossen wird.

HINWEIS

Der Entprellfilter sollte nur mit BWS aktiviert werden, die die OSSD-Prüfung initialisieren und intern überwachen.

Standardmäßig ist der Filter deaktiviert. Er kann über die Anwendung LBK Designer aktiviert werden (Einstellungen > Erweitert > Entprellfilter Stoppsignal).

4.3.6 SNS-Eingang

Die Steuerungseinheit verfügt über einen **SNS**-Eingang (logischer Pegel High (1) = 24 V) für die Prüfung der ordnungsgemäßen Funktion der Eingänge.

HINWEIS

Wenn mindestens ein Eingang angeschlossen ist, müssen auch der SNS-Eingang "V+ (SNS)" und der GND-Eingang "V- (SNS)" angeschlossen werden.

4.4 Ausgänge der Steuerungseinheit

4.4.1 Ausgänge

Das System verfügt über vier OSSD-Digitalausgänge mit Kurzschlussschutz, die einzeln (nur für LBK ISC110E-C – Erfassungswarnung) oder programmiert als zweikanalige Sicherheitsausgänge (Erfassungssignal) verwendet werden können, um das Sicherheitsniveau des Systems zu gewährleisten.

Ein Ausgang wird aktiviert, wenn er von OFF-state zu ON-state (von 0 V zu 24 V) wechselt, und deaktiviert, wenn er von ON-state zu OFF-state (von 24 V zu 0 V) wechselt.

4.4.2 Ausgangsfunktionen

Die Funktion eines jeden Digitalausgangs muss über die Anwendung LBK Designer programmiert werden. Folgende Funktionen sind verfügbar:

• Erfassungssignal "N": (z. B. Alarmsignal) Schaltet den gewählten Ausgang in den OFF-state, wenn ein Sensor eine Bewegung im Erfassungsbereich N* feststellt, wenn ein Stoppsignal vom entsprechenden Eingang empfangen wird oder wenn ein Systemausfall auftritt. Der gewählte Ausgang bleibt mindestens 100 ms im OFF-state.

Info*: "N" steht für die Nummer des entsprechenden Erfassungsbereichs (z. B. **Erfassungssignal 1** für den Erfassungsbereich 1, **Erfassungssignal 2** für den Erfassungsbereich 2).

Info: Wenn ein OSSD als **Erfassungssignal "N"** konfiguriert ist, wird diesem automatisch ein zweites OSSD zugeordnet, um ein sicheres Signal bereitzustellen.

• Erfassungswarnung "N" (nur für LBK ISC110E-C): (z. B. Alarmsignal) Schaltet den gewählten Ausgang in den OFF-state, wenn ein Sensor eine Bewegung im Erfassungsbereich N* feststellt, wenn ein Stoppsignal vom entsprechenden Eingang empfangen wird oder wenn ein Systemausfall auftritt. Der gewählte Ausgang bleibt mindestens 100 ms im OFF-state.

Info*: "N" steht für die Nummer des entsprechenden Erfassungsbereichs (z. B. **Erfassungssignal 1** für den Erfassungsbereich 1, **Erfassungssignal 2** für den Erfassungsbereich 2).

• Erfassungssignalgruppe 1 oder Erfassungssignalgruppe 2: Schaltet den gewählten Ausgang in den OFF-state, wenn mindestens ein Sensor eine Bewegung in einem Erfassungsbereich der Gruppe feststellt (siehe Gruppeneinstellungen für Erfassungssignal/Warnung auf Seite 39), wenn ein Stoppsignal vom entsprechenden Eingang empfangen wird oder wenn ein Systemausfall auftritt. Der gewählte Ausgang bleibt mindestens 100 ms im OFF-state.

Info: Wenn ein OSSD als **Erfassungssignalgruppe 1** oder **Erfassungssignalgruppe 2** konfiguriert ist, wird diesem automatisch ein zweites OSSD zugeordnet, um ein sicheres Signal bereitzustellen.

- Erfassungswarnungsgruppe 1 oder Erfassungswarnungsgruppe 2 (nur für LBK ISC110E-C): Schaltet den gewählten Ausgang in den OFF-state, wenn mindestens ein Sensor eine Bewegung in einem Erfassungsbereich der Gruppe feststellt (siehe Gruppeneinstellungen für Erfassungssignal/Warnung auf Seite 39), wenn ein Stoppsignal vom entsprechenden Eingang empfangen wird oder wenn ein Systemausfall auftritt. Der gewählte Ausgang bleibt mindestens 100 ms im OFF-state.
- **Systemdiagnosesignal**: Schaltet den gewählten Ausgang in den OFF-state, wenn ein Systemfehler festgestellt wird.
- Feedbacksignal Muting-Aktivierung: Schaltet den gewählten Ausgang in folgenden Fällen in den ONstate:
 - wenn über den konfigurierten Eingang ein Muting-Signal empfangen wird und sich mindestens eine Gruppe im Muting befindet
 - wenn über die Feldbuskommunikation (falls verfügbar) ein Muting-Befehl empfangen wird und sich mindestens ein Sensor im Muting befindet
- **Gesteuert über Feldbus** (falls verfügbar): Ermöglicht die Einstellung des bestimmten Ausgangs mittels Feldbuskommunikation.
- Feedback des Wiederanlaufsignals: Schaltet den gewählten Ausgang in den ON-state, wenn der manuelle Wiederanlauf in mindestens einem Erfassungsbereich möglich ist (Wiederanlaufsignal). Kann als Standard oder Pulsierend festgelegt werden.
 - Wenn alle verwendeten Erfassungsbereiche mit Wiederanlauf des Typs Automatisch konfiguriert sind (unter Einstellungen > Wiederanlauf), ist der entsprechende Ausgang immer im OFF-state;
 - Wenn mindestens einer der verwendeten Erfassungsbereiche mit Wiederanlauf des Typs
 Manuell oder Abgesichert manuell konfiguriert ist (unter Einstellungen > Wiederanlauf), hängt
 das Verhalten von der ausgewählten Option ab (siehe Einstellungsoptionen für das Feedback des
 Wiederanlaufsignals auf der nächsten Seite.
- Feedbacksignal Erfassung statischer Objekte: Schaltet den gewählten Ausgang in den ON-state, wenn mindestens ein Sensor in einem seiner Erfassungsbereiche ein statisches Objekt erfasst. Der gewählte Ausgang bleibt mindestens 100 ms im ON-state. Wenn gleichzeitig ein sich bewegendes Zielobjekt im Erfassungsbereich erfasst wird, schaltet das Feedbacksignal Erfassung statischer Objekte seinen ausgewählten Ausgang für die Dauer der Bewegung in den OFF-state.

Jeder Zustand des Ausgangs kann mittels Feldbuskommunikation (falls verfügbar) wiederhergestellt werden.

4.4.3 Ausgangskonfigurationen

Dem Monteur des Systems obliegt die Entscheidung, wie das System konfiguriert werden soll:

- zwei zweikanalige Sicherheitsausgänge (z. B. **Erfassungssignal 1** und **Erfassungssignal 2**, normalerweise Alarm- und Warnsignal)
- ein zweikanaliger Sicherheitsausgang (z. B. **Erfassungssignal 1**) und zwei einkanalige Ausgänge (z. B. **Systemdiagnosesignal** und **Erfassungssignal 2** (nicht sicher))
- jeder Ausgang als Einzelausgang (z. B. Erfassungswarnung 2, Systemdiagnosesignal, Feedbacksignal Muting-Aktivierung und Feedback des Wiederanlaufsignals)

↑ WARNUNG

Damit LBK SBV System für ein Sicherheitssystem der Kategorie 3 verwendet werden kann, müssen beide Kanäle eines Sicherheitsausgangs an das Sicherheitssystem angeschlossen sein. Die Konfiguration eines Sicherheitssystems mit Sicherheitsausgang mit nur einem Kanal kann zu schweren Verletzungen führen, wenn sich der Ausgangskreis im Fehlerzustand befindet und die Maschine daher nicht stoppt.

4.4.4 Konfiguration eines zweikanaligen Sicherheitsausgangs

Der zweikanalige Sicherheitsausgang wird automatisch von der Anwendung LBK Designer verwaltet und nur wie folgt den einzelnen OSSD-Ausgängen zugeordnet:

- OSSD 1 mit OSSD 2
- OSSD 3 mit OSSD 4

4.4.5 Einstellungsoptionen für das Feedback des Wiederanlaufsignals

Wenn mindestens einer der verwendeten Erfassungsbereiche mit Wiederanlauf des Typs **Manuell** oder **Abgesichert manuell** konfiguriert ist (unter **Einstellungen > Wiederanlauf**), hängt das Verhalten des **Feedback des Wiederanlaufsignals** von der ausgewählten Option ab:

Option	Verhalten Feedback des Wiederanlaufsignals
Standard	 Der gewählte Ausgang wird aktiviert (ON-state), wenn in mindestens einem mit Wiederanlauf des Typs Manuell oder Abgesichert manuell konfigurierten Erfassungsbereich keine Bewegung mehr auftritt. Der ON-state bleibt bestehen, solange in einem oder mehreren Erfassungsbereichen (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) keine Bewegung erfasst wird und bis das Wiederanlaufsignal am gewählten Eingang aktiviert wird. Der gewählte Ausgang bleibt in folgenden Fällen im OFF-state: wenn keiner der Erfassungsbereiche (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) für den Wiederanlauf bereit ist und solange eine Bewegung (oder ein Fehler) in mindestens einem Erfassungsbereich (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) erfasst wird, oder solange keine Bewegung in irgendeinem mit Wiederanlauf des Typs Manuell oder Abgesichert manuell konfigurierten Erfassungsbereich erfasst wird, aber der
Pulsierend	 Wiederanlauf noch nicht möglich ist. Der gewählte Ausgang wird aktiviert (ON-state), wenn in mindestens einem mit Wiederanlauf des Typs Manuell oder Abgesichert manuell konfigurierten Erfassungsbereich keine Bewegung mehr auftritt. Der ON-state bleibt bestehen, solange in einem oder mehreren Erfassungsbereichen (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) keine Bewegung erfasst wird und bis das Wiederanlaufsignal am gewählten Eingang aktiviert wird. Der gewählte Ausgang schaltet stetig zwischen ON-state und OFF-state um, wenn keiner der Erfassungsbereiche (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) für den Wiederanlauf bereit ist und solange eine Bewegung (oder ein Fehler) in mindestens einem Erfassungsbereich (konfiguriert mit Wiederanlauf des Typs Manuell oder Abgesichert manuell) erfasst wird.
	Der gewählte Ausgang bleibt im OFF-state, solange keine Bewegung in irgendeinem mit Wiederanlauf des Typs Manuell oder Abgesichert manuell konfigurierten Erfassungsbereich erfasst wird, aber der Wiederanlauf noch nicht möglich ist.

4.4.6 Gruppeneinstellungen für Erfassungssignal/Warnung

Jeder Erfassungsbereich eines jeden Sensors kann einer Gruppe zugewiesen werden, um die Zuordnung zum selben Sicherheitsausgang zu ermöglichen.

Über die Anwendung LBK Designer (unter **Einstellungen > Erfassungsbereichsgruppen**) kann jeder Erfassungsbereich eines jeden Sensors einer oder beiden Gruppen zugewiesen werden. Standardmäßig ist ein Erfassungsbereich keiner Gruppe zugewiesen.

WARNUNG

Bei der Gruppenkonfiguration ist die für den Erfassungsbereich festgelegte Abhängigkeit zu berücksichtigen. Siehe dazu Abhängigkeit der Erfassungsbereiche und Erzeugung des Erfassungssignals auf Seite 60.

Beispiel

Die nachstehenden Erfassungsbereiche können so konfiguriert werden, dass sie zur Gruppe 1 gehören:

- Erfassungsbereich 1 von Sensor 1
- Erfassungsbereich 1 von Sensor 3
- Erfassungsbereich 2 von Sensor 1

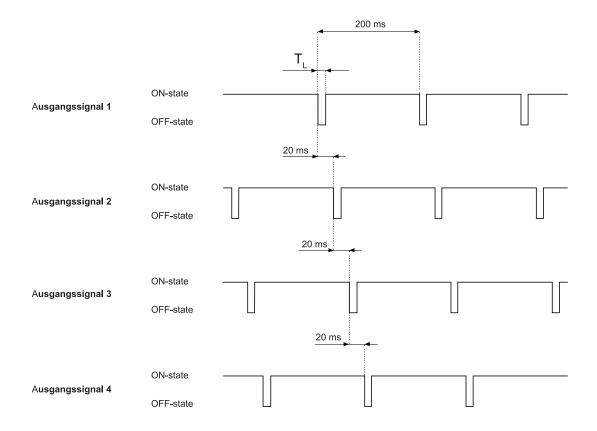
Dadurch schaltet ein bestimmter Ausgang, der der Erfassungssignalgruppe 1 zugewiesen wurde, in den OFF-state, wenn in einem dieser Erfassungsbereiche eine Bewegung erfasst wird.

4.4.7 Ausgangszustand des Erfassungssignalausgangs

Der Ausgangszustand ist wie folgt:

- Ausgang aktiviert (24 V DC): Inaktivitätssignal, keine Bewegung festgestellt und Normalbetrieb
- Ausgang deaktiviert (0 V DC): Bewegung im Erfassungsbereich festgestellt oder Ausfall im System festgestellt

4.4.8 Impulstest für Erfassungssignalausgänge


Ein Impulstest wird für den Erfassungssignalausgang und insbesondere für die konfigurierten Ausgänge wie folgt durchgeführt:

- Erfassungssignal "N"
- Erfassungswarnung "N"
- Erfassungssignal Gruppe "N"
- Erfassungswarnung Gruppe "N"

Bei dem Test wird das Inaktivitätssignal periodisch auf 0 V gepulst, um Kurzschlüsse gegen 0 V bzw. 24 V zu erkennen.

Die Impulsdauer bei 0 V (T_I) kann über die Anwendung LBK Designer (Einstellungen > Digitaleingang/**ausgang** > **OSSD-Impulsbreite**) auf 300 μs oder 2 ms eingestellt werden.

Info: Die an den OSSD-Ausgang angeschlossenen Geräte dürfen nicht auf diese vorübergehenden 0-V-Impulse zur Selbstdiagnose des Signals ansprechen.

Für weitere Informationen siehe Technische Spezifikationen auf Seite 143.

4.4.9 OSSD-Diagnoseprüfungen

Standardmäßig ist die OSSD-Diagnoseprüfung (z. B. auf Kurzschlüsse) deaktiviert. Diese Prüfung kann über die Anwendung LBK Designer aktiviert werden (Einstellungen > Digitaleingang/-ausgang).

Wenn die Prüfung aktiviert ist, überwacht die Steuerungseinheit Folgendes:

- Kurzschlüsse zwischen OSSDs
- 24-V-Kurzschlüsse
- offene Stromkreise (nur Aktivierungen auf Anfrage, d. h., wenn die Sicherheitsfunktion während des Übergangs von 24 V auf GND aktiviert wird)

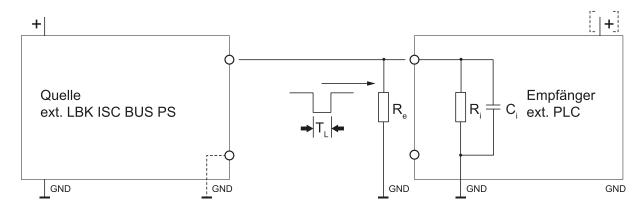
Info: Der GND-Kurzschluss (Fail-safe-Fehler) wird immer überwacht, auch dann, wenn die OSSD-Diagnoseprüfung deaktiviert ist.

WARNUNG

Wenn ein externer Ausfall aufgrund einer gemeinsamen Ursache bei beiden OSSDs zu einem 24-V-Kurzschluss führt, kann die Steuerungseinheit den sicheren Zustand nicht über OSSD kommunizieren. Der Integrator ist für die Vermeidung dieses Zustands verantwortlich; dazu muss er die periodisch auf den OSSDs erzeugten Testimpulse überwachen.

WARNUNG

Um die Anforderungen der Norm IEC TS 61496-5 zu erfüllen, müssen die OSSD-Diagnoseprüfungen aktiviert und der Parameter Empfindlichkeit Verdeckungsschutz auf Hoch gesetzt werden.


4.4.10 Externer Widerstand für OSSD-Ausgänge

Zur Gewährleistung der ordnungsgemäßen Verbindung zwischen den OSSDs der Steuerungseinheit und einem externen Gerät könnte es erforderlich sein, einen externen Widerstand hinzuzufügen.

Wenn die Impulsbreite (**OSSD-Impulsbreite**) auf 300 µs eingestellt ist, wird das Hinzufügen eines externen Widerstandes dringend empfohlen, um die Entladezeit für die kapazitive Last sicherzustellen. Wenn sie auf 2 ms eingestellt ist, muss dann ein externer Widerstand hinzugefügt werden, wenn der Widerstand der externen Last die maximal zulässige ohmsche Last übersteigt (siehe Technische Daten auf Seite 143).

Nachstehend sind einige Standardwerte für den externen Widerstand aufgeführt:

Wert OSSD-Impulsbreite	Externer Widerstand (Re)
300 µs	1 kΩ
2 ms	10 kΩ

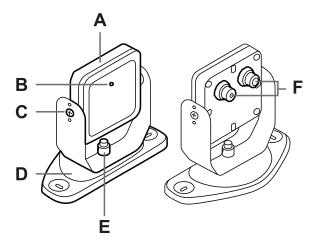
4.5 Sensoren

4.5.1 Sensoren mit Reichweite 9 m

Die Sensoren weisen folgende Hauptmerkmale auf:

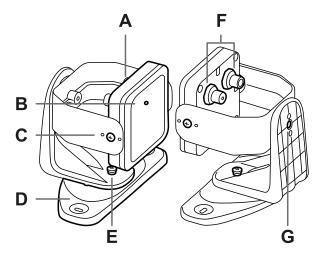
HINWEIS

Alle an die Steuerungseinheit angeschlossenen Sensoren müssen vom gleichen Typ sein (z. B. nur Sensoren mit Reichweite 5 m oder nur Sensoren mit Reichweite 9 m).


Max. Abstand Zugangserfassung	9 m
Max. Abstand Wiederanlaufsperre	5 m
Erfassungsgeschwindigkeit (Zugangserfassung)	 Stationäre Verwendung: [0,1, 1,6] m/s Bewegliche Verwendung: [0,1, 4] m/s
Horizontale Winkelabdeckung	 In den ersten 5 m von 10° bis 100° Im Bereich zwischen 5 und 9 m von 10° bis 40°
Vertikale Winkelabdeckung	20° mit 2,5° Verschiebung nach unten
RCS-Grenzwert	RCS-Grenzwert für jeden Erfassungsbereich eines jeden Sensors

4.5.2 Funktionen

Die Sensoren erfüllen folgende Funktionen:


- Sie erfassen Bewegungen innerhalb ihres jeweiligen Sichtfeldes.
- Sie übermitteln das Signal der erfassten Bewegung über CAN-Bus an die Steuerungseinheit.
- Sie melden die bei der Diagnose erfassten Fehler und Ausfälle über CAN-Bus an die Steuerungseinheit.

4.5.3 Bügel mit 2 Achsen

Teil	Beschreibung
Α	Sensor
В	Zustands-LED
С	Manipulationssichere Schrauben für die Positionierung des Sensors in einem bestimmten Winkel um die x-Achse (Winkelschritte bei der Neigung: 10°)
D	Montagebügel
E	Schraube für die Positionierung des Sensors in einem bestimmten Winkel um die y-Achse (Winkelschritte bei der Ausrichtung: 10°)
F	Stecker für den Anschluss der Sensorkette an die Steuerungseinheit

4.5.4 Bügel mit 3 Achsen

Teil	Beschreibung
Α	Sensor
В	Zustands-LED
С	Manipulationssichere Schrauben für die Positionierung des Sensors in einem bestimmten Winkel um die x-Achse (Winkelschritte bei der Neigung: 10°)
D	Montagebügel
E	Manipulationssichere Schraube für die Positionierung des Sensors in einem bestimmten Winkel um die y-Achse (Winkelschritte bei der Ausrichtung: 10°)
F	Stecker für den Anschluss der Sensorkette an die Steuerungseinheit
G	Manipulationssichere Schraube für die Positionierung des Sensors in einem bestimmten Winkel um die z-Achse (Winkelschritte bei der Rollbewegung: 10°)

4.5.5 Zustands-LED

Zustand	Bedeutung	
Blau, Dauerlicht	Sensor in Betrieb. Keine Bewegung erfasst.	
Blau blinkend	Der Sensor erfasst gerade eine Bewegung*. Nicht verfügbar, wenn der Sensor auf Muting geschaltet ist.	
	Bei der Wiederanlaufsperre blinkt die LED nach dem Ende einer Erfassung ca. 2 Sekunden lang weiter	
Violett	Die Firmware wird aktualisiert (siehe LED am Sensor auf Seite 125)	
Rot	Fehlerzustände (siehe LED am Sensor auf Seite 125)	

4.6 Anwendung LBK Designer

4.6.1 Funktionen

Die Anwendung ermöglicht folgende Hauptfunktionen:

- Konfiguration des Systems.
- Erstellen des Konfigurationsberichts.
- Prüfen der Systemfunktion.
- Download der Systemprotokolle.

4.6.2 Kompatibilität der Steuerungseinheit

LBK Designer-Version								
Firmware-Version der Steuerungseinheit	2,02	2.2.2	2.3.x	2.4.x	2.5.x	2.6.x	2.7.x	2.8.x
1.1.0	ОК	NO						
1.2.0	NO	OK	NO	NO	NO	NO	NO	NO
1.3.0	NO	NO	OK	OK	OK	OK	NO	NO
1.4.0	NO	NO	NO	OK	OK	OK	NO	NO
1.5.0	NO	NO	NO	NO	OK	OK	NO	NO
1.6.0	NO	NO	NO	NO	NO	OK	OK	OK
2.0.0	NO	NO	NO	NO	NO	NO	OK	OK
2.0.1	NO	NO	NO	NO	NO	NO	OK	OK
2.1.0	NO	NO	NO	NO	NO	NO	NO	OK
2.1.1	NO	NO	NO	NO	NO	NO	NO	OK

4.6.3 Verwendung der Anwendung LBK Designer

Um die Anwendung verwenden zu können, muss die Steuerungseinheit mithilfe eines USB-Datenkabels oder, falls ein Ethernet-Anschluss zur Verfügung steht, mithilfe eines Ethernet-Kabels an einen Computer angeschlossen werden. Mit einem USB-Kabel kann das System lokal konfiguriert werden, während mit einem Ethernet-Kabel die Remote-Konfiguration ermöglicht wird.

Die Ethernet-Verbindung zwischen der Steuerungseinheit und der Anwendung LBK Designer ist durch modernste Sicherheitsprotokolle (TLS) geschützt.

4.6.4 Authentifizierung

Die Anwendung kann kostenlos über die Website www.leuze.com heruntergeladen werden.

Es sind verschiedene Benutzerebenen verfügbar. Der Administrator ist für die Benutzerverwaltung verantwortlich. Alle Passwörter können über die Anwendung vergeben werden und werden in der Steuerungseinheit gespeichert.

4.6.5 Benutzerebenen

Für jede Benutzerebene sind folgende Funktionen verfügbar:

	Observer	Expert	Engineer	Admin	Service*
Lesen der Systemkonfiguration	х	х	х	х	X
Prüfung	-	х	x	х	х
Download der Protokolldateien	-	х	х	х	Х
Einrichtung (z. B. Node-ID) und Konfiguration der Sensoren	-	-	х	Х	-
Änderung übernehmen	-	-	х	х	-
Konfiguration der digitalen E/A	-	-	х	х	-
Konfiguration der Sicherung	-	Х	х	Х	-
Konfiguration der Wiederherstellung	-	-	х	х	-
Netzwerk- und Feldbuseinstellungen und Systemetiketten	-	-	-	Х	-

	Observer	Expert	Engineer	Admin	Service*
Firmware-Update der Steuerungseinheit	-	-	-	x	-
Benutzerverwaltung	-	-	-	х	-
Sicherung und Wiederherstellung über SD (falls verfügbar)	-	-	-	х	-
Technischer Kundendienst und Wartung	-	-	-	-	x
Debugging und statistische Informationen	-	-	-	-	Х

Info *: Der Service-Benutzer kann vom Administrator aktiviert/deaktiviert werden. Da nur Leuze-Techniker als Service-Benutzer zugelassen sind, ist der Service-Benutzer durch einen Aktivierungscode geschützt.

4.6.6 Hauptmenü

Seite	Funktion
Dashboard	Anzeige der wichtigsten Informationen zu dem konfigurierten System.
	Info: Die Meldungen enthalten dieselben Informationen wie die Protokolldateien. Für Erläuterungen zur Bedeutung dieser Meldungen siehe die Kapitel über die Protokolldateien in Problemlösung auf Seite 123.
Konfiguration	Festlegen des Überwachungsbereichs.
	Konfiguration der Sensoren, Sichtfeldformen und Erfassungsbereiche.
	Konfiguration der Sensoren und Erfassungsbereiche.
	Festlegen der dynamischen Konfigurationen.
	Auswahl des Sicherheitsmodus.
	Aktivierung der Option Erfassung statischer Objekte.
	Festlegen des Timeouts für den Wiederanlauf.
	Aktivierung der Erfassung eines benutzerdefinierten Zielobjekts.
	Festlegen des Parameters RCS-Grenzwert.
Einstellungen	Konfiguration der Sensorgruppen.
	Auswahl der Abhängigkeit der Erfassungsbereiche.
	Aktivierung der Manipulationsschutzfunktionen.
	Synchronisierung mehrerer Steuerungseinheiten.
	Konfiguration der Funktion der Eingänge und Ausgänge.
	Ausführen des Back-ups der Konfiguration und Laden einer Konfiguration.
	Download der Protokolle.
	Zuweisung der Node-IDs für die Sensoren.
	Sonstige allgemeine Funktionen.

Seite	Funktion
Admin	Konfiguration und Verwaltung der Benutzer.
	Aktivierung von Sicherung und Wiederherstellung über SD.
	Zurücksetzen auf Werkseinstellungen.
	Konfiguration, Anzeige und Änderung der Netzwerkparameter (falls verfügbar).
	Konfiguration, Anzeige und Änderung der MODBUS-Parameter (falls verfügbar).
	Konfiguration, Anzeige und Änderung der Feldbusparameter (falls verfügbar).
	Festlegen der Etiketten für Steuerungseinheiten und Sensoren.
Validierung	Start der Prüfung.
	Info : Angezeigt werden die Meldungen der Protokolldatei. Für Erläuterungen zur Bedeutung dieser Meldungen siehe die Kapitel über die Protokolldateien in Problemlösung auf Seite 123.
KONFIGURATION AKTUALISIEREN	Aktualisieren der Konfiguration oder Verwerfen der nicht gespeicherten Änderungen.
Benutzer	Änderung des Benutzerprofils.
	Änderung der Kontoeinstellungen.
Steuerungseinheit	Abrufen von Informationen zur Steuerungseinheit.
	Beenden der Verbindung mit der Steuerungseinheit und Freigabe der Verbindung mit einer anderen Steuerungseinheit.
	Ändern der Sprache.

4.7 Systemkonfiguration

4.7.1 Systemkonfiguration

Die Parameter der Steuerungseinheit wurden werksseitig auf Standardwerte eingestellt, die über die Anwendung LBK Designer geändert werden können (siehe Konfiguration der Anwendungsparameter auf Seite 159).

Beim Speichern einer neuen Konfiguration erzeugt das System einen Konfigurationsbericht.

Info: Nach einer physischen Änderung des Systems (z. B. Installation eines neuen Sensors) muss die Systemkonfiguration aktualisiert sowie ein neuer Konfigurationsbericht erzeugt werden.

4.7.2 Dynamische Systemkonfiguration

LBK SBV System ermöglicht die Echtzeiteinstellung der wichtigsten Systemparameter und stellt Tools für den dynamischen Wechsel zwischen den verschiedenen voreingestellten Konfigurationen bereit. Mithilfe der Anwendung LBK Designer können nach dem Festlegen der ersten Systemkonfiguration (Standardkonfiguration) alternative Einstellungssätze für die dynamische Neukonfiguration des Überwachungsbereichs in Echtzeit festgelegt werden. Voreingestellt sind 7 Konfigurationssätze für die Aktivierung über Digitaleingang und 31 Konfigurationssätze für die Aktivierung über Feldbus (falls vorhanden).

4.7.3 Dynamische Parameter der Systemkonfiguration

Jeder Sensor verfügt über die folgenden programmierbaren Parameter:

- Erfassungsbereich (von 1 bis 4)
- RCS-Grenzwert für jeden Erfassungsbereich eines jeden Sensors

Jeder Erfassungsbereich verfügt über die folgenden programmierbaren Parameter:

- horizontale Winkelabdeckung
- Erfassungsabstand
- Sicherheitsmodus (**Zugangserfassung und Wiederanlaufsperre** oder **Immer Zugangserfassung**) (siehe Sicherheitsmodi und Sicherheitsfunktionen auf Seite 63)
- klassische Form und Korridorform (siehe Erweitertes Sichtfeld auf Seite 83)
- Option Erfassung statischer Objekte (siehe Wiederanlaufsperre: Option Erfassung statischer Objekte auf Seite 68)
- · Timeout Wiederanlauf

Alle übrigen Systemparameter können nicht dynamisch geändert werden und gelten als statische Parameter.

4.7.4 Dynamischer Wechsel der Systemkonfiguration

Die dynamische Aktivierung einer der voreingestellten Konfigurationen ist entweder über die Digitaleingänge (**Dynamischer Konfigurationswechsel**) oder den Sicherheitsfeldbus (falls vorhanden) möglich.

♠ WARNUNG

Wenn ein oder mehrere Digitaleingänge für die Option "**Dynamischer Konfigurationswechsel**" konfiguriert sind, wird ein Wechsel über den Sicherheitsfeldbus nicht berücksichtigt.

Info: Wenn der Anwendungstyp als Fest installiert festgelegt ist und die nächste Konfiguration mindestens einen Erfassungsbereich mit einem Sicherheitsmodus aufweist, der als Zugangserfassung und Wiederanlaufsperre festgelegt ist, führt eine Änderung der Konfiguration zu einem Alarm bei diesem/diesen Erfassungsbereich(en) über mindestens die Zeit, die im Parameter Timeout Wiederanlauf festgelegt ist.

4.7.5 Dynamische Konfigurationen über Digitaleingänge

Zum dynamischen Aktivieren einer der voreingestellten Konfigurationen können ein oder beide Digitaleingänge der Steuerungseinheit verwendet werden. Das Ergebnis ist wie folgt:

Wenn	Dann ist der dynamische Wechsel möglich zwischen
nur ein Digitaleingang für die Option Dynamischer Konfigurationswechsel konfiguriert ist	zwei voreingestellten Konfigurationen (siehe Fall 1 unten und Fall 2 unten)
beide Digitaleingänge für die Option Dynamischer Konfigurationswechsel konfiguriert sind und die Option Kanalcodierung deaktiviert ist	vier voreingestellten Konfigurationen (siehe Fall 3 unten)
beide Digitaleingänge für die Option Dynamischer Konfigurationswechsel konfiguriert sind und die Option Kanalcodierung aktiviert ist	acht voreingestellten Konfigurationen (siehe Fall 4 auf der nächsten Seite)

Info: Der Konfigurationswechsel ist sicher, weil zweikanalige Eingänge verwendet werden.

Info: Wenn die Option Kanalcodierung aktiviert ist, führt jede ungültige Kombination, die länger als 33 ms andauert, zu einem Fehler der Eingänge und zur Aktivierung des sicheren Zustands für das System.

Fall 1

Der erste Digitaleingang wurde für die Option **Dynamischer Konfigurationswechsel** konfiguriert.

Nummer der dynamischen Konfiguration	Eingang 1 (CH1 und CH2)	Eingang 2
#1	0	-
#2	1	-

0 = Signal deaktiviert; 1 = Signal aktiviert

Fall 2

Der zweite Digitaleingang wurde für die Option **Dynamischer Konfigurationswechsel** konfiguriert.

Nummer der dynamischen Konfiguration	Eingang 1	Eingang 2 (CH1 und CH2)
#1	-	0
#2	-	1

0 = Signal deaktiviert; 1 = Signal aktiviert

Fall 3

Beide Digitaleingänge wurden für die Option **Dynamischer Konfigurationswechsel** konfiguriert und die Option Kanalcodierung ist deaktiviert.

Nummer der dynamischen Konfiguration	Eingang 1 (CH1 und CH2)	Eingang 2 (CH1 und CH2)
#1	0	0
#2	1	0

Nummer der dynamischen Konfiguration	Eingang 1 (CH1 und CH2)	Eingang 2 (CH1 und CH2)
#3	0	1
#4	1	1

0 = Signal deaktiviert; 1 = Signal aktiviert

Fall 4

Beide Digitaleingänge wurden für die Option Dynamischer Konfigurationswechsel konfiguriert und die Option Kanalcodierung ist aktiviert.

Gültig sind nur jene Kombinationen, die sich durch mindestens zwei Werte unterscheiden; diese sind nachstehend aufgeführt:

Nummer der dynamischen	Eingang 1		Eingang 2	
Konfiguration	CH1	CH2	CH1	CH2
#1	1	0	0	0
#2	0	1	0	0
#3	0	0	1	0
#4	0	0	0	1
#5	1	1	1	0
#6	1	1	0	1
#7	1	0	1	1
#8	0	1	1	1

0 = Signal deaktiviert; 1 = Signal aktiviert

4.7.6 Dynamische Konfigurationen über Sicherheitsfeldbus

Zum dynamischen Aktivieren einer der voreingestellten Konfigurationen eine externe Sicherheits-PLC anschließen, die mit der Steuerungseinheit über den Sicherheitsfeldbus kommuniziert. Dadurch kann zwischen allen voreingestellten Konfigurationen, d. h. bis zu 32 verschiedenen Konfigurationen, dynamisch gewechselt werden. Für alle verwendeten Parameter einer jeden Konfiguration siehe Dynamische Systemkonfiguration auf Seite 47.

Für weitere Informationen zum unterstützten Protokoll wird auf die Anleitung des Feldbusses verwiesen.

Vor der Aktivierung einer der voreingestellten Konfigurationen über den Sicherheitsfeldbus ist sicherzustellen, dass keiner der Digitaleingänge für die Option Dynamischer Konfigurationswechsel konfiguriert ist; andernfalls ignoriert LBK SBV System alle Wechsel, die über den Sicherheitsfeldbus vorgenommenen werden.

5 Systemkommunikation

5.1 Feldbuskommunikation (PROFIsafe)

5.1.1 PROFIsafe-Unterstützung

Die Sicherheitskommunikation über PROFIsafe ist auf allen Steuerungseinheiten mit PROFIsafe-Schnittstelle verfügbar. Für weitere Informationen siehe Steuerungseinheiten auf Seite 25.

5.1.2 Kommunikation mit der Maschine

Der Feldbus ermöglicht folgende Aktionen:

- Dynamische Auswahl aus 1–32 voreingestellten Konfigurationen
- Auslesen des Zustands der Eingänge
- · Kontrolle der Ausgänge
- Auslesen der Zielobjektdaten
- Aktivieren des Mutings für die Sensoren
- Aktivieren des Wiederanlaufsignals
- Aktivieren des Systemwiederherstellungssignals

Für weitere Informationen siehe PROFIsafe-Kommunikation Übersetzung der Originalbetriebsanleitung.

5.1.3 Eingangsdaten von der PLC

Das Verhalten der Eingangsdaten von der PLC, wenn weder Digitaleingänge noch OSSD als **Gesteuert über Feldbus** konfiguriert sind, ist nachstehend beschrieben:

Bedingung	Eingangsdaten von der PLC	Systemverhalten
IOPS (Zustand PLC-Provider) = bad	der letzte gültige Wert der Eingangsvariable wird beibehalten	das System arbeitet im Normalbetrieb weiter
Verlust der Verbindung	der letzte gültige Wert der Eingangsvariable wird beibehalten	das System arbeitet im Normalbetrieb weiter
Nach dem Einschalten	die Anfangswerte (auf 0 eingestellt) werden für die Eingangsvariablen verwendet	das System arbeitet im Normalbetrieb weiter

Das Verhalten der Eingangsdaten von der PLC, wenn mindestens ein Digitaleingang oder OSSD als **Gesteuert über Feldbus** konfiguriert ist, ist nachstehend beschrieben:

Bedingung	Eingangsdaten von der PLC	Systemverhalten
IOPS (Zustand PLC-Provider) = bad	der letzte gültige Wert der Eingangsvariable wird beibehalten	das System arbeitet im Normalbetrieb weiter
Verlust der Verbindung	der letzte gültige Wert der Eingangsvariable wird beibehalten	das System wird in einen sicheren Zustand versetzt, wobei die OSSD- Ausgänge deaktiviert werden, solange die Verbindung nicht wiederhergestellt ist
Nach dem Einschalten	die Anfangswerte (auf 0 eingestellt) werden für die Eingangsvariablen verwendet	das System verbleibt im sicheren Zustand, wobei die OSSD- Ausgänge deaktiviert werden, solange die Eingangsdaten nicht in einem Passivierungszustand versetzt werden

5.1.4 Datenaustausch über PROFIsafe

In der nachstehenden Tabelle sind die Daten beschrieben, die mithilfe der Feldbuskommunikation ausgetauscht werden:

⚠ WARNUNG

Das System befindet sich im sicheren Zustand, wenn das Byte "Zustand Steuerungseinheit" des Moduls "Konfiguration und Systemzustand" PS2v6 oder PS2v4 anders ist als "0xFF".

Datentyp	Beschreibung	Richtung der Kommunikation
Sicher	SYSTEM STATUS DATA	von der Steuerungseinheit
	 Steuerungseinheit: interner Zustand Zustand eines jeden der vier OSSDs Zustand eines jeden einkanaligen und zweikanaligen Eingangs 	Otederungsenmen
	Sensor: Zustand eines jeden Erfassungsbereichs (Zielobjekt erfasst oder nicht erfasst) oder Fehlerzustand Zustand der Option Erfassung statischer Objekte Muting-Zustand	
Sicher	SYSTEM SETTING COMMAND Steuerungseinheit:	zur Steuerungseinheit
	 Festlegen der Kennung der zu aktivierenden dynamischen Konfiguration Festlegen des Zustands für jeden der vier OSSDs Speichern der Referenz für die Verdrehschutzfunktion Aktivieren des Wiederanlaufsignals Aktivieren des Systemwiederherstellungssignals Sensor: Einstellen des Muting Zustands	
Sicher	Einstellen des Muting-Zustands DYNAMIC CONFIGURATION STATUS	von der
	 Kennung der derzeit aktiven dynamischen Konfiguration Signatur (CRC32) der Kennung der derzeit aktiven dynamischen Konfiguration 	Steuerungseinheit
Sicher	 TARGET DATA Aktueller Abstand und Winkel der von jedem Sensor erfassten Zielobjekte. Für jeden Erfassungsbereich der einzelnen Sensoren wird nur das dem Sensor am nächsten gelegene Zielobjekt berücksichtigt. 	von der Steuerungseinheit

Datentyp	Beschreibung	Richtung der Kommunikation
Nicht sicher	DIAGNOSTIC DATA	von der
	Steuerungseinheit:	Steuerungseinheit
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
	Sensor:	
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
Nicht sicher	SYSTEM STATUS AND TARGET DATA	von der
		Steuerungseinheit

5.2 Feldbuskommunikation (Safety over EtherCAT® – FSoE)

5.2.1 FSoE-Unterstützung

Die Sicherheitskommunikation über FSoE ist auf allen Steuerungseinheiten mit FSoE-Schnittstelle verfügbar. Für weitere Informationen siehe Steuerungseinheiten auf Seite 25.

5.2.2 Kommunikation mit der Maschine

Der Feldbus ermöglicht folgende Aktionen:

- Dynamische Auswahl aus 1-32 voreingestellten Konfigurationen
- Auslesen des Zustands der Eingänge
- · Kontrolle der Ausgänge
- Aktivieren des Mutings für die Sensoren
- Aktivieren des Wiederanlaufsignals
- Aktivieren des Systemwiederherstellungssignals

Für weitere Informationen siehe FSoE-Kommunikation Übersetzung der Originalbetriebsanleitung.

5.2.3 Datenaustausch über FSoE

In der nachstehenden Tabelle sind die Daten beschrieben, die mithilfe der Feldbuskommunikation ausgetauscht werden:

Das System befindet sich im sicheren Zustand, wenn mindestens ein Bit von Byte 0 der ausgewählten TxPDO gleich 0 ist; ausgenommen ist Bit 4, das jeden Wert annehmen kann.

Datentyp	Beschreibung	Richtung der Kommunikation
Sicher	SYSTEM STATUS DATA	von der
	Steuerungseinheit:	Steuerungseinheit
	 interner Zustand Zustand eines jeden der vier OSSDs Zustand eines jeden einkanaligen und zweikanaligen Eingangs 	
	Sensor:	
	 Zustand eines jeden Erfassungsbereichs (Zielobjekt erfasst oder nicht erfasst) oder Fehlerzustand Zustand von Erfassung statischer Objekte für jeden Erfassungsbereich Muting-Zustand 	
Sicher	SYSTEM SETTING COMMAND	zur
	Steuerungseinheit:	Steuerungseinheit
	 Festlegen der Kennung der zu aktivierenden dynamischen Konfiguration Festlegen des Zustands für jeden der vier OSSDs Aktivieren des Systemwiederherstellungssignals Aktivieren des Wiederanlaufsignals 	
	Sensor:	
	Einstellen des Muting-Zustands	
Sicher	 DYNAMIC CONFIGURATION STATUS Kennung der derzeit aktiven dynamischen Konfiguration Signatur (CRC32) der Kennung der derzeit aktiven dynamischen Konfiguration 	von der Steuerungseinheit
Nicht sicher	DIAGNOSTIC DATA	von der
	Steuerungseinheit:	Steuerungseinheit
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
	Sensor:	
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
Nicht sicher	SYSTEM STATUS	von der Steuerungseinheit

5.3 Feldbuskommunikation (CIP Safety™ über Ethernet/IP™)

5.3.1 CIP Safety-Unterstützung

Die Sicherheitskommunikation mit CIP Safety über Ethernet/IP ist auf allen Steuerungseinheiten mit CIP Safety-Schnittstelle verfügbar. Für weitere Informationen siehe Steuerungseinheiten auf Seite 25.

5.3.2 Kommunikation mit der Maschine

Der Feldbus ermöglicht folgende Aktionen:

- Dynamische Auswahl aus 1-32 voreingestellten Konfigurationen
- · Auslesen des Zustands der Eingänge
- Kontrolle der Ausgänge
- Aktivieren des Mutings für die Sensoren
- · Aktivieren des Wiederanlaufsignals
- · Aktivieren des Systemwiederherstellungssignals
- Speichern der Referenz für den Verdeckungsschutz
- Speichern der Referenz für den Verdrehschutz

Für weitere Informationen siehe CIP Safety-Kommunikation Übersetzung der Originalbetriebsanleitung.

Datenaustausch über CIP Safety 5.3.3

Das System befindet sich im sicheren Zustand, wenn mindestens ein Bit von Byte 0 der ausgewählten Sicherheitseingangsverbindung (T2O) gleich 0 ist; ausgenommen ist Bit 4, das jeden Wert annehmen kann.

In der nachstehenden Tabelle sind die Daten beschrieben, die mithilfe der Feldbuskommunikation ausgetauscht werden:

Datentyp	Beschreibung	Richtung der Kommunikation
Sicher	SYSTEM STATUS DATA	von der
	Steuerungseinheit:	Steuerungseinheit
	interner ZustandZustand eines jeden der vier OSSDs	
	 Zustand eines jeden einkanaligen und zweikanaligen Eingangs 	
	Sensor:	
	 Zustand eines jeden Erfassungsbereichs (Zielobjekt erfasst oder nicht erfasst) oder Fehlerzustand Zustand von Erfassung statischer Objekte für jeden Erfassungsbereich Muting-Zustand 	
Sicher	SYSTEM SETTING COMMAND	zur
Cionor	Steuerungseinheit:	Steuerungseinheit
	 Festlegen der Kennung der zu aktivierenden dynamischen Konfiguration Festlegen des Zustands für jeden der vier OSSDs Aktivieren des Systemwiederherstellungssignals Aktivieren des Wiederanlaufsignals Speichern der Referenz für den Verdeckungsschutz Speichern der Referenz für den Verdrehschutz 	
	Sensor:	
	Einstellen des Muting-Zustands	

Datentyp	Beschreibung	Richtung der Kommunikation
Sicher	DYNAMIC CONFIGURATION STATUS	von der
	 Kennung der derzeit aktiven dynamischen Konfiguration Signatur (CRC32) der Kennung der derzeit aktiven dynamischen Konfiguration 	Steuerungseinheit
Nicht sicher	DIAGNOSTIC DATA	von der
	Steuerungseinheit:	Steuerungseinheit
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
	Sensor:	
	interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	
Nicht sicher	SYSTEM STATUS	von der
		Steuerungseinheit

5.4 MODBUS-Kommunikation

5.4.1 Verfügbarkeit der MODBUS-Funktionen

Die Kommunikation über MODBUS ist auf allen Steuerungseinheiten mit MODBUS-Schnittstelle verfügbar. Für weitere Informationen siehe Steuerungseinheiten auf Seite 25.

5.4.2 Aktivierung der MODBUS-Kommunikation

In der Anwendung LBK Designer auf **Admin > MODBUS-Parameter** klicken und prüfen, ob die Funktion aktiviert ist **(ON)**.

Innerhalb des Ethernet-Netzwerks fungiert die Steuerungseinheit als Server. Der Client muss die Anfragen an die IP-Adresse des Servers über den MODBUS-Überwachungsport (Standardeinstellung: 502) übermitteln.

Zum Anzeigen und Ändern von Adresse und Port auf **Admin > Netzwerk** und **Admin > MODBUS- Parameter** klicken.

5.4.3 Datenaustausch über MODBUS

In der nachstehenden Tabelle sind die Daten beschrieben, die mithilfe der MODBUS-Kommunikation ausgetauscht werden:

Datentyp	Beschreibung	Richtung der Kommunikation
Nicht sicher	SYSTEM STATUS DATA Steuerungseinheit: interner Zustand Zustand eines jeden der vier OSSDs Zustand eines jeden einkanaligen und zweikanaligen Eingangs Versionsinformation Sensor:	von der Steuerungseinheit
	 Zustand eines jeden Erfassungsbereichs (Zielobjekt erfasst oder nicht erfasst) oder Fehlerzustand Muting-Zustand Versionsinformation 	
Nicht sicher	DYNAMIC CONFIGURATION STATUS Kennung der derzeit aktiven dynamischen Konfiguration Signatur (CRC32) der Kennung der derzeit aktiven dynamischen Konfiguration	von der Steuerungseinheit
Nicht sicher	TARGET DATA • Aktueller Abstand und Winkel der von jedem Sensor erfassten Zielobjekte. Für jeden Erfassungsbereich der einzelnen Sensoren wird nur das dem Sensor am nächsten gelegene Zielobjekt berücksichtigt.	von der Steuerungseinheit
Nicht sicher	DIAGNOSTIC DATA Steuerungseinheit: • interner Zustand mit ausführlicher Beschreibung des	von der Steuerungseinheit
	Fehlerzustands Sensor: • interner Zustand mit ausführlicher Beschreibung des Fehlerzustands	

6 **Funktionsprinzipien**

6.1 Funktionsprinzipien des Sensors

6.1.1 **Einleitung**

Der Sensor ist ein Radargerät auf FMCW-Basis (Frequency Modulated Continuous Wave), das einen proprietären Erfassungsalgorithmus nutzt. Er ist auch ein Sensor für mehrfache Zielobjekte, der Impulse sendet und Informationen durch die Analyse der Reflexionen des Zielobjekts gewinnt, das sich am nächsten zum Sensor bewegt und in jedem Erfassungsbereich angetroffen wird.

Der Sensor kann den aktuellen Abstand und Winkel eines jeden Zielobjekts erfassen.

Jeder Sensor besitzt sein eigenes Fieldset. Jedes Fieldset entspricht der Struktur des Sichtfelds, das aus Erfassungsbereichen besteht (siehe Erfassungsbereiche auf der nächsten Seite).

6.1.2 Faktoren, die das Sichtfeld des Sensors und die Erfassung von Objekten beeinflussen

Am Sensor vorhandenes leitfähiges Material könnte das Sichtfeld des Sensors und in weiterer Folge auch die Erfassung von Objekten beeinflussen. Um die ordnungsgemäße und sichere Funktion des Systems zu gewährleisten, das System auch auf diesen Umstand prüfen.

6.1.3 Faktoren, die das Reflexionssignal beeinflussen

Das vom Objekt reflektierte Signal ist von verschiedenen Merkmalen des Objekts abhängig:

- · Metallische Objekte haben einen sehr hohen Reflexionskoeffizienten, während Papier und Kunststoff nur einen geringen Teil des Signals reflektieren.
- Je größer die dem Radar ausgesetzte Fläche ist, desto stärker ist auch das Reflexionssignal.
- · Wenn alle anderen Faktoren gleich sind, erzeugen Objekte, die sich genau vor dem Radar befinden, ein stärkeres Signal als Objekte, die sich seitlich davon befinden.
- · Bewegungsgeschwindigkeit
- Neigung

Alle diese Faktoren wurden für den menschlichen Körper bei der Sicherheitsanalyse von LBK SBV System berücksichtigt und können nicht zu Gefährdungssituationen führen. In einigen Fällen können diese Faktoren das Systemverhalten beeinflussen und fälschlicherweise zu einer Aktivierung der Sicherheitsfunktion führen.

6.1.4 Erfasste Objekte und vernachlässigte Objekte

Der Algorithmus für die Analyse des Signals berücksichtigt lediglich Objekte, die sich innerhalb des Sichtfeldes bewegen; statische Objekte werden komplett ignoriert (wenn die Option Erfassung statischer Objekte deaktiviert ist).

Darüber hinaus ermöglicht ein Algorithmus für fallende Objekte, dass unerwünschte Alarme durch kleine Bearbeitungsabfälle, die im ersten Teil des Sensorsichtfeldes zu Boden fallen, ignoriert werden.

6.1.5 Störungen in Bezug auf Herzschrittmacher oder andere Medizinprodukte

Die Strahlungen von LBK SBV System wirken sich nicht störend auf Herzschrittmacher oder andere Medizinprodukte aus.

6.2 Erfassungsbereiche

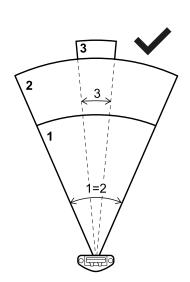
6.2.1 **Einleitung**

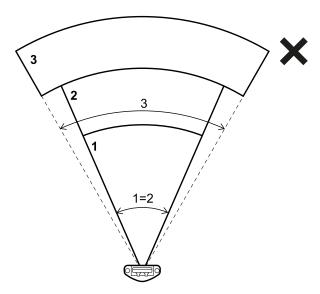
Das Sichtfeld eines jeden Sensors kann max. vier Erfassungsbereiche umfassen. Jeder dieser vier Erfassungsbereiche verfügt über ein eigenes Erfassungssignal.

Die Erfassungsbereiche entsprechend den Anforderungen der Risikobeurteilung konfigurieren und den zweikanaligen Sicherheitsausgängen zuweisen.

6.2.2 Parameter der Erfassungsbereiche

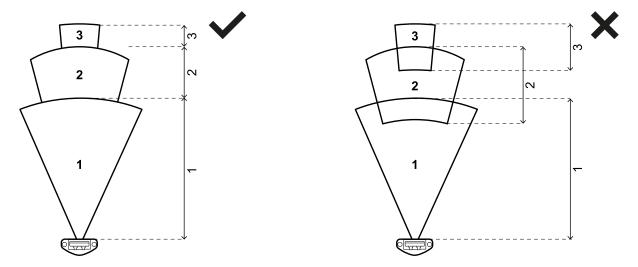
Jeder Erfassungsbereich verfügt über die folgenden programmierbaren Parameter:

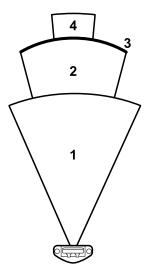

- horizontale Winkelabdeckung
- · Erfassungsabstand
- Sicherheitsmodus (Zugangserfassung und Wiederanlaufsperre, Immer Zugangserfassung oder Immer Wiederanlaufsperre, siehe Sicherheitsmodi und Sicherheitsfunktionen auf Seite 63)
- Timeout Wiederanlauf
- Option Erfassung statischer Objekte
- · Erweiterte Sichtfeldform
- RCS-Grenzwert


Horizontale Winkelabdeckung 6.2.3

Die horizontale Winkelabdeckung weist folgende Werte auf:

- zwischen 10° und 100° in den ersten 5 m des Sichtfelds
- zwischen 10° und 40° im Bereich zwischen 5 und 9 m im Sichtfeld


Die horizontale Winkelabdeckung eines Erfassungsbereichs muss größer oder gleich sein wie die horizontale Winkelabdeckung der daran anschließenden Erfassungsbereiche.



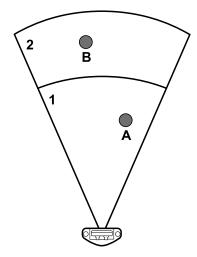
6.2.4 Erfassungsabstand

Der Erfassungsabstand im ersten Erfassungsbereich beginnt beim Sensor. Der Erfassungsabstand eines Bereichs beginnt dort, wo der Erfassungsabstand des vorhergehenden Bereichs endet.

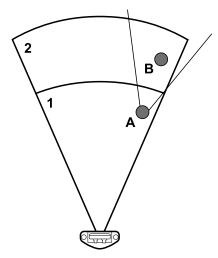
Der Erfassungsabstand eines oder mehrerer Bereiche kann 0 betragen (z. B. Erfassungsbereich 3). Der erste Erfassungsbereich mit einem anderen Erfassungsabstand als 0 (z. B. Erfassungsbereich 1) muss einen Mindesterfassungsabstand von 200 mm aufweisen.

6.2.5 Abhängigkeit der Erfassungsbereiche und Erzeugung des Erfassungssignals

Wenn ein Sensor innerhalb eines Erfassungsbereichs eine Bewegung erfasst, ändert sich der Zustand seines Erfassungssignals und der entsprechende Sicherheitsausgang wird deaktiviert, falls ein solcher konfiguriert ist. Das Verhalten der Ausgänge für die anschließenden Erfassungsbereiche variiert entsprechend der für den Erfassungsbereich festgelegten Abhängigkeit:

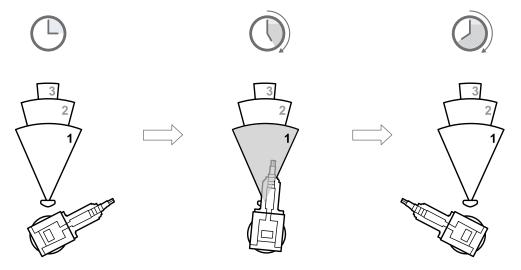

Wenn	Dann
die Option Modus mit abhängigen Erfassungsbereichen eingestellt ist und die Erfassungsbereiche daher voneinander abhängig sind	werden, wenn ein Sensor innerhalb eines Erfassungsbereichs eine Bewegung erfasst, auch alle Ausgänge für die anschließenden Erfassungsbereiche deaktiviert.
	Beispiel Konfigurierter Erfassungsbereich: 1, 2, 3 Erfassungsbereich mit erfasstem Zielobjekt: 2 Erfassungsbereich im Alarmzustand: 2, 3
die Option Modus mit unabhängigen Erfassungsbereichen eingestellt ist und die	wird, wenn ein Sensor innerhalb eines Erfassungsbereichs eine Bewegung erfasst, nur der Ausgang für diesen Erfassungsbereich deaktiviert.
Erfassungsbereiche daher voneinander unabhängig sind	Beispiel Konfigurierter Erfassungsbereich: 1, 2, 3 Erfassungsbereich mit erfasstem Zielobjekt: 2 Erfassungsbereich im Alarmzustand: 2

↑ WARNUNG



Wenn die Erfassungsbereiche unabhängig sind, muss im Zuge der Risikobeurteilung eine Sicherheitsbeurteilung des Überwachungsbereichs vorgenommen werden. Der von einem Zielobjekt erzeugte Blindbereich kann verhindern, dass der Sensor in den anschließenden Erfassungsbereichen Zielobjekte erfasst.

In diesem Beispiel erzeugen beide Erfassungsbereiche 1 und 2 ein Erfassungssignal für das Zielobjekt [A] bzw. [B].


In diesem Beispiel erzeugt der Erfassungsbereich 1 ein Erfassungssignal für das Zielobjekt **[A]**, während das Zielobjekt **[B]** nicht erfasst werden kann.

In der Anwendung **LBK Designer** auf **Einstellungen > Erweitert >** Abhängigkeit der Erfassungsbereiche klicken, um den Abhängigkeitsmodus für die Erfassungsbereiche festzulegen.

6.2.6 Unabhängige Erfassungsbereiche: ein Anwendungsfall

Es kann hilfreich sein, die Erfassungsbereiche als unabhängig festzulegen, z. B. wenn sich ein Objekt vorübergehend in einem Erfassungsbereich bewegen soll. Dies ist beispielsweise bei einem Roboterarm der Fall, der sich nur während einer bestimmten Phase des Arbeitszyklus innerhalb des Erfassungsbereichs 1 von rechts nach links bewegt.

In diesem Fall kann das Erfassungssignal im Erfassungsbereich 1 ignoriert werden, um unnötige Stillstandszeiten zu vermeiden.

Bevor das Erfassungssignal des Erfassungsbereichs 1 ignoriert wird, ist im Zuge der Risikobeurteilung die Sicherheit des Überwachungsbereichs zu prüfen.

Durch den Blindbereich, der von dem sich bewegenden Roboterarm erzeugt wird, kann verhindert werden, dass der Sensor während eines bestimmten Zeitintervalls in den anschließenden anderen Erfassungsbereichen Zielobjekte erfasst. Diese Zeit muss bei der Festlegung des Erfassungsabstands für den Erfassungsbereich 2 berücksichtigt werden.

7 Sicherheitsfunktionen

7.1 Sicherheitsmodi und Sicherheitsfunktionen

7.1.1 Einleitung

Jeder Erfassungsbereich eines jeden Sensors kann in einem der folgenden Sicherheitsmodi arbeiten:

- · Zugangserfassung und Wiederanlaufsperre
- Immer Zugangserfassung

Jeder Sicherheitsmodus umfasst eine oder beide folgenden Sicherheitsfunktionen:

Funktion	Beschreibung
Zugangserfassung	 Erfassung des menschlichen Körpers: Die Maschine wird in einen sicheren Zustand versetzt, wenn eine oder mehrere Personen den Gefahrenbereich betreten. Erfassung benutzerdefiniertes Zielobjekt (siehe Erfassung eines
	benutzerdefinierten Zielobjekts auf Seite 67): Die Maschine wird in einen sicheren Zustand versetzt, wenn ein oder mehrere Objekte mit einem RCS über der voreingestellten Schwelle in den Gefahrenbereich gelangen. **WARNUNG**
	Die Sicherheitsfunktionen schließen einander aus: Wenn die Erfassung eines benutzerdefinierten Zielobjekts aktiviert wird, ist die Erfassung des menschlichen Körpers nicht mehr sichergestellt.
Wiederanlaufsperre	Die Maschine kann nicht wieder anlaufen, wenn sich Personen im Gefahrenbereich befinden.

7.1.2 Sicherheitsmodus

Mithilfe der Anwendung LBK Designer kann der Sicherheitsmodus ausgewählt werden, mit dem jeder Sensor in jedem Erfassungsbereich arbeitet:

- Zugangserfassung und Wiederanlaufsperre (Standardeinstellung):
 - Der Sensor übernimmt die Funktion der Zugangserfassung, wenn er sich im Normalbetrieb befindet (Zustand Kein Alarm vorhanden).
 - Der Sensor übernimmt die Funktion der Wiederanlaufsperre, wenn er sich im Alarmzustand befindet (Zustand Alarm vorhanden).
- Immer Zugangserfassung:
 - Der Sensor übernimmt immer die Funktion der Zugangserfassung (Zustand Kein Alarm vorhanden + Zustand Alarm vorhanden).

7.1.3 Geschwindigkeitsgrenzen bei der Zugangserfassung

Für durch die Zugangserfassung erkannte Bewegungen gelten folgende Geschwindigkeitsgrenzen:

Anwendungsart	Minimale Geschwindigkeit	Maximale Geschwindigkeit
Fest installiert	0,1 m/s	1,6 m/s
Beweglich	0,1 m/s	4 m/s

7.2 Sicherheitsmodus: Zugangserfassung und Wiederanlaufsperre (Standardeinstellung)

7.2.1 Einleitung

Dieser Sicherheitsmodus umfasst die folgenden Sicherheitsfunktionen:

- Zugangserfassung (Erfassung des menschlichen Körpers oder Erfassung eines benutzerdefinierten Zielobjekts)
- Wiederanlaufsperre

7.2.2 Sicherheitsfunktion: Zugangserfassung (Erfassung des menschlichen Körpers oder Erfassung eines benutzerdefinierten Zielobjekts)

Die Zugangserfassung funktioniert wie folgt:

Wenn	Dann	
keine Bewegung im Erfassungsbereich erfasst wird	bleiben die Sicherheitsausgänge aktiv	
eine Bewegung im Erfassungsbereich erfasst wird (siehe Geschwindigkeitsgrenzen bei der Zugangserfassung auf der vorherigen Seite)	sind die Sicherheitsausgänge deaktiviertwird die Wiederanlaufsperre aktiviert	

7.2.3 Sicherheitsfunktion: Wiederanlaufsperre

Info: Der maximale Abstand für die Wiederanlaufsperre beträgt 5 m.

Die Wiederanlaufsperre bleibt aktiviert und die Sicherheitsausgänge bleiben deaktiviert, solange im Erfassungsbereich eine Bewegung erfasst wird bzw. – bei aktivierter Option Erfassung statischer Objekte (siehe Wiederanlaufsperre: Option Erfassung statischer Objekte auf Seite 68) – solange im Erfassungsbereich ein statisches Objekt erfasst wird.

Der Sensor ist in der Lage, selbst kleinste Bewegungen im Ausmaß von wenigen Millimetern, wie Atembewegungen (bei normaler Atmung oder kurz angehaltenem Atem) oder Bewegungen, die ein Mensch benötigt, um aufrecht stehend oder hockend das Gleichgewicht zu halten, zu erfassen.

Die Empfindlichkeit des Systems ist höher als bei der Funktion der Zugangserfassung. Daher reagiert das System anders auf Vibrationen und bewegliche Teile.

Der Sensor gewährleistet die Erfassung von Personen, die sich mit einer beliebigen Geschwindigkeit zwischen 0 und 1,6 m/s bewegen*, sofern die Richtlinien aus dem Punkt Richtlinien für die Positionierung der Sensoren auf Seite 68 erfüllt sind.

Info *: Selbst eine sich nicht bewegende Person führt statische Restbewegungen aus, die vom Radar erfasst werden können.

MARNUNG

Wenn die Wiederanlaufsperre aktiv ist, kann der Überwachungsbereich durch die Position und Neigung der Sensoren sowie durch ihre Installationshöhe und Winkelabdeckung beeinflusst werden (siehe Position des Sensors auf Seite 80).

7.2.4 **Parameter Timeout Wiederanlauf**

Wenn das System keine Bewegung mehr erfasst oder wenn bei aktivierter Option Erfassung statischer Objekte kein statisches Objekt erfasst wird, bleiben die OSSD-Ausgänge während der im Parameter Timeout Wiederanlauf festgelegten Zeit im OFF-state. Der Mindestwert für den Parameter Timeout Wiederanlauf beträgt 0,1 s.

/N WARNUNG

Wenn Timeout Wiederanlauf auf einen Wert unter 4 s eingestellt ist, ist der Sensor nicht mehr in der Lage, Atembewegungen oder Bewegungen, die ein Mensch benötigt, um aufrecht stehend oder hockend das Gleichgewicht zu halten, zu erfassen. Werte unter 4 s nur für Bereiche einstellen, zu denen Personen keinen Zugang haben.

7.3 Sicherheitsmodus: Immer Zugangserfassung

7.3.1 Sicherheitsfunktion: Zugangserfassung (Erfassung des menschlichen Körpers oder Erfassung eines benutzerdefinierten Zielobjekts)

Dies ist die einzige Sicherheitsfunktion, die für den Modus Immer Zugangserfassung verfügbar ist. Die Zugangserfassung funktioniert wie folgt:

Wenn	Dann
keine Bewegung im Erfassungsbereich erfasst wird	bleiben die Sicherheitsausgänge aktiv
eine Bewegung im Erfassungsbereich erfasst wird	 bleibt die Zugangserfassungsfunktion aktiv sind die Sicherheitsausgänge deaktiviert bleibt die Empfindlichkeit im Vergleich zu der vor der Bewegungserfassung vorhandenen Empfindlichkeit unverändert

Wenn der Modus Immer Zugangserfassung ausgewählt ist, müssen zusätzliche Sicherheitsmaßnahmen ergriffen werden, um die Funktion der Wiederanlaufsperre sicherzustellen.

7.3.2 Parameter T_{OFF}

Wenn der Sicherheitsmodus auf Immer Zugangserfassung eingestellt ist und das System keine Bewegung mehr erfasst, bleiben die OSSD-Ausgänge während der im Parameter Toff festgelegten Zeit im OFF-state.

T_{OFF} kann auf einen Wert zwischen 0,1 s und 60 s eingestellt werden.

7.4 Sicherheitsmodus: Immer Wiederanlaufsperre

7.4.1 Sicherheitsfunktion: Wiederanlaufsperre

Dies ist die einzige Sicherheitsfunktion, die für den Modus Immer Wiederanlaufsperre verfügbar ist.

Die Wiederanlaufsperre funktioniert wie folgt:

Wenn	Dann
keine Bewegung im Erfassungsbereich erfasst wird	bleiben die Sicherheitsausgänge aktiv
eine Bewegung im Erfassungsbereich erfasst wird	 sind die Sicherheitsausgänge deaktiviert bleibt die Wiederanlaufsperre aktiv bleiben nach der Bewegungserfassung die horizontale Winkelabdeckung und die Empfindlichkeit unverändert

Der Sensor ist in der Lage, selbst kleinste Bewegungen im Ausmaß von wenigen Millimetern, wie Atembewegungen (bei normaler Atmung oder kurz angehaltenem Atem) oder Bewegungen, die ein Mensch benötigt, um aufrecht stehend oder hockend das Gleichgewicht zu halten, zu erfassen.

Die Empfindlichkeit des Systems ist höher als bei der Funktion der Zugangserfassung. Daher reagiert das System anders auf Vibrationen und bewegliche Teile.

Der Sensor gewährleistet die Erfassung von Personen, die sich mit einer beliebigen Geschwindigkeit zwischen 0 und 1,6 m/s bewegen*, sofern die Richtlinien aus dem Punkt Richtlinien für die Positionierung der Sensoren auf Seite 68 erfüllt sind.

Info *: Selbst eine sich nicht bewegende Person führt statische Restbewegungen aus, die vom Radar erfasst werden können.

Wenn die Wiederanlaufsperre aktiv ist, kann der Überwachungsbereich durch die Position und Neigung der Sensoren sowie durch ihre Installationshöhe und Winkelabdeckung beeinflusst werden (siehe Position des Sensors auf Seite 80).

7.4.2 **Parameter Timeout Wiederanlauf**

Wenn das System keine Bewegung mehr erfasst oder wenn bei aktivierter Option Erfassung statischer Objekte kein statisches Objekt erfasst wird, bleiben die OSSD-Ausgänge während der im Parameter Timeout Wiederanlauf festgelegten Zeit im OFF-state. Der Mindestwert für den Parameter Timeout Wiederanlauf beträgt 0,1 s.

Wenn Timeout Wiederanlauf auf einen Wert unter 4 s eingestellt ist, ist der Sensor nicht mehr in der Lage, Atembewegungen oder Bewegungen, die ein Mensch benötigt, um aufrecht stehend oder hockend das Gleichgewicht zu halten, zu erfassen. Werte unter 4 s nur für Bereiche einstellen, zu denen Personen keinen Zugang haben.

7 Sicherheitsfunktionen Leuze

7.5 Erfassung eines benutzerdefinierten Zielobjekts

7.5.1 **Einleitung**

Die Erfassung eines benutzerdefinierten Zielobjekts ist eine Sicherheitsfunktion, mit der der Zugang eines oder mehrerer Objekte erfasst werden kann, dessen bzw. deren RCS über einem bestimmten Wert liegt.

Info: Die Erfassung eines benutzerdefinierten Zielobjekts betrifft nur die Sicherheitsfunktion der Zugangserfassung. Wenn die Erfassung eines benutzerdefinierten Zielobjekts aktiviert ist, hat dies keinen Einfluss auf die Erfassungsfähigkeiten der Wiederanlaufsperre oder die Option Erfassung statischer Objekte.

7.5.2 Vorgehensweise zum Aktivieren der Erfassung eines benutzerdefinierten Zielobjekts

Die Erfassung eines benutzerdefinierten Zielobjekts kann einzeln für jeden Sensor durch Festlegen des jeweiligen RCS-Grenzwerts auf einen Wert über 0 dB aktiviert werden.

7.5.3 Beschreibung des RCS-Grenzwerts

Der RCS-Grenzwert wird in Dezibel ausgedrückt und steht für den RCS-Wert, bei dessen Überschreitung das System eine 100%ige Erfassung gewährleistet.

Info: Die Referenzangabe (0 dB) entspricht 0,17 m², d. h. dem RCS eines erfassbaren menschlichen Körpers (Erfassung des menschlichen Körpers).

Auf der Seite Konfiguration der Anwendung LBK Designer kann der Parameter RCS-Grenzwert für jeden Sensor eingestellt werden.

7.5.4 Intervall des RCS-Grenzwerts

Der Mindestwert ist auf 0 dB festgelegt (Erfassung des menschlichen Körpers). Der Höchstwert beträgt 70

Wenn beispielsweise ein RCS-Grenzwert von 20 dB eingestellt ist, garantiert das System eine 100%ige Erfassung von Zielobjekten mit einem RCS über 20 dB (Erfassung benutzerdefiniertes Zielobjekt).

Info: Durch die Einstellung von RCS-Grenzwert auf einen anderen Wert als 0 dB wird nicht garantiert, dass Zielobjekte mit einem RCS unter dem Grenzwert ausgeschlossen oder nicht erfasst werden.

Info: Ein Objekt mit RCS-Grenzwert unterhalb des gewählten Grenzwerts wird möglicherweise nicht erfasst, aber kann eine Verdeckung innerhalb des Sensorsichtfelds verursachen.

7.5.5 **RCS Reader Tool**

Das System stellt die Anwendung RCS Reader Tool als Hilfsmittel bei der Parametereinstellung zur Verfügung. Das Tool kann über die Seite Konfiguration der Anwendung LBK Designer aufgerufen werden.

Für Informationen zur Verwendung von RCS Reader Tool siehe die Anleitung von RCS Reader Tool, die über die Website www.leuze.com heruntergeladen werden kann.

7.5.6 Zeitpunkt für die Aktivierung der Erfassung eines benutzerdefinierten Zielobjekts

Bei Außeninstallationen auf beweglichen Elementen kann es notwendig sein, die RCS-Grenzwert beispielsweise unter folgenden Bedingungen zu erhöhen:

- Reduzierung der Störungen durch Witterungseinflüsse oder anderer Störungen
- Erfassung lediglich der Kollisionen mit großen Objekten oder anderen Fahrzeugen

WARNUNG

Mit dieser Einstellung ist die Erfassung des menschlichen Körpers durch das System nicht mehr gewährleistet. Es sind alle Vorkehrungen zu treffen, damit Personen den Bereich nicht betreten können.

7 Sicherheitsfunktionen Leuze

7.6 Wiederanlaufsperre: Option Erfassung statischer Objekte

7.6.1 Einleitung

Die Option Erfassung statischer Objekte ermöglicht es im Rahmen der Wiederanlaufsperre, auch statische Objekte innerhalb des Gefahrenbereichs zu erfassen.

Info: Die Erfassung statischer Objekte ist eine Option der Funktion der Wiederanlaufsperre und kann daher nicht unter 5 m aktiviert werden.

HINWEIS

Die Fähigkeit zur Erfassung eines Objekts ist abhängig vom RCS des Objekts. Die Option Erfassung statisches Objekt garantiert keine 100%ige Erfassung statischer Objekte.

7.6.2 Verfügbarkeit

Die Option Erfassung statischer Objekte ist verfügbar für:

- Steuerungseinheiten mit Firmware-Version 1.5.0 oder höher und
- Sensoren mit Firmware-Version 3.0 oder höher.

7.6.3 Anwendungsmöglichkeiten

Diese Option kann nützlich sein, wenn der Sensor auf beweglichen Teilen montiert ist (siehe Installation auf beweglichen Teilen (bewegliche Anwendung) auf Seite 95) oder um den Wiederanlauf eines Roboters zu verhindern, der mit einem statischen Objekt kollidieren kann, das sich vorübergehend innerhalb des Bereichs befindet.

7.6.4 Funktion

Die Option kann für jeden Erfassungsbereich eines jeden Sensors aktiviert werden, bei dem der Sicherheitsmodus auf **Zugangserfassung und Wiederanlaufsperre** festgelegt ist. Die Option nur dann aktivieren, wenn im Erfassungsbereich keine statischen Objekte vorhanden sind; andernfalls ist das System nach der Erfassung einer Bewegung im Bereich nicht in der Lage, die Erfassungssignale erneut zu aktivieren.

7.6.5 Einstellungen

Die Empfindlichkeit der Sensoren bei der Erfassung statischer Objekte kann über die Anwendung LBK Designer (**Einstellungen > Erweitert > Empfindlichkeit bei der Erfassung statischer Objekte**) erhöht oder verringert werden.

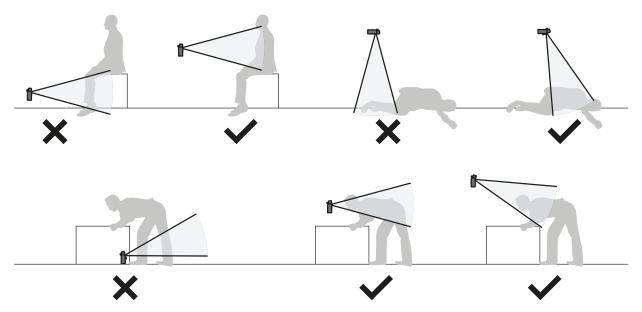
7.7 Merkmale der Wiederanlaufsperre

7.7.1 Richtlinien für die Positionierung der Sensoren

Die Wiederanlaufsperre ist wirksam, wenn der Sensor Bewegungen oder statische Restbewegungen einer Person erfassen kann. Um Personen zu erfassen, die nicht aufrecht stehen oder hocken, muss der Sensor unbedingt in der Lage sein, den Brustbereich der Person deutlich zu erfassen.

Folgende Situationen erfordern ein besonderes Augenmerk:

- Es sind Objekte vorhanden, die die Bewegungserfassung durch die Sensoren einschränken oder behindern.
- Laut Risikobeurteilung muss eine liegende Person erfasst werden können und der Sensor ist in einer Höhe von weniger als 2,5 m oder mit einem Neigungswinkel nach unten von weniger als 60° installiert.
- Der Sensor erfasst keinen ausreichend großen Teil des Körpers oder erfasst den Brustbereich einer Person nicht ordnungsgemäß.


Wenn eine oder mehrere der oben genannten Bedingungen zutreffen, muss eine Prüfung vorgenommen werden (siehe Prüfung der Sicherheitsfunktionen auf Seite 113).

Wenn die Leistungsfähigkeit des Sensors durch die oben genannten Bedingungen eingeschränkt wird, ist durch folgende Maßnahmen eine angemessene Leistung sicherzustellen:

- Erhöhung des Werts des Parameters Timeout Wiederanlauf
- Veränderung der Sensorpositionen
- Hinzufügen mehrerer Sensoren

Wenn eine oder mehrere der oben genannten Maßnahmen ergriffen werden, wird eine Prüfung empfohlen (siehe Prüfung der Sicherheitsfunktionen auf Seite 113).

Nachstehend sind einige Beispiele für Situationen, in denen die oben genannten Bedingungen nicht erfüllt sind (X), und für die richtige Positionierung des Sensors (\checkmark) aufgeführt. Diese Beispiele erheben jedoch keinen Anspruch auf Vollständigkeit.

7.7.2 Verfügbare Typen des Wiederanlaufs

HINWEIS

Dem Hersteller der Maschine obliegt die Beurteilung, ob der automatische Wiederanlauf dasselbe Sicherheitsniveau garantieren kann wie der manuelle Wiederanlauf (gemäß Definition in der Norm EN ISO 13849-1, Abschnitt 5.2.2).

Das System verwaltet unabhängig für jeden Erfassungsbereich drei Wiederanlauftypen:

Тур	Bedingungen für die Freigabe des Wiederanlaufs der Maschine	Zulässiger Sicherheitsmodus
Automatisch	Seit der letzten erfassten Bewegung* ist das Zeitintervall vergangen, das über die Anwendung LBK Designer eingestellt wurde (Timeout Wiederanlauf).	Alle
Manuell	Das Wiederanlaufsignal wurde ordnungsgemäß empfangen** (siehe Wiederanlaufsignal (zweikanalig, kohärenter Redundanzmodus) auf Seite 167).	Immer Zugangserfassung

Тур	Bedingungen für die Freigabe des Wiederanlaufs der Maschine	Zulässiger Sicherheitsmodus
Abgesichert manuell	 Seit der letzten erfassten Bewegung* ist das Zeitintervall vergangen, das über die Anwendung LBK Designer eingestellt wurde (Timeout Wiederanlauf) und Das Wiederanlaufsignal wurde ordnungsgemäß empfangen** (siehe Wiederanlaufsignal + Systemwiederherstellung (zweikanalig, kohärenter Redundanzmodus) auf Seite 171). 	Zugangserfassung und Wiederanlaufsperre, Immer Wiederanlaufsperre

⚠ WARNUNG

Wenn der Wiederanlauftyp Automatisch mit dem Sicherheitsmodus Immer Zugangserfassung gewählt wird, wird die Sicherheitsfunktion der Wiederanlaufsperre nicht ausgeführt, sodass das System die Erfassung einer Person im Überwachungsbereich nicht gewährleisten kann.

Info*: Der Wiederanlauf der Maschine ist aktiviert, wenn bis zu 35 cm über den Erfassungsbereich hinaus keine Bewegung erfasst wird.

Info**: (für alle Typen des Wiederanlaufs) Andere Gefährdungszustände des Systems können den Wiederanlauf der Maschine verhindern (z. B. Diagnosefehler, Verdeckung des Sensors usw.).

7.7.3 Sicherheitsvorkehrungen zur Vorbeugung eines unbeabsichtigten Wiederanlaufs

Um einem unbeabsichtigten Wiederanlauf vorzubeugen, muss, wenn der Sensor in einer Höhe von weniger als 15 cm zwischen Boden und Sensormitte installiert ist, ein Mindestabstand von 50 cm zum Sensor sichergestellt sein.

Info: Wenn der Sensor in einer Höhe von weniger als 15 cm zwischen Boden und Sensormitte installiert ist, kann die Verdeckungsschutzfunktion aktiviert werden, um einen Systemfehler zu generieren, wenn sich eine Person vor dem Sensor befindet.

7.7.4 Konfiguration des Wiederanlaufs

WARNUNG

Wenn die Wiederanlaufsignal-Funktion sowohl über den Sicherheitsfeldbus als auch über die Digitaleingänge aktiviert wurde, kann sie auf beide Weisen eingeschaltet werden.

Тур	Vorgehensweise	
Automatisch	 In der Anwendung LBK Designer unter Einstellungen > Wiederanlauf, Automatisch auswählen. In der Anwendung LBK Designer unter Konfiguration für jeden verwendeten Erfassungsbereich mit automatischem Wiederanlauf den gewünschten Sicherheitsmodus auswählen und den Timeout Wiederanlauf (oder den Parameter T_{OFF}, falls vorhanden) festlegen. 	
Manuell	 In der Anwendung LBK Designer unter Einstellungen > Wiederanlauf, Manuell auswählen. Falls ein Digitaleingang vorhanden ist, der als Wiederanlaufsignal (Einstellungen > Digitaleingang/-ausgang) konfiguriert ist, die Maschinentaste für das Wiederanlaufsignal ordnungsgemäß anschließen (siehe Elektrische Anschlüsse auf Seite 151). Für die Verwendung der Feldbuskommunikation für das Wiederanlaufsignal sicherstellen, dass kein Digitaleingang als Wiederanlaufsignal konfiguriert ist (Einstellungen > Digitaleingang/-ausgang). Siehe das Feldbusprotokoll für weitere Informationen. In der Anwendung LBK Designer unter Konfiguration für jeden verwendeten Erfassungsbereich mit manuellem Wiederanlauf den Wert des Parameters Toff festlegen. Info: Der Sicherheitsmodus wird automatisch für alle verwendeten Erfassungsbereiche mit manuellem Wiederanlauf auf Immer Zugangserfassung festgelegt. 	
Abgesichert manuell	 In der Anwendung LBK Designer unter Einstellungen > Wiederanlauf, Abgesichert manuell auswählen. Falls ein Digitaleingang vorhanden ist, der als Wiederanlaufsignal (Einstellungen > Digitaleingang/-ausgang) konfiguriert ist, die Maschinentaste für das Wiederanlaufsignal ordnungsgemäß anschließen (siehe Elektrische Anschlüsse auf Seite 151). Für die Verwendung der Feldbuskommunikation für das Wiederanlaufsignal sicherstellen, dass kein Digitaleingang als Wiederanlaufsignal konfiguriert ist (Einstellungen > Digitaleingang/-ausgang). Siehe das Feldbusprotokoll für weitere Informationen. In der Anwendung LBK Designer unter Konfiguration für jeden verwendeten Erfassungsbereich mit abgesichert manuellem Wiederanlauf einen zulässigen Sicherheitsmodus auswählen und den Wert des Parameters Timeout Wiederanlauf festlegen. 	

8 Sonstige Funktionen

8.1 Muting

8.1.1 Beschreibung

Die Muting-Funktion ist eine zusätzliche sicherheitsrelevante Funktion, mit der die Erfassungsfähigkeit des Sensors, für den sie aktiviert wird, unterbunden wird. Sie kann für einen bestimmten Sensor oder für eine Sensorgruppe aktiviert werden. Dadurch werden OSSD oder Sicherheitsfeldbus auch dann im ON-state gehalten, wenn die im Muting befindlichen Sensoren eine Bewegung erfassen.

Wenn die Muting-Funktion konfiguriert ist, erfolgt die tatsächliche Aktivierung für einen oder mehrere Sensoren erst, wenn die Bedingungen erfüllt sind (siehe Bedingungen für die Aktivierung der Muting-Funktion unten).

8.1.2 Aktivierung der Muting-Funktion

Die Muting-Funktion kann über Digitaleingang (siehe Signalcharakteristiken für die Muting-Aktivierung auf der nächsten Seite) oder Sicherheitsfeldbus (falls verfügbar) aktiviert werden.

WARNUNG

Wenn die Muting-Funktion sowohl über den Sicherheitsfeldbus als auch über die Digitaleingänge aktiviert wurde, wird nur die Aktivierung über die Digitaleingänge für die Funktion berücksichtigt.

WARNUNG

Wenn der Sensor auf Muting geschaltet ist, ist kein Sensorfehler verfügbar (sieheFEHLER-Ereignisse (Sensor) auf Seite 137).

Die Muting-Funktion kann über den Sicherheitsfeldbus (falls verfügbar) einzeln für jeden Sensor aktiviert werden.

Die Muting-Funktion kann über Digitaleingänge für alle Sensoren gleichzeitig oder nur für eine Sensorgruppe aktiviert werden. Es können bis zu zwei Gruppen konfiguriert werden, wobei jede einem Digitaleingang zugeordnet ist.

Über die Anwendung LBK Designer muss Folgendes festgelegt werden:

- Für jeden Eingang die verwaltete Sensorgruppe
- Für jede Gruppe die dazugehörigen Sensoren
- Für jeden Sensor, ob dieser zu einer Gruppe gehört oder nicht

Info: Wenn die Muting-Funktion für einen Sensor aktiviert ist, ist sie für alle Erfassungsbereiche des Sensors aktiviert, und zwar unabhängig davon, ob die Erfassungsbereiche abhängig oder unabhängig sind und ob die Manipulationsschutzfunktionen für diesen Sensor deaktiviert sind.

Siehe Konfiguration der Eingänge und Hilfsausgänge auf Seite 112.

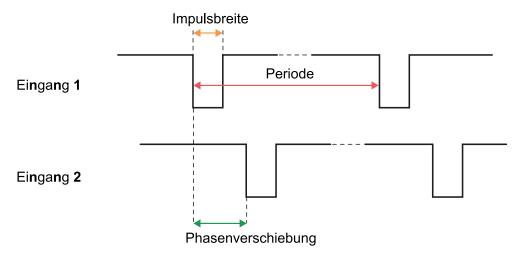
8.1.3 Bedingungen für die Aktivierung der Muting-Funktion

Die Muting-Funktion wird nur unter folgenden Bedingungen für einen bestimmten Sensor aktiviert:

- In keinem der betroffenen Erfassungsbereiche sind aktive Erfassungssignale oder aktive Erfassungssignale für statische Objekte vorhanden und der Timeout für den Wiederanlauf ist für alle abgelaufen.
- Es sind keine Manipulationssignale oder Fehlersignale für den betreffenden Sensor vorhanden.

Wenn die Muting-Funktion für eine Sensorgruppe konfiguriert ist, wird sie dann aktiviert, wenn im Überwachungsbereich aller Sensoren keine Erfassung stattfindet.

MARNUNG



Das Muting-Signal für Sensoren, die denselben Gefahrenbereich überwachen, dann aktivieren, wenn der gesamte Bereich sicher ist und von niemandem betreten werden kann. Wenn die Muting-Funktion per Feldbus auf einzelnen Sensoren aktiviert wird und einige Sensoren noch eine Bewegung erfassen, könnte eine Person den Überwachungsbereich eines auf Muting geschalteten Sensors betreten, sodass die Sicherheit des gesamten Bereichs beeinträchtigt wird.

8.1.4 Signalcharakteristiken für die Muting-Aktivierung

Die Muting-Funktion wird nur dann aktiviert, wenn beide logischen Signale des zugeordneten Eingangs bestimmte Charakteristiken aufweisen.

Nachstehend sind die Signalcharakteristiken grafisch dargestellt.

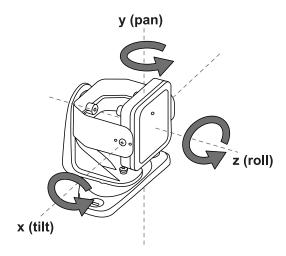
In der Anwendung **LBK Designer** unter **Einstellungen > Digitaleingang/-ausgang** müssen die Parameter für die Festlegung der Signalcharakteristiken eingestellt werden.

Info: Bei einer Impulsdauer = 0 genügt es, wenn die Eingangssignale den logischen Pegel High (1) aufweisen, um die Muting-Funktion zu aktivieren.

8.1.5 Muting-Zustand

Ein ggf. dem Zustand der Muting-Funktion zugeordneter Ausgang (Feedbacksignal Muting-Aktivierung) wird aktiviert, wenn mindestens eine der Sensorgruppen auf Muting geschaltet ist.

HINWEIS


Der Hersteller der Maschine muss beurteilen, ob die Anzeige des Muting-Zustands erforderlich ist (wie in der Norm EN ISO 13849-1, Abschnitt 5.2.5, festgelegt).

8.2 Manipulationsschutzfunktionen: Verdrehschutz

8.2.1 Verdrehschutz

Der Sensor erkennt Drehungen um seine Achsen.

Info: Die Achsen entsprechen immer der nachstehenden Abbildung, unabhängig von der Installationsposition des Sensors.

Beim Speichern der Systemkonfiguration speichert der Sensor auch seine Position. Wenn der Sensor später eine Änderung in Form einer Drehung um diese Achsen erkennt, übermittelt er ein Manipulationssignal an die Steuerungseinheit. Wenn ein Manipulationssignal eingeht, deaktiviert die Steuerungseinheit die Sicherheitsausgänge.

Info: Wenn sich die Position gegenüber den gespeicherten Referenzwerten ändert (d. h., wenn ein Sensor gedreht wird) und die Verdrehschutzfunktion aktiviert ist, wird die Manipulation von der LBK SBV System erkannt und die Meldung innerhalb von 5 s übermittelt.

Der Sensor ist in der Lage, auch im ausgeschalteten Zustand Änderungen in Form einer Drehung um die xund z-Achse zu erkennen. Beim nächsten Einschalten wird das Manipulationssignal an die Steuerungseinheit übermittelt.

Eine Änderung in Form einer Drehung um die y-Achse wird nur dann erkannt, wenn sie schneller als 5° pro 10 s erfolgt und das System in Betrieb ist.

WARNUNG

Die Meldung von Manipulationen infolge einer Drehung um die y-Achse wird beim nächsten Einschalten zurückgesetzt. Um die ordnungsgemäße und sichere Funktion zu gewährleisten, muss das System neu geprüft werden.

8.2.2 Aktivieren der Verdrehschutzfunktion

Die Verdrehschutzfunktion ist standardmäßig deaktiviert.

Wenn die Funktion deaktiviert ist, ist das System nicht mehr in der Lage, Änderungen in Form einer Drehung des Sensors um die Achsen und damit auch eine eventuelle Änderung im Überwachungsbereich zu erkennen. Siehe Durchzuführende Prüfungen bei deaktivierter Verdrehschutzfunktion auf der nächsten Seite.

♠ WARNUNG

Wenn die Funktion für mindestens eine Achse eines Sensors deaktiviert ist und die Drehung um diese Achse nicht durch manipulationssichere Schrauben geschützt ist, sind Vorkehrungen zur Verhinderung von Manipulationen zu treffen.

Die Funktion kann für jede Achse eines jeden Sensors einzeln aktiviert und konfiguriert werden. Zum Aktivieren der Funktion für einen Sensor in der Anwendung LBK Designer unter **Einstellungen** > **Manipulationsschutz** auf die jeweilige Option klicken.

8.2.3 Zeitpunkt für die Aktivierung der Funktion

Die Verdrehschutzfunktion nur dann aktivieren, wenn bei einem Sensor eine Änderung in Form einer Drehung um eine bestimmte Achse erkannt werden soll.

Es wird dringend empfohlen, die Funktion nicht zu aktivieren, wenn der Sensor auf einem beweglichen Objekt (z. B. Wagen, Fahrzeug) installiert ist und die Neigung des Sensors durch die Bewegung dieses Objekts verändert wird (z. B. Bewegung auf einer schiefen Ebene oder in einer Kurve).

8.2.4 Durchzuführende Prüfungen bei deaktivierter Verdrehschutzfunktion

Wenn die Verdrehschutzfunktion deaktiviert ist, sind folgende Prüfungen durchzuführen.

Sicherheitsfunktion	Häufigkeit	Maßnahme
Zugangserfassung	Vor jedem Wiederanlauf der Maschine	Prüfen, ob der Sensor wie in der Konfiguration festgelegt positioniert ist.
		Prüfen, ob der Überwachungsbereich der
Wiederanlaufsperre	Bei jeder Deaktivierung der Sicherheitsausgänge	konfigurierten Vorgabe entspricht. Siehe Prüfung der Sicherheitsfunktionen auf Seite 113.

8.3 Manipulationsschutzfunktionen: Verdeckungsschutz

8.3.1 Meldung von Verdeckungen

Der Sensor erfasst das Vorhandensein von Objekten, die das Sichtfeld behindern können. Beim Speichern der Systemkonfiguration speichert der Sensor die umliegende Umgebung. Wenn der Sensor später eine Änderung der Umgebung erfasst, durch die das Sichtfeld beeinflusst wird, übermittelt er ein Verdeckungssignal an die Steuerungseinheit. Der Sensor überwacht den Bereich zwischen -50° und +50° auf der Horizontalebene unabhängig von der eingestellten horizontalen Winkelabdeckung. Wenn ein Verdeckungssignal eingeht, deaktiviert die Steuerungseinheit die Sicherheitsausgänge.

Info: Die Meldung von Verdeckungen ist nicht gewährleistet, wenn Objekte mit reflektierenden Eigenschaften vorhanden sind, deren RCS unter dem Mindestgrenzwert für die Erfassung liegt.

Info: Wenn sich die Position gegenüber den gespeicherten Referenzwerten ändert (d. h., wenn ein Sensor verdeckt wird) und die Verdrehschutzfunktion aktiviert ist, wird die Manipulation von der LBK SBV System erkannt und innerhalb von 5 s gemeldet.

8.3.2 Speicherung der Umgebung

Der Sensor startet den Prozess zur Speicherung der Umgebung, wenn die Konfiguration in der Anwendung LBK Designer gespeichert wird. Ab diesem Zeitpunkt wartet er bis zu 20 Sekunden, bis das System den Alarmzustand verlässt und die Szene statisch ist, anschließend scannt und speichert er die Umgebung.

HINWEIS

Wenn die Szene nicht innerhalb eines Zeitintervalls von 20 Sekunden statisch wird, bleibt das System in einem Fehlerzustand (SIGNAL ERROR) und die Systemkonfiguration muss erneut gespeichert werden.

Wir empfehlen, den Prozess zur Speicherung frühestens 3 Minuten nach dem Einschalten des Systems zu starten, um sicherzustellen, dass der Sensor die Betriebstemperatur erreicht hat.

Erst nach Abschluss der Speicherung kann der Sensor Verdeckungssignale übermitteln.

8.3.3 Ursachen für Verdeckungen

Nachstehend sind mögliche Ursachen für ein Verdeckungssignal aufgeführt:

- Innerhalb des Erfassungsbereichs wurde ein Objekt abgestellt, welches das Sichtfeld des Sensors behindert.
- Die Umgebung des Erfassungsbereichs verändert sich wesentlich, beispielsweise wenn der Sensor auf beweglichen Teilen montiert ist oder wenn bewegliche Teile innerhalb des Erfassungsbereichs vorhanden sind.
- Die Konfiguration wurde gespeichert, als die Sensoren in einer anderen Umgebung als der derzeitigen Arbeitsumgebung installiert waren.
- Es sind plötzliche Temperaturschwankungen aufgetreten.

8.3.4 Verdeckungssignal beim Einschalten

Wenn das System mehrere Stunden ausgeschaltet war und währenddessen Temperaturschwankungen auftraten, übermittelt der Sensor beim Einschalten möglicherweise ein falsches Verdeckungssignal. Die Sicherheitsausgänge werden automatisch innerhalb von 3 Minuten aktiviert, wenn der Sensor seine Betriebstemperatur erreicht hat. Dies ist nicht der Fall, wenn die Temperatur des Sensors noch sehr weit von der Referenztemperatur entfernt ist.

8.3.5 Einstellung

Für jeden Sensor sind für den Verdeckungsschutz folgende Einstellungen vorzunehmen:

- maximaler Abstand vom Sensor (Bereich [20 cm, 100 cm], 10 cm-Schritte), in dem die Funktion aktiv ist
- Empfindlichkeit

Es gibt die folgenden vier Empfindlichkeitsstufen:

Info: Die Funktion verfügt über einen Toleranzbereich, in dem die tatsächliche Erkennung einer Verdeckung vom RCS des Objekts und von der eingestellten Empfindlichkeit abhängt. Bei der höchsten Empfindlichkeit wird der größte Bereich abgedeckt (ca. 10–20 cm).

Stufe	Beschreibung	Anwendungsbeispiel
Hoch	Der Sensor weist die maximale Empfindlichkeit gegenüber Änderungen der Umgebung auf. (Empfohlene Empfindlichkeit, wenn das Sichtfeld bis zum eingestellten Verdeckungsabstand frei ist)	Installationen mit leerer Umgebung und in einer Höhe von weniger als einem Meter, bei denen der Sensor durch Objekte verdeckt werden kann.
Mittel	Der Sensor weist eine geringe Empfindlichkeit gegenüber Änderungen der Umgebung auf. Die Verdeckung muss offensichtlich sein (bewusste Manipulation).	Installationen in einer Höhe von mehr als einem Meter, bei denen die Verdeckung wahrscheinlich nur bewusst erfolgt.
Gering	Der Sensor erfasst nur dann eine Verdeckung, wenn er vollständig abgedeckt ist und es sich dabei um stark reflektierende Objekte (z. B. Metall, Wasser) in Sensornähe handelt.	Installationen auf beweglichen Teilen, bei denen sich die Umgebung ständig verändert, wo jedoch auch statische Objekte in Sensornähe vorhanden sein können (Hindernisse entlang des Wegs).
Deaktiviert	Der Sensor erfasst keine Änderungen der Umgebung. Warnung Wenn die Funktion deaktiviert ist, ist das System nicht mehr in der Lage, Objekte zu melden, die ggf. die normale Erfassungstätigkeit behindern (siehe Durchzuführende Prüfungen bei deaktivierter Verdeckungsschutzfunktion unten).	Siehe Notwendigkeit einer Deaktivierung auf der nächsten Seite.

Zum Ändern der Empfindlichkeitsstufe oder zum Deaktivieren der Funktion in der Anwendung LBK Designer auf **Einstellungen > Manipulationsschutz** klicken und **Empfindlichkeit Verdeckungsschutz** suchen.

Zum Einstellen der Entfernung in der Anwendung LBK Designer auf **Einstellungen > Manipulationsschutz** klicken und **Abstand Verdeckungsschutz** suchen.

8.3.6 Durchzuführende Prüfungen bei deaktivierter Verdeckungsschutzfunktion

Wenn die Verdeckungsschutzfunktion deaktiviert ist, sind folgende Prüfungen auszuführen.

Sicherheitsfunktion	Häufigkeit	Maßnahme
Zugangserfassung	Vor jedem Wiederanlauf der Maschine	Entfernen aller Objekte, die das Sichtfeld des Sensors behindern
Wiederanlaufsperre	Bei jeder Deaktivierung der Sicherheitsausgänge	Wiederherstellen der ursprünglichen Installationsposition des Sensors

8.3.7 Notwendigkeit einer Deaktivierung

Die Verdeckungsschutzfunktion muss in folgenden Fällen deaktiviert werden:

- (Bei Wiederanlaufsperre) Im Überwachungsbereich befinden sich bewegliche Teile, die an unterschiedlichen und nicht vorhersehbaren Positionen angehalten werden.
- Im Überwachungsbereich befinden sich bewegliche Teile, deren Position sich verändert, während die Sensoren auf Muting geschaltet sind.
- Der Sensor ist über einem Teil positioniert, das bewegt werden kann.
- Im Überwachungsbereich werden statische Objekte toleriert (z. B. Be-/Entladebereich).

8.4 **Automatische Wiederherstellung**

8.4.1 Einleitung

Einige transiente Fehler führen zu einer dauerhaften Sperre, die zur Folge hat, dass der Normalbetrieb nicht wiederhergestellt werden kann.

Während der sichere Zustand beibehalten wird, stellt dieses Verhalten insbesondere bei Remote-Systemen eine Einschränkung dar, da diese nicht leicht zugänglich sind.

Mit der automatischen Wiederherstellung wird fünfmal hintereinander versucht, die normale Sensorfunktion wiederherzustellen: Wenn der Fehler weiterhin besteht, bleibt die Sperre aufrecht. Andernfalls wird der Normalbetrieb automatisch wiederhergestellt.

8.4.2 Grenzen der Funktion

Bei folgenden Fehlern ist keine automatische Wiederherstellung möglich:

- POWER ERROR
- SIGNAL ERROR
- TAMPER ERROR
- TEMPERATURE ERROR

Die Funktion wird nicht ausgeführt, wenn der Sensor auf Muting geschaltet ist.

8.5 Robustheit gegenüber Umwelteinflüssen (nur 5.x-Sensoren)

8.5.1 Parameter Robustheit gegenüber Umwelteinflüssen

In bestimmten Umgebungen ist das System möglicherweise nicht in der Lage, statische Objekte herauszufiltern. Dies ist insbesondere dann der Fall, wenn diese bestimmte Formen aufweisen.

Dadurch kann es zu Verzögerungen beim Wiederanlauf des Systems kommen.

Über den Parameter Robustheit gegenüber Umwelteinflüssen kann die Robustheit des Systems erhöht werden, um solche Objekte besser herauszufiltern.

In der Anwendung LBK Designer unter Einstellungen > Erweitert kann die Option für jeden Sensor einzeln aktiviert werden.

Wir empfehlen ausdrücklich, diese Option in Anwendungen zur Wiederanlaufsperre nur dann zu aktivieren, wenn die längere Reaktionszeit keine Auswirkungen auf das Systemverhalten hat, und nur dann, wenn die Sensoren in einer Höhe unter 50 cm vom überwachten Boden installiert sind.

Der Parameter hat Einfluss auf die Reaktionszeit des Systems bei der Sicherheitsfunktion Zugangserfassung (max. 200 ms).

8.6 Elektromagnetische Störfestigkeit

8.6.1 Parameter Elektromagnetische Störfestigkeit

Über den Parameter **Elektromagnetische Störfestigkeit** kann die elektromagnetische Störfestigkeit des Systems erhöht werden (z. B. wenn Sensoren verschiedener Systeme zu nahe beieinander installiert sind oder Probleme am CAN-Bus auftreten).

In der Anwendung LBK Designer können unter **Einstellungen > Erweitert** folgende Stufen für die Störfestigkeit festgelegt werden:

- Standard (Standardeinstellung)
- Hoch
- Sehr hoch

↑ WARNUNG

Der Parameter hat Einfluss auf die Reaktionszeit des Systems bei der Sicherheitsfunktion Zugangserfassung. Je nach gewählter Stufe liegt die maximale Reaktionszeit bei 100 ms (**Standard**), 150 ms (**Hoch**) oder 200 ms (**Sehr hoch**).

9 Position des Sensors

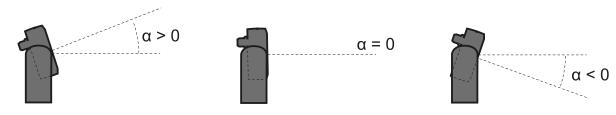
9 Position des Sensors

9.1 Grundkonzepte

9.1.1 Ausschlaggebende Faktoren

Die Installationshöhe des Sensors und seine Neigung sind gemeinsam mit der Winkelabdeckung und den Erfassungsabständen zu ermitteln, um eine optimale Abdeckung des Gefahrenbereichs zu erzielen.

9.1.2 Installationshöhe des Sensors


Die Installationshöhe (h) ist definiert als Abstand zwischen der Sensormitte und dem Boden oder der Referenzebene des Sensors.

9.1.3 Neigung des Sensors

Die Neigung des Sensors entspricht der Drehung des Sensors um seine x-Achse. Die Neigung ist definiert als Winkel zwischen zwei Linien, von denen eine senkrecht zum Sensor und die andere parallel zum Boden verläuft. Nachstehend drei Beispiele:

- Sensor nach oben geneigt: α positiv
- Sensor gerade: α = 0
- Sensor nach unten geneigt: a negativ

9.2 Sichtfeld der Sensoren

9.2.1 Sichtfeldtypen

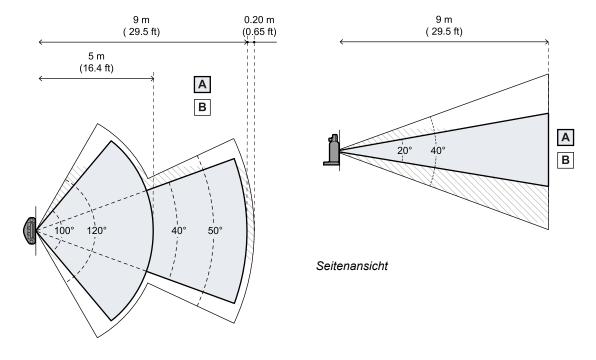
Im Zuge der Konfiguration kann für jeden einzelnen Sensor die horizontale Winkelabdeckung ausgewählt werden (siehe Horizontale Winkelabdeckung auf Seite 58).

Der tatsächliche Erfassungsbereich des Sensors ist auch von der Installationshöhe und -neigung des Sensors abhängig (siehe Berechnung des Intervalls der Abstände auf Seite 91).

Die standardmäßigen Sichtfeldformen sind nachstehend beschrieben. Die klassische und die Korridorform stehen ebenfalls zur Verfügung (siehe Erweitertes Sichtfeld auf Seite 83).

9.2.2 Bereiche und Abmessungen des Sichtfelds

Das Sichtfeld des Sensors setzt sich aus zwei Bereichen zusammen:

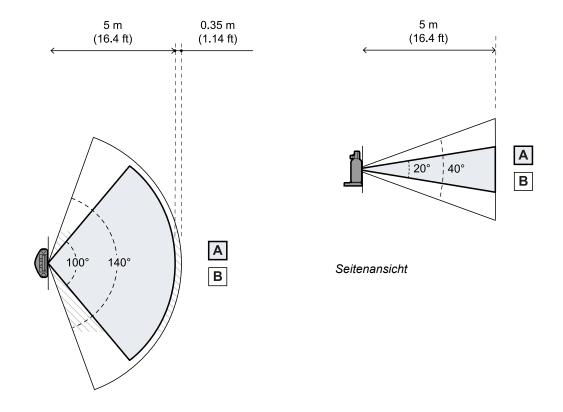

 Erfassungsbereich: Hier wird die Erfassung von personenähnlichen Objekten an jeder Stelle gewährleistet. Toleranzbereich: Hier hängt die tatsächliche Bewegungserfassung eines Gegenstandes oder einer Person von den Merkmalen des Objekts ab (siehe Faktoren, die das Reflexionssignal beeinflussen auf Seite 57).

9.2.3 Abmessungen für die Zugangserfassung

Nachstehend sind die maximalen Abmessungen des Sichtfelds [A] und des dazugehörigen Toleranzbereichs [B] dargestellt.

Die Abmessungen des Toleranzbereichs sind für die maximale Winkelabdeckung (gemäß Beschreibung in den nachstehenden Abbildungen) und kleinere Abdeckungen identisch.

Info: Die genannten Abmessungen des Toleranzbereichs beziehen sich auf die Erfassung von Personen.

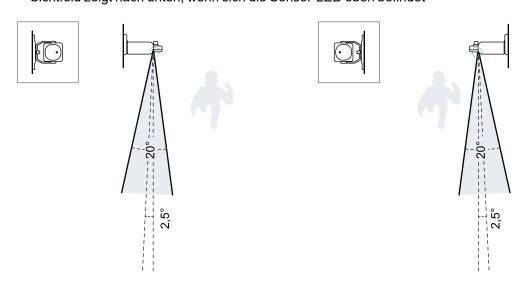

Draufsicht

9.2.4 Abmessungen für die Wiederanlaufsperre

Nachstehend sind die maximalen Abmessungen des Sichtfelds [A] und des dazugehörigen Toleranzbereichs [B] dargestellt.

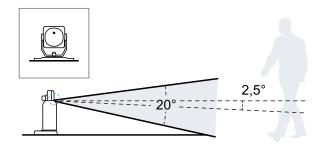
Die Abmessungen des Toleranzbereichs sind für die maximale Winkelabdeckung (gemäß Beschreibung in den nachstehenden Abbildungen) und kleinere Abdeckungen identisch.

Info: Die genannten Abmessungen des Toleranzbereichs beziehen sich auf die Erfassung von Personen.



Draufsicht

9.2.5 Position des Sichtfelds


Die Position des Sichtfelds weist eine Abweichung von 2,5° auf. Für die Bestimmung der tatsächlichen Position des Sensorsichtfelds ist die Position der LED heranzuziehen:

- Sichtfeld zeigt nach links, wenn sich die Sensor-LED rechts befindet (in Bezug auf den Mittelpunkt des Sensors, wenn man vor dem Sensor steht)
- Sichtfeld zeigt nach rechts, wenn sich die Sensor-LED links befindet (in Bezug auf den Mittelpunkt des Sensors, wenn man vor dem Sensor steht)
- Sichtfeld zeigt nach unten, wenn sich die Sensor-LED oben befindet

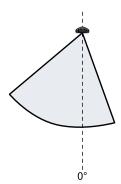
Draufsicht mit Sensorneigung 0°.

Draufsicht mit Sensorneigung 0°.

Seitenansicht mit Sensorneigung 0°.

9.3 Erweitertes Sichtfeld

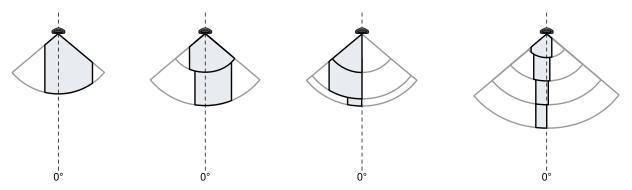

9.3.1 Einleitung


Für jeden Sensor stehen zwei Sichtfeldformen zur Verfügung:

- Klassisch
- Korridor

9.3.2 Klassisches Sichtfeld

Die klassische Form ermöglicht die Auswahl der Standardform für das Sichtfeld und, falls gewünscht, die Änderung in ein asymmetrisches Sichtfeld. Jeder Erfassungsbereich kann seine eigene symmetrische/asymmetrische Winkelabdeckung haben.



Bedingungen:

- Die Sensorachse muss immer in allen Erfassungsbereichen enthalten sein.
- Die horizontale Winkelabdeckung eines jeden Erfassungsbereichs muss größer oder gleich sein wie die horizontale Winkelabdeckung der darunter liegenden Erfassungsbereiche.
- Die minimale Sichtfeldbreite beträgt 10°.

9.3.3 Korridorsichtfeld

Die Korridorform ermöglicht die individuelle Anpassung der Sichtfeldform. Ausgehend von der Standardform mit maximaler Winkelabdeckung kann das Sichtfeld seitlich mit zwei flachen Ebenen begrenzt werden, die parallel zur Sensorachse verlaufen. Jeder Erfassungsbereich kann seine eigene Korridorbreite haben.

Bedingungen:

- Die Sensorachse muss immer in allen Erfassungsbereichen enthalten sein.
- Die Korridorbreite eines jeden Erfassungsbereichs muss größer oder gleich sein wie die Korridorbreite der folgenden Erfassungsbereiche.
- Die minimale Korridorbreite beträgt:
 - ° 20 cm in den ersten 5 m des Sichtfelds
 - 30 cm im Bereich zwischen 5 und 9 m des Sichtfelds

9.4 Berechnung des Sicherheitsabstands

9.4.1 Einleitung

Die von LBK SBV System verwendete Formel für die Berechnung des Sicherheitsabstands basiert auf der Norm ISO 13855:2024 und ist nachstehend beschrieben. Die Norm wurde als Richtlinie bei der Festlegung des Sicherheitsabstands für volumetrische Vorrichtungen herangezogen, bei denen die Annäherung aus verschiedenen Richtungen möglich ist.

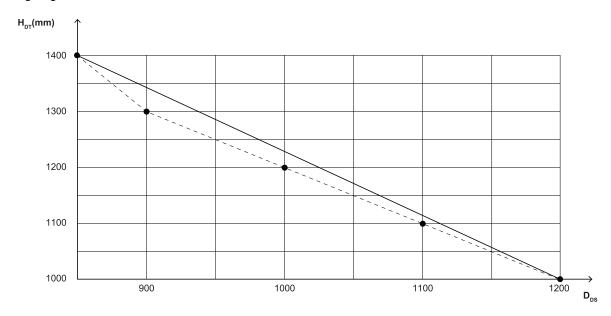
9.4.2 Formel für die stationäre Anwendung

Für die Berechnung des Sicherheitsabstands (S) bei stationären Anwendungen wird folgende Formel verwendet:

$$S = K*T + D_{DS} + Z$$

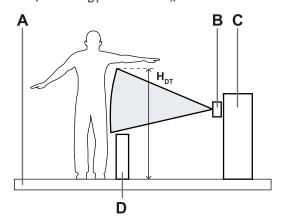
Wobei:

Variable	Beschreibung	Wert	Maßeinheit	Anmerkungen
К	Maximale Annäherungsgeschwindigkeit	1600	mm/s	Für die maximale Annäherungsgeschwindigkeit wird der Wert 1600 mm/s herangezogen, da radargestützte Schutzeinrichtungen (RPDs) dem Schutz des menschlichen Körpers dienen. Dies steht im Einklang mit der Definition der Annäherungsgeschwindigkeit in ISO 13855:2024.
Т	Reaktionszeit des Gesamtsystems	Siehe ISO 13855	S	Die Reaktionszeit des Gesamtsystems (T) umfasst Zeiträume, die je nach Maschinentyp, den verwendeten Schutzeinrichtungen und den an der Sicherheitsfunktion beteiligten sicherheitsbezogenen Teilen der Steuerung (SRP/CS) variieren.
D _{DS}	Reichweite	 Wenn H_{DT} ≤ 1000 D_{DS} = 1200 Wenn 1000 < H_{DT} < 1400, D_{DS} = 1200 - [(H_{DT} - 1000) * 0,875] Wenn H_{DT} ≥ 1400, D_{DS} = 850 	mm	Für die Definition von H _{DT} siehe ISO 13855:2024. Für nähere Informationen zu H _{DT} siehe Annahmen für die Berechnung der Reichweite auf der nächsten Seite.
Z	Zusätzliche Entfernungsfaktoren	Siehe ISO 13855:2024.	mm	Der Toleranzbereich ist bereits im angegebenen Erfassungsabstand gemäß IEC TS 61496-5 berücksichtigt. Es müssen keine Korrekturwerte für den Toleranzbereich zur Berechnung des Sicherheitsabstands hinzugefügt werden.

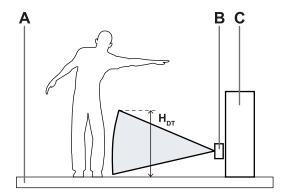

Info: Bei Verwendung eines Feldbusses muss für die Berechnung der Reaktionszeit des Gesamtsystems die Zykluszeit berücksichtigt werden.

9.4.3 Annahmen für die Berechnung der Reichweite

Die Reichweite D_{Ds} kann ausgehend von der Höhe des Erfassungsbereichs H_{DT} auf Grundlage der folgenden Überlegungen berechnet werden:


- Wenn H_{DT} größer als 1400 mm ist, könnte eine Person mit einem einzelnen Arm in den Bereich geraten (siehe Beispiel für HDT ≥ 1400 mm (parallele Annäherung) unten).
- Wenn H_{DT} kleiner als 1000 mm ist, könnte eine Person mit einem Arm und einem Teil des Oberkörpers in den Bereich geraten (siehe Beispiel für HDT ≤ 1000 mm (parallele Annäherung) auf der nächsten Seite

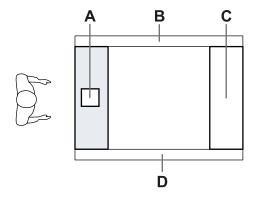
Die Berechnungsformel für D_{DS} wird konservativ auf Grundlage der Werte aus ISO 13855:2024 (Tabelle 2) festgelegt.


Linie	Beschreibung
	Reichweite beim Hinüberreichen über ein vertikales Schutzfeld gemäß ISO 13855 (Tabelle 2)
	Reichweite nach der Formel 1200 - [(H _{DT} - 1000) * 0,875)]

Beispiel für H_{DT} ≥ 1400 mm (parallele Annäherung)

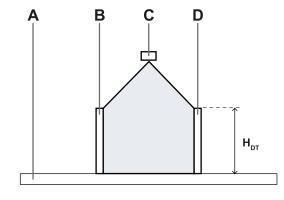
Teil	Beschreibung
Α	Bezugsebene
В	RPD
С	Gefahrenbereich
D	Hindernis

Beispiel für H_{DT} ≤ 1000 mm (parallele Annäherung)


Teil	Beschreibung
Α	Bezugsebene
В	RPD
С	Gefahrenbereich

9.4.4 Berechnung der Höhe des Erfassungsbereichs und Sensorposition

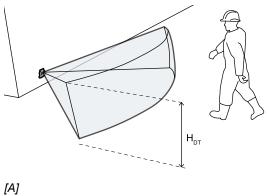
Die Höhe des Erfassungsbereichs H_{DT} sollte auf Grundlage der Norm ISO 13855:2024 sowohl für die parallele als auch für die rechtwinklige Annäherung berechnet werden.

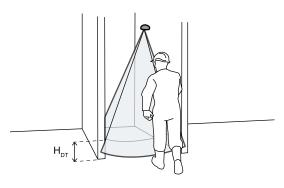

Der Sensor muss so installiert sein, dass ein Durchreichen unter dem Schutzfeld nicht möglich ist (siehe ISO 13855:2024). Wenn der vertikale Abstand des Erfassungsbereichs von der Bezugsebene (H_D) größer als 200 mm ist, besteht die Gefahr, dass der Erfassungsbereich an der Unterseite unbeabsichtigt und unerkannt überschritten werden kann. Dies muss in der Risikobeurteilung berücksichtigt werden und ggf. sind zusätzliche Sicherheitsmaßnahmen zu ergreifen.

Beispiel für H_{DT} bei rechtwinkliger Annäherung (Draufsicht)

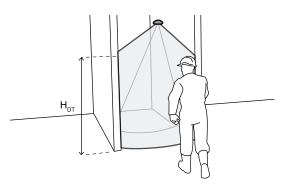
Teil	Beschreibung
Α	RPD
В	Schutzeinrichtung
С	Gefahrenbereich
D	Schutzeinrichtung

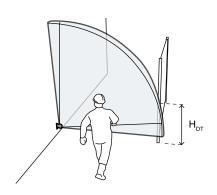
Beispiel für H_{DT} bei rechtwinkliger Annäherung (Vorderansicht)

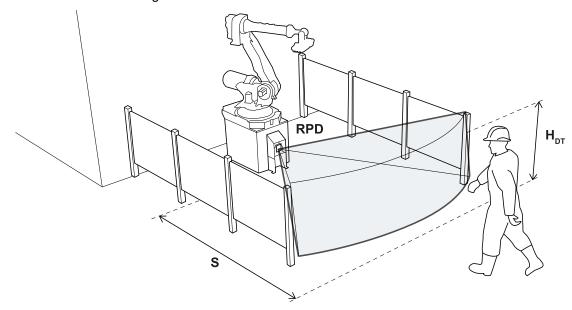



Teil	Beschreibung
Α	Bezugsebene
В	Schutzeinrichtung
С	RPD
D	Schutzeinrichtung

Leuze 9 Position des Sensors


9.4.5 Beispiele


Nachstehend sind ein weiteres Beispiel für die Ermittlung von H_{DT} bei paralleler Annäherung **[A]** sowie Beispiele für die Ermittlung von H_{DT} bei rechtwinkliger Annäherung [B], [C] und [D] aufgeführt.


[C]

[D]

[B]

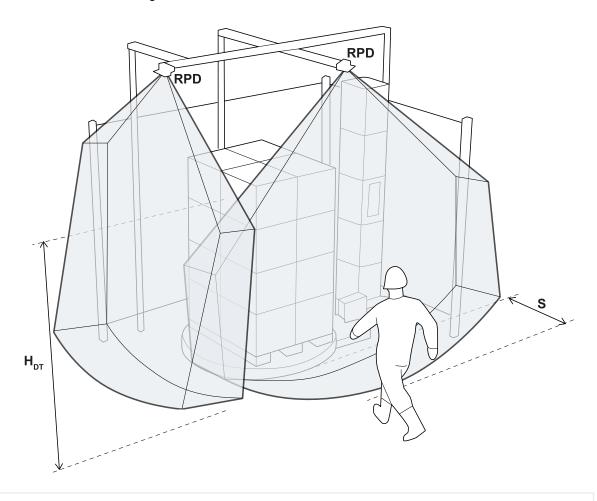
9.4.6 Berechnungsbeispiel für den Sicherheitsabstand – parallele Annäherung

Nachstehend ist ein Beispiel für einen sich dem Gefahrenbereich nähernden Bediener angegeben, wobei eine RPD als Schutzeinrichtung für den Bereich verwendet wird.

Beispiel

- Nachlaufzeit des Gesamtsystems T = 0,2 s
- H_{DT} = 1200 mm
- Z_P = 0 mm
- Z_M = 100 mm

Nach der Berechnungsformel für den Reichweite ergibt sich:


$$D_{DS} = 1200 - [(H_{DT} - 1000) * 0,875] = 1200 - 175 = 1025 \text{ mm}$$

Entsprechend diesen Werten beträgt der Gesamtsicherheitsabstand:

$$S = 1600 \times 0.2 + 1025 + 100 = 1445 \text{ mm}$$

9.4.7 Berechnungsbeispiel für den Sicherheitsabstand – rechtwinklige Annäherung

Nachstehend ist ein Beispiel für einen sich dem Gefahrenbereich nähernden Bediener angegeben, wobei eine RPD als Schutzeinrichtung für den Bereich verwendet wird.

Beispiel

- Nachlaufzeit des Gesamtsystems T = 0,1 s
- H_{DT} = 2200 mm
- Z = 0 mm

Nach der Berechnungsformel für den Reichweite ergibt sich:

 $D_{DS} = 850 \text{ mm}$

Entsprechend diesen Werten beträgt der Gesamtsicherheitsabstand:

 $S = 1600 \times 0.1 + 850 + 0 = 1010 \text{ mm}$

9.4.8 Formel für die bewegliche Anwendung

Für die Berechnung der Tiefe des Sicherheitsabstands (S) bei beweglichen Anwendungen wird folgende Formel verwendet:

$$S = K * T + C$$

Wobei:

Variable	Beschreibung	Wert	Maßeinheit
K	Max. Geschwindigkeit des Fahrzeugs/Maschinenteils *.	≤ 4000	mm/s
Т	Reaktionszeit des Gesamtsystems	Siehe ISO 13855**	s
С	Korrekturwert	200	mm

Info*: Berücksichtigt wird nur die Geschwindigkeit des Fahrzeugs oder des Maschinenteils. Dabei wird vorausgesetzt, dass die Person die Gefahr erkennt und stillsteht.

Info**: Die Reaktionszeit des Gesamtsystems (T) umfasst Zeiträume, die je nach Maschinentyp, den verwendeten Schutzeinrichtungen und den an der Sicherheitsfunktion beteiligten sicherheitsbezogenen Teilen der Steuerung (SRP/CS) variieren.

Info: Bei Verwendung eines Feldbusses muss für die Berechnung der Reaktionszeit des Gesamtsystems die Zykluszeit berücksichtigt werden.

Beispiel 1

- maximale Geschwindigkeit des Fahrzeugs = 2000 mm/s
- Nachlaufzeit der Maschine = 0,5 s

T = 0.1 s + 0.5 s = 0.6 s

S = 2000 * 0,6 + 200 = 1400 mm

9.5 Berechnung des Intervalls der Abstände

9.5.1 Einleitung

Das Intervall der Erfassungsabstände eines Sensors ist von der Neigung (α) und der Installationshöhe (h) des Sensors abhängig. Der Erfassungsabstand eines jeden Erfassungsbereichs (**Dalarm**) ist von einem Abstand **d** abhängig, der innerhalb des Intervalls der zulässigen Abstände liegen muss.

Die Formeln für die Berechnung der Abstände sind im Folgenden angegeben.

Die optimale Position des Sensors ist gemäß den Anforderungen der Risikobeurteilung festzulegen.

9.5.2 Legende

Element	Beschreibung	Maßeinheit
α	Neigung des Sensors	Grad
h	Installationshöhe des Sensors	m
d	Erfassungsabstand (linear)	m
	Muss innerhalb des Bereichs der zulässigen Abstände liegen (siehe Installationskonfigurationen auf der nächsten Seite).	

Element	Beschreibung	Maßeinheit
Dalarm	Erfassungsabstand (tatsächlich)	m
D ₁	Abstand Erfassungsbeginn (für die Konfigurationen 2 und 3); Abstand Erfassungsende (für die Konfiguration 1)	m
D ₂	Abstand Erfassungsende (für die Konfiguration 3)	m

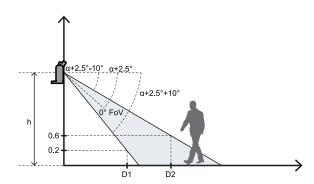
9.5.3 Installationskonfigurationen

Basierend auf der Neigung des Sensors (α) sind die folgenden drei Konfigurationen möglich:

- α≥+13°: Konfiguration 1, das Sichtfeld des Sensors überschneidet sich nie mit dem Boden
- -7° ≤ α ≤ +12°: Konfiguration 2, der obere Teil des Sichtfelds des Sensors überschneidet sich nie mit dem Boden
- α ≤ -8°: Konfiguration 3, der obere und untere Teil des Sichtfelds überschneiden sich immer mit dem Boden

Info: Das positive Vorzeichen (+) zeigt die Neigung nach oben, das negative Vorzeichen (-) die Neigung nach unten an.

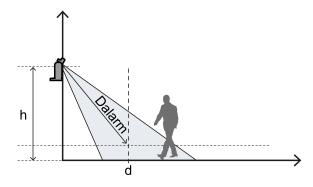
9.5.4 Berechnung des Intervalls der Abstände


Das Intervall der Erfassungsabstände eines Sensors ist von der Konfiguration abhängig:

Konfiguration	Intervall der Abstände
1	Von 0 m bis D ₁
2	Von D ₁ bis 9 m
3	Von D ₁ bis D ₂

$$D_1=rac{h-0.2}{tan((-lpha)+2.5\degree+10\degree)}$$

$$D_2=rac{h-0.6}{tan((-lpha)+2.5\degree-10\degree)}$$


Nachstehend ist ein Beispiel für die Konfiguration 3 angegeben, wobei $D_1 = 0.9$ m und $D_2 = 1.6$ m.

9.5.5 Berechnung des tatsächlichen Alarmabstandes

Der tatsächliche Erfassungsabstand Dalarm ist auf der Seite Konfiguration in die Anwendung LBK Designer einzugeben.

Dalarm gibt den maximalen Abstand zwischen Sensor und zu erfassendem Objekt an.

$$Dalarm = \sqrt{d^2 + (h-0.2)^2}$$

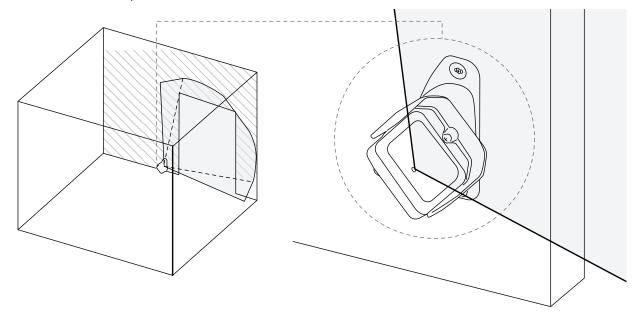
9.6 Empfehlungen für die Positionierung der Sensoren

9.6.1 Für die Funktion der Zugangserfassung

Nachstehend sind einige Empfehlungen für die Positionierung der Sensoren für die Funktion der Zugangserfassung aufgeführt:

- Wenn der Abstand zwischen dem Fußboden und dem unteren Teil des Sichtfelds größer ist als 20 cm, sind Vorkehrungen zu treffen, um sicherzustellen, dass eine Person, die den Gefahrenbereich unterhalb des vom Sichtfeld abgedeckten Raums betritt, ebenfalls erfasst wird.
- Wenn die Höhe vom Fußboden kleiner ist als 20 cm, den Sensor mit 10° Mindestneigung nach oben installieren.
- Die Installationshöhe (vom Boden bis zur Sensormitte) muss größer oder gleich 15 cm sein.

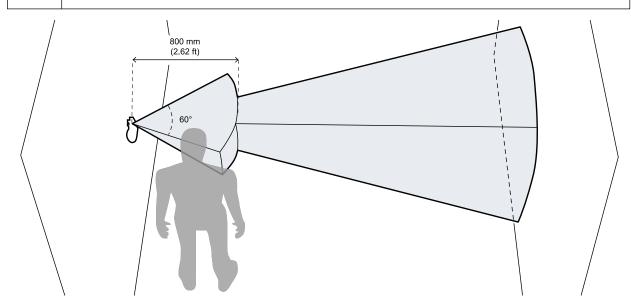
9.6.2 Für die Zugangsüberwachung bei einem Eingang



Es sind alle Vorkehrungen zu treffen, damit ein Überwinden verhindert wird, sofern ein diesbezügliches Risiko besteht.

Nachstehend sind einige Empfehlungen für die Positionierung der Sensoren aufgeführt, wenn diese für die Überwachung eines Eingangs installiert werden:

- Die Installationshöhe (vom Boden bis zur Sensormitte) muss größer oder gleich 20 cm sein.
- Die horizontale Winkelabdeckung muss 90° betragen.
- Die Neigung muss 40° nach oben betragen.
- Die Drehung um die z-Achse muss 90° betragen.


Nachstehend ein Beispiel:

MARNUNG

Die horizontale Winkelabdeckung in den ersten 800 mm des Sichtfelds muss mindestens 60° betragen. Wenn diese Spezifikation nicht eingehalten werden kann, sind Vorkehrungen dafür zu treffen, dass ein Mensch die ersten 800 mm des Sichtfelds nicht betreten kann.

9.6.3 Für die Wiederanlaufsperre

Nachstehend sind einige Empfehlungen für die Positionierung der Sensoren für die Funktion der Wiederanlaufsperre aufgeführt:

• Die Installationshöhe (vom Boden bis zur Sensormitte) muss größer oder gleich 15 cm sein.

9.7 Installation auf beweglichen Teilen (bewegliche Anwendung)

9.7.1 Einleitung

Die Sensoren können auf sich bewegenden Fahrzeugen oder auf beweglichen Maschinenteilen installiert werden.

Die Merkmale des Erfassungsbereichs und der Reaktionszeit entsprechen jenen bei stationären Installationen.

9.7.2 Geschwindigkeitsgrenzen

Die Erfassung ist nur dann sichergestellt, wenn die Geschwindigkeit des Fahrzeugs oder des Maschinenteils zwischen 0,1 m/s und 4 m/s liegt.

Info: Berücksichtigt wird nur die Geschwindigkeit des Fahrzeugs oder des Maschinenteils. Dabei wird vorausgesetzt, dass die Person die Gefahr erkennt und stillsteht.

9.7.3 Bedingungen für die Erzeugung des Erfassungssignals

Ein auf beweglichen Teilen montierter Sensor erfasst statische Objekte als in Bewegung befindliche Objekte.

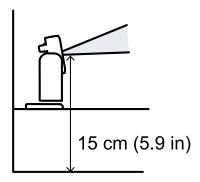
Der Sensor aktiviert ein Erfassungssignal, wenn die folgenden Bedingungen erfüllt sind:

- Bei der Erfassung des menschlichen K\u00f6rpers (RCS-Grenzwert gleich 0 dB) ist der Radarquerschnitt oder RCS (Radar Cross Section) von einem oder mehreren statischen Objekten gr\u00f6\u00dfer oder gleich dem RCS eines menschlichen K\u00f6rpers.
- Bei der Erfassung eines benutzerdefinierten Zielobjekts (**RCS-Grenzwert** größer als 0 dB) ist der Radarquerschnitt oder RCS (Radar Cross Section) von einem oder mehreren statischen Objekten größer oder gleich dem in **RCS-Grenzwert** eingestellten RCS.
- Die relative Geschwindigkeit zwischen Objekten und Sensor ist größer als die für die Erfassung erforderliche Mindestgeschwindigkeit.

9.7.4 Wiederanlaufsperre

Wie bei stationären Installationen geht das System, wenn das bewegliche Teil, auf dem der Sensor installiert ist, aufgrund einer Erfassung anhält, in den Sicherheitsmodus der Wiederanlaufsperre über (wenn **Sicherheitsmodus** nicht **Immer Zugangserfassung** ist) und der Sensor erfasst das Vorhandensein eines menschlichen Körpers (siehe Richtlinien für die Positionierung der Sensoren auf Seite 68). Statische Objekte werden daher automatisch herausgefiltert und nicht mehr erfasst.

Der Wiederanlauf des beweglichen Fahrzeugs oder des beweglichen Maschinenteils bei Vorhandensein statischer Objekte kann auf folgende Weisen verhindert werden:


- Option Erfassung statischer Objekte aktiviert (siehe Wiederanlaufsperre: Option Erfassung statischer Objekte auf Seite 68).
- Verdeckungsschutzfunktion: Wenn die Funktion aktiv ist, tritt ein Fehler auf, wenn das statische Objekt nahe genug ist, um die Erfassung des Sensors einzuschränken.

Info: Wenn die Verdeckungsschutzfunktion aktiv ist, obwohl sich der Sensor bewegt, treten möglicherweise Fehlalarme auf, da die Veränderung der Umgebung während der Bewegung möglicherweise als Manipulation erkannt wird.

- Manueller Wiederanlauf: Der Wiederanlauf wird extern und nur dann aktiviert, nachdem das statische
 Objekt aus der Bewegungsbahn des Fahrzeugs oder des beweglichen Teils entfernt wurde.
- Anwendungslogik der PLC/Steuerungseinheit, die das bewegliche Teil dauerhaft anhält, wenn es unmittelbar nach dem Wiederanlauf des Teils zu mehreren Stopps kommt. Wenn das Fahrzeug oder das Teil sehr schnell nach dem Wiederanlauf anhält, bedeutet dies vermutlich, dass ein statisches Hindernis vorhanden ist. Wenn das bewegliche Teil stillsteht, erfasst der Sensor das Objekt nicht mehr; das Teil beginnt wieder mit der Bewegung, hält aber erneut an, sobald das Objekt erneut erfasst wird.

9.7.5 Empfehlungen für die Position des Sensors

Bei beweglichen Anwendungen bewegt sich der Sensor mit dem Fahrzeug oder den beweglichen Maschinenteilen. Den Sensor so positionieren, dass der Fußboden nicht Teil des Erfassungsbereichs ist, um unerwünschte Alarme zu vermeiden.

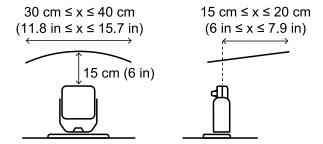
9.8 Außeninstallation

9.8.1 Stellen mit Niederschlagseinfluss

Wenn der Sensor an einer Stelle installiert wird, die Niederschlägen ausgesetzt ist, sodass unerwünschte Alarme ausgelöst werden können, werden folgende Vorsichtsmaßnahmen empfohlen:

- Anbringen einer Abdeckung zum Schutz vor Regen, Hagel und Schnee
- Positionieren des Sensors so, dass keine Bodenstellen ins Bild genommen werden, an denen sich Pfützen bilden können.

HINWEIS

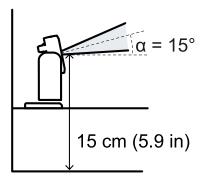


Von den Spezifikationen abweichende Witterungsbedingungen können zu einer frühzeitigen Alterung des Geräts führen.

9.8.2 Empfehlungen für die Sensorabdeckung

Nachstehend einige Empfehlungen für die Ausführung und Installation der Sensorabdeckung:

- · Höhe des Sensors: 15 cm
- Breite: mind. 30 cm, max. 40 cm
- Überstand gegenüber dem Sensor: mind. 15 cm, max. 20 cm
- Wasserablauf: seitlich oder hinter dem Sensor, nicht vorne (bogenförmige und/oder nach hinten geneigte Abdeckung)


9.8.3 Empfehlungen für die Position des Sensors

Nachstehend einige Empfehlungen für die Festlegung der Sensorposition:

- Installationshöhe (vom Boden bis zur Sensormitte): mindestens 15 cm
- empfohlene Neigung: mindestens 15°

Vor der Installation eines nach unten geneigten Sensors sicherstellen, dass sich am Fußboden keine Flüssigkeiten oder radarreflektierenden Materialien befinden.

Info: Wenn die oben aufgeführten Empfehlungen befolgt werden und sich im Überwachungsbereich keine statischen Objekte befinden, kann das System Niederschlägen bis 45 mm/h standhalten.

9.8.4 Stellen ohne Niederschlagseinfluss

Wenn der Sensor an einer Stelle installiert wird, die keinen Niederschlägen ausgesetzt ist, sind keine besonderen Vorsichtsmaßnahmen erforderlich.

10 Installation und Verwendung

10.1 Vor der Installation

10.1.1 Erforderliches Material

- Zwei manipulationssichere Schrauben (siehe Spezifikation manipulationssichere Schrauben auf Seite 147) für die Montage eines jeden Sensors.
- Kabel für den Anschluss der Steuerungseinheit an den ersten Sensor und für die Verbindung der Sensoren untereinander (siehe Empfohlene Spezifikationen für CAN-Bus-Kabel auf Seite 146).
- Ein USB-Datenkabel mit Micro-USB-Stecker (Typ Micro-B) oder, nur wenn ein Ethernet-Anschluss verfügbar ist, ein Ethernet-Kabel für den Anschluss der Steuerungseinheit an den Computer.
- Ein Busabschluss (Art.-Nr. 50040099) mit einem 120-Ω-Widerstand für den letzten Sensor am CAN-Bus.
- Ein Schraubendreher für die manipulationssicheren Schrauben (siehe Spezifikation manipulationssichere Schrauben auf Seite 147), der mit dem im Lieferumfang der Steuerungseinheit enthaltenen Sechskant-Sicherheitsstift zu verwenden ist.

10.1.2 Erforderliches Betriebssystem

- Microsoft Windows 11 (64 Bit) oder neuer
- Apple OS X 14.0 Sonoma oder neuer

10.1.3 Installation der Anwendung LBK Designer

Info: Wenn die Installation nicht erfolgreich ist, fehlen möglicherweise die für die Anwendung erforderlichen Abhängigkeiten. Das Betriebssystem aktualisieren oder unseren technischen Kundendienst kontaktieren.

- 1. Die Anwendung über die Website www.leuze.com (im produktbezogenen Downloadbereich) herunterladen und auf dem Computer installieren.
- 2. Für das Microsoft Windows-Betriebssystem auch den Treiber für die USB-Verbindung von derselben Website herunterladen und installieren.

10.1.4 Inbetriebnahme von LBK SBV System

- 1. Berechnung der Position des Sensors (siehe Position des Sensors auf Seite 80) und der Tiefe des Gefahrenbereichs (siehe Berechnung des Sicherheitsabstands auf Seite 84).
- 2. "Installation von LBK SBV System".
- 3. "Konfiguration von LBK SBV System".
- 4. "Prüfung der Sicherheitsfunktionen".

10.2 Installation von LBK SBV System

10.2.1 Vorgehensweise bei der Installation

- 1. "Installation der Steuerungseinheit".
- 2. Optional. "Montage der Bügel mit 3 Achsen".
- 3. "Installation der Sensoren".
- 4. "Anschluss der Sensoren an die Steuerungseinheit".

Info: Die Sensoren auf der Prüfbank an die Steuerungseinheit anschließen, wenn nach der Installation eine schwere Zugänglichkeit der Steckverbinder erwartet wird.

10.2.2 Installation der Steuerungseinheit

↑ WARNUNG

Um Manipulationen zu vermeiden, ist sicherzustellen, dass die Steuerungseinheit nur für autorisiertes Personal zugänglich ist (z. B. versperrbarer Schaltschrank).

- 1. Die Steuerungseinheit auf einer DIN-Schiene montieren.
- 2. Die elektrischen Anschlüsse ausführen (siehe Pinbelegung der Anschlussleisten und des Steckers auf Seite 148 und Elektrische Anschlüsse auf Seite 151).

HINWEIS

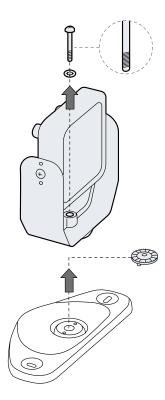
Wenn mindestens ein Eingang angeschlossen ist, müssen auch der SNS-Eingang "V+ (SNS)" und der GND-Eingang "V- (SNS)" angeschlossen werden.

HINWEIS

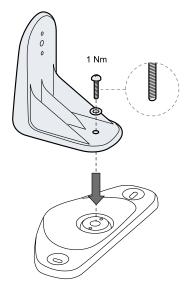
Nach dem Einschalten benötigt das System ca. 20 s, um zu starten. In dieser Zeit sind die Ausgänge und Diagnosefunktionen deaktiviert und die grünen Zustands-LEDs der angeschlossenen Sensoren in der Steuerungseinheit blinken.

HINWEIS

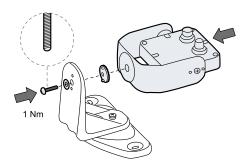
Sicherstellen, dass es während der Installation der Steuerungseinheit zu keinen EMV-Störungen kommt.


Info: Für den ordnungsgemäßen Anschluss der Digitaleingänge siehe Spannungs- und Stromgrenzwerte für die Digitaleingänge auf Seite 149.

10.2.3 Montage der Bügel mit 3 Achsen


Info: Für ein Installationsbeispiel für die Sensoren siehe Installationsbeispiele für die Sensoren auf Seite 104

Der Bügel, der die Drehung um die z-Achse (Rollen) ermöglicht, ist als Zubehör im Lieferumfang enthalten. Für die Montage:


1. Die Schraube unten herausschrauben und den Bügel mit dem Sensor und dem Einstellring entfernen.

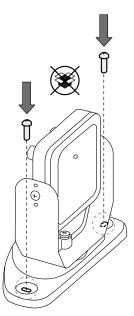
2. Den Bügel für die Rollbewegung an der Basis befestigen. Dazu die mit dem Bügel mitgelieferte manipulationssichere Schraube verwenden.

3. Den Bügel mit dem Sensor und dem Einstellring montieren. Dazu die mit dem Bügel mitgelieferte manipulationssichere Schraube verwenden.

10.2.4 Installation der Sensoren

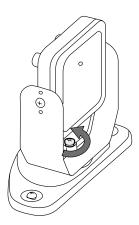
Info: Für ein Installationsbeispiel für die Sensoren siehe Installationsbeispiele für die Sensoren auf Seite 104.

Info: Es wird empfohlen, eine Gewindesicherung auf die Gewinde der Befestigungselemente aufzubringen, vor allem dann, wenn der Sensor auf einem beweglichen oder vibrierenden Teil der Maschine installiert wird.

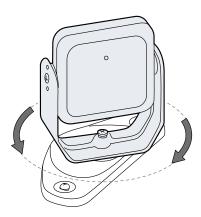

Info: Wenn für die Sensorinstallation kein Bügel verwendet wird, sind manipulationssichere Schrauben und eine Gewindesicherung zu verwenden.

1. Den Sensor gemäß Konfigurationsbericht positionieren und den Bügel mit zwei manipulationssicheren Schrauben direkt am Fußboden oder auf einer Halterung montieren.

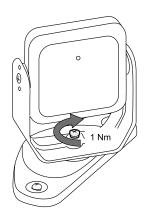
HINWEIS



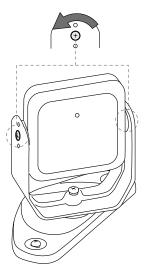
Sicherstellen, dass die Bedienungselemente der Maschine nicht durch die Halterung behindert werden.


2. Die untere Schraube mit einem Inbusschlüssel lösen, um den Sensor auszurichten.

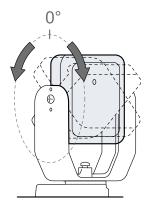
Info: Um eine Beschädigung des Bügels zu vermeiden, die Schraube vollständig lösen, bevor der Sensor ausgerichtet wird.



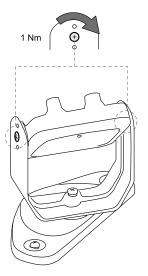
3. Den Sensor in die gewünschte Position ausrichten.


Info: Eine Kerbe entspricht einer 10°-Drehung.

4. Die Schaube festziehen.



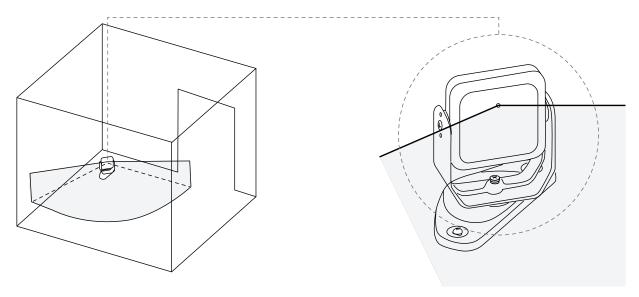
5. Die manipulationssicheren Schrauben lösen, um den Sensor zu neigen.



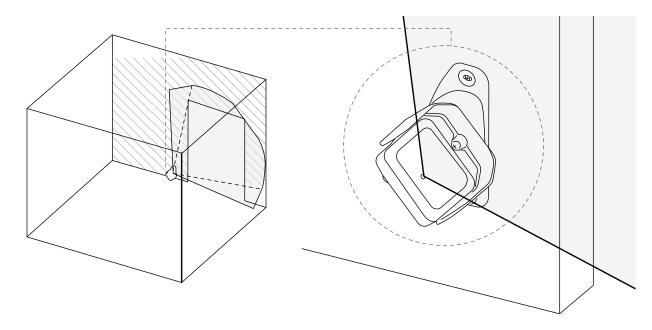
6. Den Sensor in die gewünschte Neigung drehen (siehe Position des Sensors auf Seite 80).

Info: Eine Kerbe entspricht einer 10°-Neigung. Für die Feineinstellung der Sensorneigung mit einer Genauigkeit von 1° (siehe Einstellen der Sensorneigung mit einer Genauigkeit von 1° auf Seite 106).

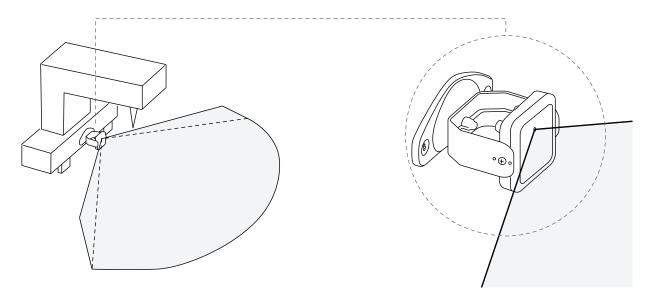
7. Die Schauben festziehen.



10.2.5 Installationsbeispiele für die Sensoren


HINWEIS

Zur Identifizierung des Sensorsichtfelds die Position der Sensor-LED heranziehen (siehe Position des Sichtfelds auf Seite 82).

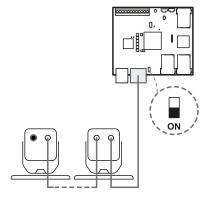


Bodeninstallation

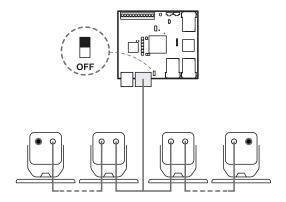
Wandinstallation (z. B. für die Zugangsüberwachung bei einem Eingang)

Info: Den Sensor so installieren, dass das Sichtfeld in Richtung Außenseite des Gefahrenbereichs zeigt, um Fehlalarme zu vermeiden (siehe Position des Sichtfelds auf Seite 82).

Installation an der Maschine.


10.2.6 Anschluss der Sensoren an die Steuerungseinheit

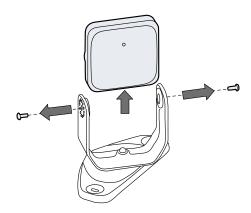
Info: Die maximale Gesamtlänge der CAN-Bus-Leitung beträgt 80 m.


Info: Bei Austausch eines Sensors in der Anwendung LBK Designer auf **ÄNDERUNG ÜBERNEHMEN** klicken, um die Änderung zu bestätigen.

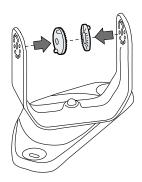
- Mithilfe eines Tools für die Kabelprüfung (dieses kann über die Website www.leuze.com heruntergeladen werden) entscheiden, ob die Steuerungseinheit am Kettenende oder innerhalb der Kette positioniert werden soll (siehe Beispiele für Ketten unten).
- 2. Den DIP-Schalter der Steuerungseinheit entsprechend der Position der Steuerungseinheit in der Kette einstellen.
- 3. Den gewünschten Sensor direkt an der Steuerungseinheit anschließen.
- 4. Zum Anschließen eines weiteren Sensors diesen an den letzten Sensor der Kette oder direkt an der Steuerungseinheit anschließen, um eine zweite Kette zu beginnen.
- 5. Schritt 4 für alle zu installierenden Sensoren wiederholen.
- 6. Den Busabschluss (Art.-Nr. 50040099) in den freien Stecker des letzten Sensors der Kette(n) stecken.

10.2.7 Beispiele für Ketten

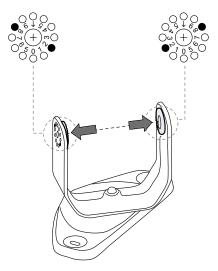
Kette mit Steuerungseinheit am Kettenende und einem Sensor mit Busabschluss

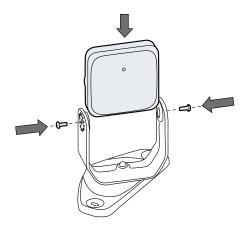


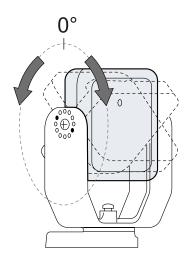
Kette mit Steuerungseinheit innerhalb der Kette und zwei Sensoren mit Busabschluss


10.3 Einstellen der Sensorneigung mit einer Genauigkeit von 1°

10.3.1 Vorgehensweise

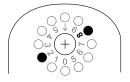

1. Die manipulationssicheren Schrauben entfernen und den Sensor vom Bügel abnehmen.

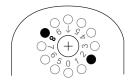

2. Den inneren Einstellring aus dem Bügel entfernen.


3. Den Einstellring entsprechend dem Wert des gewünschten Neigungswinkels wieder in die Bohrungen des Bügels einsetzen (siehe Positionswahl für den Einstellring auf der nächsten Seite).

4. Den Sensor und die manipulationssicheren Schrauben in den Bügel einsetzen (siehe Einsetzen des Sensors auf der nächsten Seite).

5. Den Sensor gemäß der Anzahl der Kerben, die der Zehnerstelle des gewünschten Winkels entsprechen, nach unten oder oben neigen (Beispiel: Für einen Neigungswinkel von +38° lautet die Zehnerstelle 3; den Sensor um drei Kerben nach oben neigen).


6. Die Schauben festziehen.

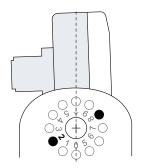


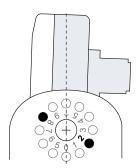
10.3.2 Positionswahl für den Einstellring

Auf beiden Seiten des Bügels den Einstellring in die Bohrung für die gewünschte Einerstelle des Gradwerts (0–9°) einsetzen.

Beispiel: Für 8° (nach oben), +38° (nach oben) und -18° (nach unten) lautet die Einerstelle immer 8°:

Seite 1 Seite 2

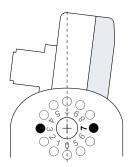

10.3.3 Einsetzen des Sensors

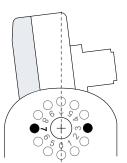

Zum Einsetzen des Sensors in den Bügel Folgendes berücksichtigen:

Gewünschte Neigung des Sensors	Einsetzen des Sensors	Siehe
nach oben	die Rückseite des Gehäuses zeigt zum gewünschten Winkel	Beispiel 1 (nach oben): +62° auf der nächsten Seite
nach unten	die Vorderseite des Gehäuses zeigt zum gewünschten Winkel	Beispiel 2 (nach unten): -37° auf der nächsten Seite

Beispiel 1 (nach oben): +62°

In diesem Beispiel zeigt die Gehäuserückseite zu den folgenden Winkeln: 1°, 2°, 3°, 4°, 5°.

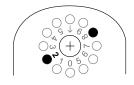


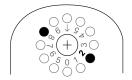

Seite 1

Seite 2

Beispiel 2 (nach unten): -37°

In diesem Beispiel zeigt die Gehäusevorderseite zu den folgenden Winkeln: 5°, 6°, 7°, 8°, 9°.

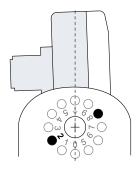



Seite 1

Seite 2

10.3.4 Beispiel: Einstellen der Sensorneigung auf +62°

1. Den Einstellring in die Bohrung für 2° einsetzen.



Seite 1

Seite 2

2. Den Sensor so in den Bügel einsetzen, dass die Sensorrückseite zum Winkel 2° zeigt.

3. Den Sensor um sechs Kerben nach oben neigen.

10.4 Konfiguration von LBK SBV System

10.4.1 Vorgehensweise bei der Konfiguration

- 1. "Starten der Anwendung LBK Designer".
- 2. "Festlegen des Überwachungsbereichs".
- 3. "Konfiguration der Eingänge und Hilfsausgänge".
- 4. "Speichern und Ausdrucken der Konfiguration".
- 5. Optional. "Neuzuweisung der Node-IDs".
- 6. Optional. "Synchronisierung der Steuerungseinheiten".

10.4.2 Starten der Anwendung LBK Designer

- 1. Die Steuerungseinheit mithilfe eines USB-Datenkabels mit Micro-USB-Stecker oder eines Ethernet-Kabels (falls ein Ethernet-Anschluss verfügbar ist) mit dem Computer verbinden.
- 2. Die Steuerungseinheit mit Spannung versorgen.
- 3. Die Anwendung LBK Designer starten.
- 4. Den Verbindungsmodus (USB oder Ethernet) auswählen.

Info: Die standardmäßige IP-Adresse für die Ethernet-Verbindung lautet 192.168.0.20. Der Computer und die Steuerungseinheit müssen mit dem gleichen Netzwerk verbunden sein.

- 5. Ein neues Administratorpasswort vergeben, speichern und nur an befugte Personen weitergeben.
- 6. Die Art und die Anzahl der Sensoren auswählen.
- 7. Optional. Alle Node-IDs zurücksetzen und erneut zuweisen.

8. Das Land festlegen, in dem das System installiert ist.

Info: Diese Einstellung hat keinerlei Auswirkungen auf die Leistungsfähigkeit oder Sicherheit des Systems. Das Land muss im Zuge der Erstinstallation des Systems ausgewählt werden, um das Funkprofil für das System konfigurieren zu können. Dieses muss den nationalen Vorschriften des Installationslandes entsprechen.

- 9. Nur wenn als Land **USA** oder **Kanada** ausgewählt wurde, den Installationstyp für das System festlegen (Innen oder Außen).
- 10. Den Anwendungstyp auswählen:
 - Für stationäre Anwendungen Fest installiert auswählen.
 - Für die Installation auf einem Fahrportal, einem Schienenwagen oder einem Kran Beweglich auswählen.
 - Für fahrerlose Fahrzeuge und Fahrzeuge mit Fahrer Fahrzeug auswählen.

Info: Die Algorithmen sind optimiert, um Interferenzen zwischen den Sensoren aufgrund der Installationsbedingungen auf ein Minimum zu reduzieren. Auch wenn diese Auswahl keinen Einfluss auf die Leistungen und Robustheit hat, muss verpflichtend die korrekte Anwendungsart ausgewählt werden.

Festlegen des Überwachungsbereichs 10.4.3

Während der Konfiguration ist das System deaktiviert. Vor der Konfiguration des Systems geeignete Sicherheitsmaßnahmen in dem durch das System geschützten Gefahrenbereich treffen.

- 1. In der Anwendung LBK Designer auf Konfiguration klicken.
- 2. Optional. Die gewünschte Anzahl von Sensoren zum Plan hinzufügen.
- 3. Position und Neigung für jeden Sensor festlegen.

WARNUNG

Die Werte für diese Parameter sorgfältig festlegen, da das Systemverhalten entsprechend diesen Werten optimiert wird.

- 4. Form des Bereichs auswählen.
- 5. Falls erforderlich, einen Wert für RCS-Grenzwert einstellen, der größer als 0 dB ist, um die Erfassung eines benutzerdefinierten Zielobjekts statt der Erfassung eines menschlichen Körpers zu verwenden. Zum Auswählen des Wertes auf RCS Reader Tool klicken, um das RCS Reader Tool zu öffnen. Siehe die Anleitung von RCS Reader Tool für weitere Informationen zur Verwendung des Tools.
- 6. Für jeden Erfassungsbereich eines jeden Sensors den Sicherheitsmodus, den Erfassungsabstand, die Winkelabdeckung und den Timeout für den Wiederanlauf festlegen.
- 7. Optional. Die Option Erfassung statischer Objekte für jeden Erfassungsbereich nur bei Bedarf aktivieren. Für weitere Informationen siehe Wiederanlaufsperre: Option Erfassung statischer Objekte auf Seite 68.

10.4.4 Konfiguration der Eingänge und Hilfsausgänge

- 1. In der Anwendung LBK Designer auf Einstellungen klicken.
- 2. Auf **Digitaleingang/-ausgang** klicken und die Funktion der Eingänge und Ausgänge festlegen.
- 3. Wenn die Muting-Funktion verwendet werden soll, auf **Einstellungen > Muting** klicken und die Sensoren den Gruppen entsprechend der Logik der Digitaleingänge zuweisen.
- 4. Einstellungen > Wiederanlauf und den zu verwendenden Wiederanlauftyp auswählen.
- 5. Zum Speichern der Konfiguration auf ÄNDERUNG ÜBERNEHMEN klicken.

10.4.5 Speichern und Ausdrucken der Konfiguration

- 1. In der Anwendung auf ÄNDERUNG ÜBERNEHMEN klicken: Die Sensoren speichern die eingestellte Neigung und die Umgebung. Die Anwendung überträgt die Konfiguration an die Steuerungseinheit; nach erfolgreicher Übertragung wird der Konfigurationsbericht ausgegeben.
- 2. Zum Speichern und Ausdrucken des Berichts auf 🕹 klicken.

Info: Zum Speichern der PDF-Datei auf dem Computer muss ein Drucker installiert sein.

3. Die Unterschrift der befugten Person einholen.

10.4.6 Neuzuweisung der Node-IDs

Arten der Zuweisung

Info: Wenn den angeschlossenen Sensoren noch keine Node-ID zugewiesen wurde (z. B. beim ersten Start), weist das System den Sensoren während der Installation automatisch eine Node-ID zu.

Die folgenden drei Arten der Zuweisung sind möglich.

- Manuell: Zuweisung der Node-ID an jeweils einen Sensor. Kann für alle bereits angeschlossenen Sensoren oder nach jedem einzelnen Anschluss vorgenommen werden. Wird verwendet, um einen Sensor hinzuzufügen oder die Node-ID eines Sensors zu ändern.
- Automatisch: Zuweisung der Node-IDs an alle Sensoren in einem Vorgang. Ist auszuführen, wenn alle Sensoren angeschlossen sind.

Info: Die Zuweisung der Node-ID durch die Steuerungseinheit erfolgt in aufsteigender Reihenfolge entsprechend der Sensor-ID (SID).

 Halbautomatisch: Assistent zum Anschließen der Sensoren und Zuweisen der Node-ID an jeweils einen Sensor.

Vorgehensweise

- 1. Die Anwendung starten.
- 2. Auf **Konfiguration** klicken und prüfen, ob die Anzahl der in der Konfiguration enthaltenen Sensoren der Anzahl der installierten Sensoren entspricht.

- 3. Auf Einstellungen > Zuweisung Node-ID klicken.
- 4. Entsprechend dem Zuweisungstyp fortfahren:

Zuweisungstyp	Schritte
manuell	 Auf ANGESCHLOSSENE SENSOREN ERFASSEN klicken, um die angeschlossenen Sensoren anzuzeigen. Zum Zuweisen einer Node-ID für die nicht zugewiesene Node-ID in der Liste Konfigurierte Sensoren auf Zuweisen klicken. Zum Ändern einer Node-ID für die bereits zugewiesene Node-ID in der Liste Konfigurierte Sensoren auf Ändern klicken. Die SID des Sensors auswählen und bestätigen.
automatisch	 Auf ANGESCHLOSSENE SENSOREN ERFASSEN klicken, um die angeschlossenen Sensoren anzuzeigen. Auf NODE-ID ZUWEISEN > Automatisch klicken: Die Zuweisung der Node-ID durch die Steuerungseinheit erfolgt in aufsteigender Reihenfolge entsprechend der Sensor-ID (SID).
halbautomatisch	Auf NODE-ID ZUWEISEN > Halbautomatisch klicken und den angezeigten Anweisungen folgen.

10.4.7 Synchronisierung der Steuerungseinheiten

Wenn im Bereich mehrere Steuerungseinheiten vorhanden sind, wie folgt vorgehen:

- 1. In der Anwendung LBK Designer auf **Einstellungen > Erweitert** klicken.
- 2. Unter Synchronisierung mehrerer Steuerungseinheiten jeder Steuerungseinheit einen anderen Kanal der Steuerungseinheit zuweisen.

Info: Wenn mehr als vier Steuerungseinheiten vorhanden sind, müssen die Überwachungsbereiche der Steuerungseinheiten mit demselben Kanal einen möglichst großen Abstand zueinander aufweisen.

Prüfung der Sicherheitsfunktionen 10.5

10.5.1 Prüfung

Für die Prüfung ist der Maschinenhersteller und der Monteur des Systems zuständig.

Nach der Installation und Konfiguration des Systems muss geprüft werden, ob die Sicherheitsfunktionen wie beabsichtigt aktiviert/deaktiviert werden und ob der Gefahrenbereich daher vom System überwacht

Der Maschinenhersteller muss alle erforderlichen Tests entsprechend den Anwendungsbedingungen und der Risikobeurteilung festlegen.

WARNUNG

Die Reaktionszeit des Systems ist während der Prüfungsausführung nicht gewährleistet.

Die Anwendung LBK Designer erleichtert die Installation und Konfiguration des Systems. Trotzdem wird der nachstehend beschriebene Prüfprozess weiterhin benötigt, um die Installation abzuschließen.

10.5.2 Vorgehensweise bei der Prüfung der Zugangserfassung

Die Sicherheitsfunktion der Zugangserfassung muss in Betrieb sein und die folgenden Anforderungen müssen erfüllt sein:

- Wenn die Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts" nicht aktiviert ist, sollte das Zielobjekt ein Mensch sein.
- Wenn die Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts" aktiviert ist, sollte das Zielobjekt entsprechend dem kleinsten zu erfassenden Objekt gewählt werden.
- Das Zielobjekt (bei stationären Anwendungen) oder die Maschine/das Fahrzeug, auf der/dem der Sensor installiert ist (bei beweglichen Anwendungen) dürfen bei der Bewegung die maximal zulässige Geschwindigkeit nicht überschreiten. Für weitere Informationen siehe Geschwindigkeitsgrenzen bei der Zugangserfassung auf Seite 63.
- Das Zielobjekt darf nicht vollständig von Objekten verdeckt werden.

Ausgangsbedingungen

- Die Maschine ist ausgeschaltet (sicherer Zustand)
- LBK SBV System ist für die Sicherheitsfunktion der Zugangserfassung konfiguriert
- Die Erfassungssignale werden über Digitalausgänge oder Sicherheitsfeldbus überwacht

Prüfanordnung

Zweck der nachstehend beschriebenen Prüfungen ist es, die Leistungsfähigkeit des Sensors in Bezug auf die Sicherheitsfunktion der Zugangserfassung zu prüfen.

Bei stationären Anwendungen gelten für alle Tests die folgenden Parameter:

Zielobjekttyp	Entweder Mensch (bei deaktivierter Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts") oder das kleinste zu erfassende Objekt (bei aktivierter Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts")
Geschwindigkeit des Zielobjekts	Im Bereich [0,1, 1,6] m/s, mit besonderer Berücksichtigung der minimalen und maximalen Geschwindigkeit.
Annahmekriterien	Das System wird über Digitalausgänge oder Feldbus in den sicheren Zustand versetzt, wenn das Zielobjekt während der Prüfung in den Bereich gelangt.

Bei beweglichen Anwendungen gelten für alle Tests die folgenden Parameter:

Zielobjekttyp	Entweder Mensch (bei deaktivierter Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts") oder das kleinste zu erfassende Objekt (bei aktivierter Sicherheitsfunktion "Erfassung eines benutzerdefinierten Zielobjekts")
Geschwindigkeit der Maschine/des Fahrzeugs	Im Bereich [0,1, 4] m/s, mit besonderer Berücksichtigung der minimalen und maximalen Geschwindigkeit.
Bewegung des Zielobjekts	Fest installiert
Annahmekriterien	Das System wird über Digitalausgänge oder Feldbus in den sicheren Zustand versetzt, wenn das Sichtfeld des Sensors während der Bewegung der Maschine/des Fahrzeugs das Zielobjekt erreicht.

Vorgehensweise bei der Prüfung

Nachstehend wird die Vorgehensweise bei der Prüfung von LBK SBV System erläutert:

- 1. Die Prüfpositionen einschließlich jener Stellen, an denen sich der Bediener während des Produktionszyklus Zugang verschaffen kann, ermitteln:
 - a. Ränder des Gefahrenbereichs
 - b. Bereiche zwischen Sensoren
 - c. Stellen, die durch bestehende oder voraussichtliche Hindernisse während des Betriebszyklus

teilweise verborgen sind

- d. in der Risikobeurteilung benannte Stellen
- 2. Prüfen, ob das entsprechende Erfassungssignal aktiv ist, oder auf dessen Aktivierung warten.
- 3. Die Prüfung entsprechend der zuvor festgelegten Prüfanordnung vornehmen und dabei die Bewegung in Richtung einer der Prüfpositionen ausführen.
- 4. Prüfen, ob die zuvor festgelegten Annahmekriterien erfüllt sind. Wenn die Annahmekriterien für die Prüfung nicht erfüllt sind, siehe Problemlösung im Zusammenhang mit der Prüfung auf Seite 118.
- 5. Die Schritte 2, 3 und 4 für jede Prüfposition wiederholen.

10.5.3 Vorgehensweise bei der Prüfung der Wiederanlaufsperre

Die Sicherheitsfunktion der Wiederanlaufsperre muss in Betrieb sein und die folgenden Anforderungen müssen erfüllt sein:

- · Die Person muss normal atmen.
- Die Person darf nicht vollständig von Objekten verdeckt werden.

Ausgangsbedingungen

- Die Maschine ist ausgeschaltet (sicherer Zustand)
- LBK SBV System ist für die Sicherheitsfunktion der Wiederanlaufsperre konfiguriert
- Die Erfassungssignale werden über Digitalausgänge oder Sicherheitsfeldbus überwacht

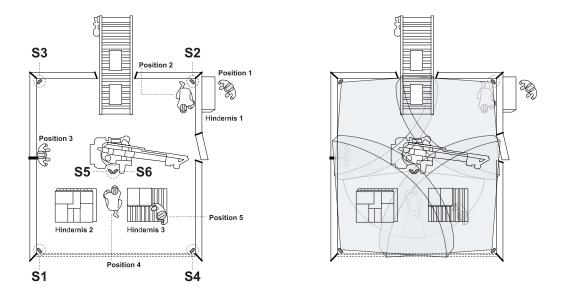
Prüfanordnung

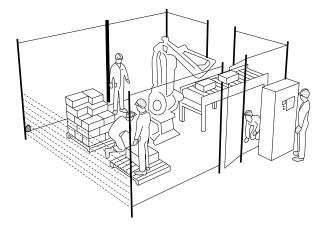
Zweck der nachstehend beschriebenen Prüfungen ist es, die Leistungsfähigkeit des Sensors in Bezug auf die Sicherheitsfunktion der Wiederanlaufsperre zu prüfen.

Für alle Tests gelten die folgenden Parameter:

Konfigurierter Timeout des Radars für den Wiederanlauf	Mindestens 4 s
Zielobjekttyp	Mensch gemäß ISO 7250, normal atmend
Geschwindigkeit des Zielobjekts	0 m/s
Körperhaltung des Zielobjekts	Stehen oder Hocken (oder andere Körperhaltungen gemäß Risikobeurteilung)
Prüfungsdauer	Mindestens 20 s
Annahmekriterien	Das Erfassungssignal bleibt während der Prüfung deaktiviert. Wenn der Bediener den Bereich verlässt, wird das Erfassungssignal aktiviert.

Vorgehensweise bei der Prüfung


Nachstehend wird die Vorgehensweise bei der Prüfung des Systems LBK SBV System erläutert:


- 1. Die Prüfpositionen einschließlich jener Stellen, an denen sich der Bediener während des Produktionszyklus normalerweise aufhalten soll, ermitteln:
 - Ränder des Gefahrenbereichs
 - Bereiche zwischen Sensoren
 - Stellen, die durch bestehende oder voraussichtliche Hindernisse während des Betriebszyklus teilweise verborgen sind
 - o in der Risikobeurteilung benannte Stellen
- 2. Den Gefahrenbereich betreten und zu einer der Prüfpositionen gehen: Das entsprechende Erfassungssignal sollte deaktiviert werden.
- 3. Die Prüfung entsprechend der zuvor festgelegten Prüfanordnung ausführen.
- 4. Prüfen, ob die zuvor festgelegten Annahmekriterien erfüllt sind.

- 5. Wenn die Annahmekriterien für die Prüfung nicht erfüllt sind, siehe Prüfung des Systems mit LBK Designer auf der nächsten Seite.
- 6. Die Schritte 2, 3 und 4 für jede Prüfposition wiederholen.

Beispiele für Prüfpositionen

Die folgenden Abbildungen zeigen Beispiele für zu prüfende Positionen und Empfehlungen für die Ermittlung anderer möglicherweise relevanter Positionen.

Position 1: Position außerhalb des Gefahrenbereichs

Position 2: Vom Standpunkt des Bedieners auf "Position 1" verborgene Position. Jede weitere ähnliche verborgene Position sollte geprüft werden.

Position 3: Position in der Mitte zwischen zwei Sensoren und/oder in der Nähe der Ränder des Gefahrenbereichs (z. B. entlang von Schutzzäunen). Diese Position wird für die Prüfung empfohlen, ob sich die Erfassungsbereiche verschiedener Sensoren überschneiden und dabei keine Bereiche unabgedeckt bleiben. Durch Stehen in der Nähe der Zäune kann ebenfalls geprüft werden, ob die Sensoren ordnungsgemäß ausgerichtet sind und sowohl die rechte als auch die linke Seite abdecken.

Position 4: möglicherweise von Objekten, die während der Prüfung in der Umgebung vorhanden sein können oder nicht, verborgene Position. Beispiele: Hindernis 2 behindert die Erfassung durch Sensor 1 **(S1)**. Hindernis 3 ist während des Prüfvorgangs teilweise vorhanden, wird jedoch während des normalen Betriebszyklus wahrscheinlich vorhanden sein und die Erfassung durch Sensor 4 **(S4)** behindern. Diese Position muss durch einen zusätzlichen Sensor 5 **(S5)** und Sensor 6 **(S6)** abgedeckt werden, der im Rahmen einer eigenen Machbarkeitsuntersuchung hinzugefügt werden muss.

Position 5: jede in der Risikobeurteilung benannte erhöhte und begehbare Position.

In der Risikobeurteilung oder vom Maschinenhersteller können noch weitere Positionen benannt sein.

10.5.4 Prüfung des Systems mit LBK Designer

Wenn die Prüffunktion aktiv ist, ist die Reaktionszeit des Systems nicht gewährleistet.

Die Anwendung LBK Designer ist bei der Prüfung der Sicherheitsfunktionen nützlich und ermöglicht die Prüfung des tatsächlichen Sichtfelds der Sensoren in Abhängigkeit von deren Installationsposition.

- 1. Auf Validierung klicken: Die Prüfung wird automatisch gestartet.
- 2. Innerhalb des Überwachungsbereichs Bewegungen wie in Vorgehensweise bei der Prüfung auf Seite 115 und Vorgehensweise bei der Prüfung der Wiederanlaufsperre auf Seite 115 angegeben ausführen.
- 3. Prüfen, ob sich der Sensor wie erwartet verhält.

Info: Wenn die Option Erfassung statischer Objekte aktiviert ist, steht der leere Punkt für ein sich bewegendes Zielobjekt und der volle Punkt für ein statisches Zielobjekt.

4. Prüfen, ob der Abstand und der Winkel der Bewegungserfassungsposition den vorgesehenen Werten entsprechen.

Zusätzliche Prüfungen für den Sicherheitsfeldbus 10.5.5

- Für die ordnungsgemäße Integration des Feldbusses die entsprechende Dokumentation zurate ziehen, siehe Integration in ein Feldbusnetzwerk auf der nächsten Seite.
- Die Anschlusskabel der Feldbusverbindung pr
 üfen und deren ordnungsgem
 äße Funktion sicherstellen.
- Die Einstellungen für den Sicherheitsfeldbus in der Konfiguration prüfen.
- Nur für CIP Safety™: Vor Eingabe der Konfigurationssignatur in die Konfiguration der Maschinen-PLC die Konfiguration der Steuerungseinheit prüfen.
- Nur für CIP Safety™: Prüfen, ob die zugewiesenen SNN-Nummern für jedes Sicherheitsnetzwerk oder unternetzwerk systemweit eindeutig sind.

10.5.6 Problemlösung im Zusammenhang mit der Prüfung

Problem	Ursache	Lösung
Das Erfassungssignal bleibt während der Prüfung der Wiederanlaufsperre nicht deaktiviert oder wird während der Prüfung der	Vorhandensein von Objekten, die das Sichtfeld behindern	Wenn möglich, das Objekt entfernen. Andernfalls zusätzliche Sicherheitsmaßnahmen für den Bereich vorsehen, in dem sich das Objekt befindet (z.B. Hinzufügen neuer Sensoren).
Zugangserfassung nicht deaktiviert.	Position eines oder mehrerer Sensoren	Die Sensoren so positionieren, dass der überwachte Bereich dem Gefahrenbereich angemessen ist (siehe Position des Sensors auf Seite 80).
	Neigung und/oder Installationshöhe eines oder mehrerer Sensoren	 Die Neigung und/oder Installationshöhe des Sensors so verändern, dass der Überwachungsbereich dem Gefahrenbereich angemessen ist (siehe Position des Sensors auf Seite 80). Die Neigung und Installationshöhe der Sensoren im ausgedruckten Konfigurationsbericht notieren oder aktualisieren.
	Ungeeigneter Timeout für den Wiederanlauf (nur bei aktivierter Option Erfassung statischer Objekte)	Den Parameter Timeout Wiederanlauf über die Anwendung LBK Designer ändern und prüfen, ob er für jeden Sensor auf mindestens 4 Sekunden festgelegt ist (Konfiguration > den jeweiligen Sensor und Erfassungsbereich auswählen)
Wenn der Bediener den Bereich verlässt, wird das Erfassungssignal nicht aktiviert	Vorhandensein von sich bewegenden Objekten im Sichtfeld des Sensors (einschließlich vibrierender Metallteile am Installationsort der Sensoren oder vibrierender Bügel)	Die sich bewegenden Objekte/Bügel ermitteln und, sofern möglich, alle lockeren Teile festziehen
	Signalreflexionen	Die Sensorpositionen ändern oder die Erfassungsbereiche durch Verringern des Erfassungsabstands anpassen

10.6 Integration in ein Feldbusnetzwerk

10.6.1 Vorgehensweise bei der Integration

Die Integration in das Feldbusnetzwerk kann sich je nach Modell und Typ der Steuerungseinheit unterscheiden. Siehe dazu die entsprechenden zusätzlichen Handbücher:

- LBK ISC BUS PS und LBK ISC110E-P: PROFIsafe-Kommunikation Leitfaden (Inxpect 100S_200S PROFIsafe RG_7_[DocLangCode]_de)
- LBK ISC100E-F und LBK ISC110E-F: FSoE-Kommunikation Leitfaden (Inxpect 100S_200S FSoE RG_7_[DocLangCode]_de)
- LBK ISC110E-C: CIP Safety-Kommunikation Leitfaden (Inxpect 100S_200S CIP RG_7_ [DocLangCode]_de)

10.7 Verwaltung der Konfiguration

10.7.1 Prüfsumme der Konfiguration

In der Anwendung LBK Designer kann unter Einstellungen > Prüfsumme der Konfiguration Folgendes eingesehen werden:

- der Hash des Konfigurationsberichts, ein eindeutiger alphanumerischer Code, der dem Bericht zugeordnet ist. Er wird unter Berücksichtigung der gesamten Konfiguration berechnet. Außerdem werden Datum/Uhrzeit des Vorgangs ÄNDERUNG ÜBERNEHMEN und der Name des dafür verwendeten Computers hinzugefügt;
- die Prüfsumme der dynamischen Konfiguration, die einer bestimmten dynamischen Konfiguration zugeordnet ist. Dabei werden sowohl die allgemeinen als auch die dynamischen Parameter berücksichtigt.

10.7.2 Konfigurationsberichte

Nach der Änderung der Konfiguration erzeugt das System einen Konfigurationsbericht mit den folgenden Informationen:

- Konfigurationsdaten
- · eindeutiger Hash
- · Datum und Uhrzeit der Konfigurationsänderung
- Name des für die Konfiguration verwendeten Computers

Bei den Berichten handelt es sich um nicht veränderbare Dokumente, die nur ausgedruckt werden können und vom Verantwortlichen für die Sicherheit der Maschine unterschrieben werden müssen.

Info: Zum Speichern der PDF-Datei auf dem Computer muss ein Drucker installiert sein.

10.7.3 Änderung der Konfiguration

WARNUNG

Während der Konfiguration ist das System deaktiviert. Vor der Konfiguration des Systems geeignete Sicherheitsmaßnahmen in dem durch das System geschützten Gefahrenbereich treffen

- 1. Die Anwendung LBK Designer starten.
- 2. Auf **Benutzer** klicken und das Administratorpasswort eingeben.

Info: Nach fünfmaliger Eingabe eines falschen Passworts wird die Authentifizierung für eine Minute gesperrt.

3. Je nach der gewünschten Änderung die folgenden Anweisungen beachten:

Zu ändernde Konfiguration	Erforderliche Schritte
Überwachungsbereich und Sensorkonfiguration	Auf Konfiguration klicken
Node-ID	Auf Einstellungen > Zuweisung Node-ID klicken
Funktion der Eingänge und Ausgänge	Auf Einstellungen > Digitaleingang/-ausgang klicken
Konfiguration der Erfassungsbereichsgruppen	Auf Einstellungen > Erfassungsbereichsgruppen klicken und für jeden Erfassungsbereich eines jeden angeschlossenen Sensors die Gruppe auswählen. Dann auf Einstellungen > Digitaleingang/-ausgang klicken und für einen Digitalausgang die Funktionen Erfassungssignalgruppe 1 oder Erfassungssignalgruppe 2 festlegen

Zu ändernde Konfiguration	Erforderliche Schritte	
Muting	Auf Einstellungen > Muting klicken	
Anzahl und Position der Sensoren	Auf Konfiguration klicken	

4. Auf ÄNDERUNG ÜBERNEHMEN klicken.

5. Nach Abschluss der Konfigurationsübertragung zur Steuerungseinheit zum Ausdrucken des Berichts auf 📥 klicken.

Info: Zum Speichern der PDF-Datei auf dem Computer muss ein Drucker installiert sein.

10.7.4 Anzeige früherer Konfigurationen

Unter Einstellungen auf Aktivitätsverlauf und anschließend auf Seite Konfigurationsberichte klicken: Das Berichtarchiv wird geöffnet.

10.8 Sonstige Vorgehensweisen

Ändern der Sprache 10.8.1

- 1. Auf klicken.
- 2. Die gewünschte Sprache auswählen. Die Sprache wird automatisch geändert.

10.8.2 Zurücksetzen auf die Werkseinstellungen

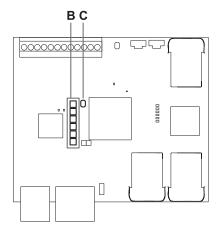
WARNUNG WARNUNG

Das System ist werksseitig nicht mit einer gültigen Konfiguration ausgestattet. Beim erstmaligen Start verbleibt das System daher so lange im sicheren Zustand, bis über die Anwendung LBK Designer durch Anklicken von ÄNDERUNG ÜBERNEHMEN eine gültige Konfiguration übernommen wird.

WARNUNG

Durch diese Vorgehensweise werden die Konfiguration und das Passwort für alle Benutzer zurückgesetzt.

Zum Zurücksetzen der Konfigurationsparameter auf die Werkseinstellungen ist wie folgt vorzugehen:


Vorgehensweise über die Anwendung LBK Designer

- 1. Als Admin bei der Anwendung LBK Designer anmelden.
- 2. Unter Admin > AUF WERKSEINSTELLUNGEN ZURÜCKSETZEN.

Vorgehensweise über die Reset-Taste auf der Steuerungseinheit

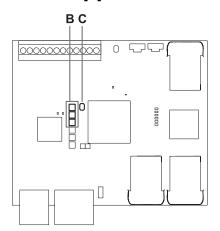
- 1. Die Taste [C] drücken und länger als 10 Sekunden gedrückt halten: Alle Zustands-LEDs [B] des Systems leuchten auf (stetig orange) und das System kann nun zurückgesetzt werden.
- 2. Die Taste [C] loslassen: Alle Zustands-LEDs [B] des Systems leuchten auf (grün blinkend) und der Zurücksetzvorgang beginnt. Der Vorgang kann bis zu 30 Sekunden dauern. Das System während des Zurücksetzvorgangs nicht ausschalten.

Info: Wenn die Taste länger als 30 Sekunden gedrückt wird, wechselt die Farbe der Zustands-LEDs auf Rot und das Zurücksetzen wird auch dann nicht ausgeführt, wenn die Taste losgelassen wird.

Für nähere Informationen zu den Standardwerten für die Parameter siehe Konfiguration der Anwendungsparameter auf Seite 159.

10.8.3 Zurücksetzen der Ethernet-Parameter der Steuerungseinheit

- 1. Sicherstellen, dass die Steuerungseinheit eingeschaltet ist.
- 2. Die Reset-Taste für die Netzwerkparameter drücken und während der Schritte 3 und 4 gedrückt halten.
- 3. Fünf Sekunden warten.
- 4. Warten, bis alle sechs LEDs auf der Steuerungseinheit stetig grün leuchten: Die Ethernet-Parameter werden so auf die Standardeinstellungen zurückgesetzt (siehe Ethernet-Verbindung (falls verfügbar) auf Seite 144).
- 5. Die Steuerungseinheit erneut konfigurieren.


10.8.4 Zurücksetzen der Netzwerkparameter

♠ WARNUNG

Nach dem Zurücksetzen der Netzwerkparameter geht das System in den sicheren Zustand. Die Konfiguration muss mithilfe der Anwendung LBK Designer geprüft und ggf. geändert werden: Dazu auf ÄNDERUNG ÜBERNEHMEN klicken.

- Zum Zurücksetzen der Netzwerkparameter auf die Werkseinstellungen die Reset-Taste [C] auf der Steuerungseinheit drücken und 2 bis 5 Sekunden lang gedrückt halten: Die ersten drei Zustands-LEDs [B] des Systems leuchten auf (stetig orange) und die Netzwerkparameter können nun zurückgesetzt werden.
- 2. Die Taste [C] loslassen: Das Zurücksetzen wird ausgeführt.

Für nähere Informationen zu den Standardwerten für die Parameter siehe Konfiguration der Anwendungsparameter auf Seite 159.

10.8.5 Identifizierung eines Sensors

Unter **Einstellungen > Zuweisung Node-ID** oder **Konfiguration** bei der Node-ID des gewünschten Sensors auf **Mit LED identifizieren** klicken: Die LED am Sensor blinkt 5 Sekunden lang.

10.8.6 Festlegen der Netzwerkparameter

Unter **Admin > Netzwerk** die IP-Adresse, die Netzmaske und den Gateway der Steuerungseinheit wie gewünscht festlegen.

10.8.7 Festlegen der MODBUS-Parameter

Unter **Admin > MODBUS-Parameter** die MODBUS-Kommunikation aktivieren/deaktivieren und den Überwachungsport ändern.

10.8.8 Festlegen der Feldbusparameter

Unter **Admin > Feldbusparameter** die Parameter entsprechend der Feldbusschnittstelle wie folgt festlegen:

- für die PROFIsafe-Schnittstelle die F-Adressen und die Endianness des Feldbusses
- für die Safety over EtherCAT®-Schnittstelle die Safe address
- für die CIP Safety™-Schnittstelle die Netzwerkeinstellungen, den Hostnamen, die SNN und die Endianness des Feldbusses

10.8.9 Festlegen der Systemetiketten

Unter **Admin > Systemetiketten** die gewünschten Etiketten für Steuerungseinheit und Sensoren auswählen.

11 Problemlösung

Wartungspersonal der Maschine

Das Wartungspersonal der Maschine besteht aus qualifizierten Personen, die über die entsprechenden Administratorrechte verfügen, um die Konfiguration von LBK SBV System über die Software zu ändern sowie Wartungs- und Problemlösungstätigkeiten durchzuführen.

11.1 Vorgehensweisen zur Problemlösung

Info: Wenn Sie vom technischen Kundendienst darum gebeten werden, klicken Sie unter **Einstellungen** > **Aktivitätsverlauf** auf **Debugdaten der Sensoren herunterladen**, um die Dateien herunterzuladen, und übermitteln Sie diese für das Debugging an Leuze.

11.1.1 LEDs an der Steuerungseinheit

Für nähere Informationen zu den LEDs der Steuerungseinheit siehe Steuerungseinheiten auf Seite 25 und LED Systemzustand auf Seite 30.

LED	Zustand	Meldungen der Anwen- dung	Problem	Lösung
S1* F	Rot, Dauerlicht	CONTROLLER POWER ERROR	Fehler bei mindestens einem Spannungswert der Steue- rungseinheit	Wenn auch nur ein Digi- taleingang angeschlossen ist, muss geprüft werden, ob der SNS-Eingang und der GND-Eingang ange- schlossen sind.
				Prüfen, ob die Eingangs-versorgungsspannung der Spezifikation entspricht (siehe Allgemeine Merkmale auf Seite 143).
S1 + S3	Rot, Dauerlicht	BACKUP Oder RESTORE ERROR	Fehler bei der Sicherung und Wiederherstellung über microSD-	Prüfen, ob die microSD-Karte eingesteckt wurde.
			Karte	Prüfen, ob die Kon- figurationsdatei auf der microSD-Karte vorhanden und nicht beschädigt ist.
S2	Rot, Dauerlicht	CONTROLLER TEMPERATURE ERROR	Fehler beim Temperaturwert der Steuerungseinheit	Prüfen, ob das System mit der erlaubten Betrieb- stemperatur betrieben wird (siehe Allgemeine Merkmale auf Seite 143).
S3	Rot, Dauerlicht	OSSD ERROR Oder INPUT ERROR	Fehler an mindestens einem Eingang oder Ausgang	Wenn mindestens ein Eingang verwendet wird, muss geprüft werden, ob beide Kanäle angeschlossen sind und keine Kurzschlüsse an den Ausgängen auftreten.
				Wenn das Problem andauert, den technischen Kun- dendienst kontaktieren.
S4	Rot, Dauerlicht	PERIPHERAL ERROR	Fehler bei mindestens einer Peri- pheriefunktion der Steue-	Den Status der Karte und die Anschlüsse prüfen.
			rungseinheit	Wenn das Problem andauert, den technischen Kun- dendienst kontaktieren.

LED	Zustand	Meldungen der Anwen-	Problem	Lösung
S5	Rot, Dauerlicht	CAN ERROR	Fehler bei der Kommunikation mit mindestens einem Sensor	_
S6	Rot, Dauerlicht	FEE ERROR, FLASH ERROR oder RAM ERROR	Fehler beim Speichern der Konfiguration oder Konfiguration nicht durchgeführt oder Speicherfehler	Das System neu konfigurieren bzw. konfigurieren (siehe Verwaltung der Konfiguration auf Seite 119). Wenn der Fehler andauert, den technischen Kundendienst kontaktieren.
Alle LEDs von S1 bis S6 gleich- zeitig	Rot, Dauerlicht	FIELDBUS ERROR	Kommunikationsfehler am Feldbus	Mindestens ein Eingang oder ein Ausgang sind als Gesteuert über Feldbus konfiguriert. Prüfen, ob das Kabel ordnungsgemäß angeschlossen ist, ob die Kommunikation mit dem Host ordnungsgemäß eingerichtet ist, ob der Timeout des Watchdogs ordnungsgemäß konfiguriert ist und ob der Datenaustausch auch bei Passivierung aufrechterhalten wird.
Alle LEDs von S1 bis S5 gleich- zeitig	Rot, Dauerlicht	DYNAMIC CONFIGURATION ERROR	Fehler bei der Auswahl der dynamischen Konfiguration: Kennung nicht gültig	Die standardmäßigen Kon- figurationen in der Anwen- dung LBK Designer prüfen.
Alle LEDs von S1 bis S4 gleich- zeitig	Rot, Dauerlicht	SENSOR CONFIGURATION ERROR	Fehler bei der Konfiguration der Sensoren	Die angeschlossenen Sensoren prüfen und die Konfiguration des Systems über die Anwendung LBK Designer erneut versuchen. Prüfen, ob die Firmware der Steuerungseinheit und der Sensoren auf kompatible Versionen aktualisiert wurde.
Mindestens eine LED	Rot blinkend	Siehe LED am Sensor auf der nächsten Seite	Fehler am Sensor, der der blin- kenden LED zugeordnet ist ** (siehe LED am Sensor auf der nächsten Seite)	Das Problem anhand der LED am Sensor prüfen.
Mindestens eine LED	Grün blinkend	Siehe LED am Sensor auf der nächsten Seite	Fehler am Sensor, der der blin- kenden LED zugeordnet ist ** (siehe LED am Sensor auf der nächsten Seite)	Wenn das Problem länger als eine Minute andauert, den technischen Kundendienst kontaktieren.
Alle LEDs	Orange, Dau- erlicht	-	Das System startet gerade.	Einige Sekunden warten.

LED	Zustand	Meldungen der Anwen- dung	Problem	Lösung
Alle LEDs	Nacheinander grün blinkend	-	Die Steuerungseinheit befindet sich im Boot-Zustand (Start).	Die neueste verfügbare Version der Anwendung LBK Designer öffnen, das Gerät verbinden und die automatische Wiederherstellung ausführen. Wenn das Problem andauert, den technischen Kundendienst kontaktieren.
Alle LEDs	Aus	Unter Dashboard > Systemzustand Symbol 🛕	Die Konfiguration wird auf die Steuerungseinheit noch nicht angewendet.	Konfiguration des Systems.
Alle LEDs	Aus	Fortschrittssymbol	Die Konfigurationsübertragung zur Steuerungseinheit läuft.	Warten, bis die Übertragung abgeschlossen ist.

Info: Die Ausfallmeldung an der Steuerungseinheit (stetig leuchtende LED) hat Vorrang gegenüber der Ausfallmeldung der Sensoren. Um den Zustand eines einzelnen Sensors festzustellen, die LED am Sensor prüfen.

Info*: S1 ist die Erste von oben.

Info**: S1 entspricht dem Sensor mit der ID 1, S2 entspricht dem Sensor mit der ID 2 usw.

11.1.2 LED am Sensor

Zustand	Meldungen der Anwendung	Problem	Lösung
Violett, Dauerlicht	-	Sensor im Boot-Zustand (Start)	Den technischen Kundendienst kontaktieren.
Violett blinkend *	-	Der Sensor erhält gerade ein Firmware-Update	Warten, bis das Update abgeschlossen ist, und dabei den Sensor nicht trennen.
Rot blinkend. Zweimaliges Blinken gefolgt von einer Pause **	CAN ERROR	Dem Sensor wurde keine gültige Kennung zugewiesen	Dem Sensor eine Node-ID zuweisen (siehe Anschluss der Sensoren an die Steuerungseinheit auf Seite 105).
Rot blinkend. Dreimaliges Blinken gefolgt von einer Pause **	CAN ERROR	Der Sensor empfängt keine gültigen Meldungen von der Steuerungseinheit	Die Verbindung aller Sensoren der Kette prüfen und kontrollieren, ob die in der Anwendung LBK Designer konfigurierte Anzahl der Sensoren der Anzahl der physisch angeschlossenen Sensoren entspricht

Zustand	Meldungen der Anwendung	Problem	Lösung
Rot blinkend. Viermaliges Blinken gefolgt von einer Pause **	SENSOR TEMPERATURE ERROR oder SENSOR POWER ERROR	Sensor mit Temperaturfehler oder falscher Spannungsversorgung	Prüfen, ob der Sensor angeschlossen ist und die Kabellänge den Höchstwert nicht überschreitet. Prüfen, ob die Umgebungstemperatur des Systems mit den in den Technischen Daten in diesem Handbuch angegebenen Betriebstemperaturen kompatibel ist.
Rot blinkend. Fünfmaliges Blinken gefolgt von einer Pause **	MASKING, SIGNAL PATTERN ERROR ***	Der Sensor hat eine Verdeckung (Manipulation) erkannt oder es sind andere Fehler des Radarsignals aufgetreten.	Nicht verfügbar, wenn der Sensor auf Muting geschaltet ist. Prüfen, ob der Sensor ordnungsgemäß installiert und der Bereich frei von Objekten ist, welche das Sichtfeld der Sensoren behindern.
	MASKING REFERENCE MISSING	Der Sensor ist nicht in der Lage, die Referenz des Überwachungsbereichs für die Verdeckungsschutzfunktion zu speichern.	Die Systemkonfiguration erneut vornehmen und sicherstellen, dass keine Bewegung im Überwachungsbereich erfolgt.
	MSS ERROR/DSS ERROR	Von der Diagnose erfasster Fehler der internen Mikrocontroller (MSS und DSS), ihrer internen Peripheriefunktionen oder der Speicher	Wenn das Problem andauert, den technischen Kundendienst kontaktieren.
Rot blinkend. Sechsmaliges Blinken gefolgt von einer Pause **	TAMPER ERROR	Der Sensor hat eine Drehung um seine Achsen erkannt (Manipulation)	Nicht verfügbar, wenn der Sensor auf Muting geschaltet ist. Prüfen, ob der Sensor manipuliert wurde oder ob sich die seitlichen Schrauben bzw. die Montageschrauben gelockert haben.

Info *: Das Blinken erfolgt in Intervallen von 100 ms ohne Pause

Info **: Das Blinken erfolgt in Intervallen von 200 ms mit anschließender Pause von 2 s.

Leuze 11 Problemlösung

11.1.3 **Sonstige Probleme**

Problem	Ursache	Lösung
Unerwünschte Erfassungen	Personen oder Objekte bewegen sich in der Nähe des Erfassungsbereichs	Die Konfiguration ändern (siehe Änderung der Konfiguration auf Seite 119).
Maschine im sicheren Zustand	Ausfall der Spannungsversorgung	Den elektrischen Anschluss prüfen. Falls erforderlich, den technischen Kundendienst
ohne Bewegungen im		kontaktieren.
Erfassungsbereich	Ausfall an der Steuerungseinheit oder an einem oder mehreren	Den Zustand der LEDs an der Steuerungseinheit prüfen (siehe LEDs an der Steuerungseinheit auf Seite 123).
	Sensoren	Die Anwendung LBK Designer aufrufen. Auf der Seite Dashboard die Maus auf ② bei der Steuerungseinheit oder beim Sensor bewegen.
Der am SNS- Eingang ermittelte Spannungswert ist null	Der Chip zur Erfassung der Eingänge ist ausgefallen	Den technischen Kundendienst kontaktieren
Das System funktioniert nicht ordnungsgemäß	Fehler der Steuerungseinheit	Den Zustand der LEDs an der Steuerungseinheit prüfen (siehe LEDs an der Steuerungseinheit auf Seite 123).
		Die Anwendung LBK Designer aufrufen. Auf der Seite Dashboard die Maus auf ② bei der Steuerungseinheit oder beim Sensor bewegen.
	Fehler am Sensor	Den Zustand der LEDs am Sensor prüfen (siehe LED am Sensor auf Seite 125).
		Die Anwendung LBK Designer aufrufen. Auf der Seite Dashboard die Maus auf ᠍ bei der Steuerungseinheit oder beim Sensor bewegen.

11.2 Verwaltung des Ereignisprotokolls

11.2.1 **Einleitung**

Das Protokoll der vom System aufgezeichneten Ereignisse kann als PDF-Datei über die Anwendung LBK Designer heruntergeladen werden. Das System speichert bis zu 4500 Ereignisse, die in zwei Abschnitte unterteilt sind. In jedem Abschnitt werden die Ereignisse beginnend mit dem jüngsten Ereignis angezeigt. Wenn diese Grenze erreicht ist, werden die ältesten Ereignisse überschrieben.

11.2.2 **Download des Systemprotokolls**

Die Reaktionszeit des Systems ist während des Downloads der Protokolldatei nicht gewährleistet.

- 1. Die Anwendung LBK Designer starten.
- 2. Auf Einstellungen und anschließend auf Aktivitätsverlauf klicken.
- 3. Auf PROTOKOLL HERUNTERLADEN klicken.

Info: Zum Speichern der PDF-Datei auf dem Computer muss ein Drucker installiert sein.

11.2.3 Abschnitte der Protokolldatei

Die erste Zeile der Datei gibt die Netzwerkidentifikation (NID) des Geräts und das Downloaddatum an.

Der übrige Teil der Protokolldatei ist in zwei Abschnitte unterteilt:

Abschnitt	Beschreibung	Inhalt	Größe	Zurücksetzen
1	Ereignisprotokoll	Info- Ereignisse	3500	Nach jedem Firmware-Update oder nach Anforderung über die Anwendung LBK Designer
		Fehler- Ereignisse		
2	Protokoll der Diagnoseereignisse	Fehler- Ereignisse	1000	Nicht zulässig

11.2.4 Aufbau der Protokollzeile

Jede Zeile der Protokolldatei enthält die folgenden Informationen, die jeweils durch ein Tabulatorzeichen voneinander getrennt sind:

- Zeitstempel (Sekundenzähler seit dem letzten Start)
- Zeitstempel (Absolut-/Relativwert)
- · Art des Ereignisses:
 - [ERROR] = Diagnoseereignis
 - ∘ [INFO] = Info-Ereignis
- Quelle
 - o CONTROLLER = wenn das Ereignis von der Steuerungseinheit erzeugt wird
 - SENSOR ID = wenn das Ereignis von einem Sensor erzeugt wird. In diesem Fall wird auch die Node-ID des Sensors angegeben
- · Beschreibung des Ereignisses

11.2.5 Zeitstempel (Sekundenzähler seit dem letzten Start)

Der Zeitpunkt, zu dem das Ereignis eingetreten ist, wird als Relativzeit in Sekunden seit dem letzten Start angegeben.

Beispiel: 92

Bedeutung: Das Ereignis ist 92 Sekunden nach dem letzten Start eingetreten.

11.2.6 Zeitstempel (Absolut-/Relativwert)

Es wird der Zeitpunkt angegeben, zu dem das Ereignis eingetreten ist.

• Nach einer Neukonfiguration des Systems erfolgt die Angabe als Absolutzeit.

Format: JJJJ/MM/TT hh:mm:ss

Beispiel: 2020/06/05 23:53:44

Nach einem Wiederanlauf des Geräts erfolgt die Angabe als Relativzeit zum letzten Wiederanlauf.

Format: Rel. x d hh:mm:ss

Beispiel: Rel. 0 d 00:01:32

Info: Wenn eine Neukonfiguration des Systems durchgeführt wird, werden auch die ältesten Zeitstempel im Format der Absolutzeit aktualisiert.

Info: Im Zuge der Systemkonfiguration erfasst die Steuerungseinheit die lokale Uhrzeit der Maschine, auf der die Software ausgeführt wird.

11.2.7 Beschreibung des Ereignisses

Angegeben wird eine vollständige Beschreibung des Ereignisses. Falls möglich, werden je nach Ereignis zusätzliche Parameter angegeben.

Im Fall eines Diagnoseereignisses wird auch ein interner Fehlercode hinzugefügt, der für das Debugging hilfreich ist. Wenn das Diagnoseereignis entfernt wird, wird das Etikett "(Disappearing)" als zusätzlicher Parameter angegeben.

Beispiele

Detection access (field #3, 1300 mm/40°)

System configuration #15

CAN ERROR (Code: 0x0010) COMMUNICATION LOST

CAN ERROR (Disappearing)

11.2.8 Beispiel für eine Protokolldatei

Ereignisprotokoll für ISC NID UP304 aktualisiert am 2020/11/18 um 16:59:56

[Section 1 - Event logs]

380 2020/11/18 16:53:49 [ERROR] SENSOR#1 CAN ERROR (Disappearing)

375 2020/11/18 16:53:44 [ERROR] SENSOR#1 CAN ERROR (Code: 0x0010) COMMUNICATION LOST

356 2020/11/18 16:53:25 [INFO] CONTROLLER System configuration #16

30 2020/11/18 16:53:52 [ERROR] SENSOR#1 ACCELEROMETER ERROR (Disappearing)

27 2020/11/18 16:47:56 [ERROR] SENSOR#1 ACCELEROMETER ERROR (Code: 0x0010) TILT ANGLE ERROR

5 2020/11/18 16:47:30 [ERROR] SENSOR#1 SIGNAL ERROR (Code: 0x0012) MASKING

0 2020/11/18 16:47:25 [INFO] CONTROLLER Dynamic configuration #1

0 2020/11/18 16:47:25 [INFO] CONTROLLER System Boot #60

92 Rel. 0 d 00:01:32 [INFO] CONTROLLER Detection exit (field #2)

90 Rel. 0 d 00:01:30 [INFO] CONTROLLER Detection exit (field #1)

70 Rel. 0 d 00:01:10 [INFO] SENSOR#1 Detection access (field #2, 3100 mm/20°)

61 Rel. 0 d 00:01:01 [INFO] SENSOR#1 Detection access (field #1, 1200 mm/30°)

0 Rel. 0 d 00:00:00 [INFO] CONTROLLER Dynamic configuration #1

0 0 d 00:00:00 [INFO] CONTROLLER System Boot #61

[Section 2 - Diagnostic events log]

380 Rel. 0 d 00:06:20 [ERROR] SENSOR #1 CAN ERROR (Disappearing)

375 Rel. 0 d 00:06:15 [ERROR] SENSOR #1 CAN ERROR (Code: 0x0010) COMMUNICATION LOST

356 Rel. 0 d 00:05:56 [INFO] CONTROLLER System configuration #16

30 Rel. 0 d 00:00:30 [ERROR] SENSOR #1 ACCELEROMETER ERROR (Disappearing)

 $27\;\text{Rel.}\,0\,\text{d}\,00:00:27\;\text{[ERROR]}\,\text{SENSOR}\,\text{\#1}\,\,\text{ACCELEROMETER}\,\text{ERROR}\,\text{(Code: 0x0012)}\,\,\text{TILT}\,\text{ANGLE}\,\text{ERROR}\,\text{(Code: 0x0012)}\,\text{TILT}\,\text{ANGLE}\,\text{ERROR}\,\text{(Code: 0x0012)}\,\text{TILT}\,\text{ERROR}\,\text{(Code: 0x0012)$

5 Rel. 0 d 00:00:05 [ERROR] SENSOR #1 SIGNAL ERROR (Code: 0x0014) MASKING

11.2.9 Ereignisliste

Nachstehend sind die Ereignisprotokolle angegeben:

Ereignis	Тур
Diagnostic errors	ERROR
System Boot	INFO
System configuration	INFO
Factory reset	INFO
Stop signal	INFO
Restart signal	INFO
Detection access	INFO
Detection exit	INFO
Dynamic configuration in use	INFO
Muting status	INFO
Fieldbus connection	INFO
MODBUS connection	INFO
Session authentication	INFO
Validation	INFO
Log download	INFO

Für weitere Informationen zu den Ereignissen siehe INFO-Ereignisse auf der nächsten Seite und FEHLER-Ereignisse (Steuerungseinheit) auf Seite 134.

11.2.10 Ausführlichkeitsgrad

Es gibt sechs Ausführlichkeitsgrade für das Protokoll. Der Ausführlichkeitsgrad kann im Zuge der Systemkonfiguration über die Anwendung LBK Designer festgelegt werden (**Einstellungen** > **Aktivitätsverlauf** > **Ausführlichkeitsgrad der Protokolle**).

Je nach dem gewählten Ausführlichkeitsgrad werden die Ereignisse wie in der nachstehenden Tabelle angegeben aufgezeichnet:

Ereignis	Grad 0 (Standardeinstellung)	Grad 1	Grad 2	Grad 3	Grad 4	Grad 5
Diagnostic errors	Х	х	х	х	х	х
System Boot	Х	Х	х	Х	Х	х
System configuration	х	х	х	х	х	х
Factory reset	Х	Х	х	Х	Х	х
Stop signal	Х	Х	х	Х	Х	х
Restart signal	Х	Х	Х	Х	Х	Х
Detection access	-	Siehe Ausführlichkeitsgrad für die Ereignisse Erfassungsbeginn und Erfassungsende auf der nächsten Seite				
Detection exit	-		he Ausführlic gsbeginn und	_	_	

Ereignis	Grad 0 (Standardeinstellung)	Grad 1	Grad 2	Grad 3	Grad 4	Grad 5
Dynamic configuration in use	-	-	-	-	х	х
Muting status	-	-	-	-	-	х

11.2.11 Ausführlichkeitsgrad für die Ereignisse Erfassungsbeginn und Erfassungsende

Je nach dem gewählten Ausführlichkeitsgrad werden die Ereignisse Erfassungsbeginn und Erfassungsende wie folgt aufgezeichnet:

- GRAD 0: keine Aufzeichnung von Informationen über die Erfassung
- GRAD 1: Die Ereignisse werden auf der Ebene der Steuerungseinheit aufgezeichnet; als Zusatzinformationen werden angegeben: Erfassungsabstand (in mm) und Erfassungswinkel (in °)*zu Erfassungsbeginn

Format:

CONTROLLER Detection access (distance mm/azimuth°)

CONTROLLER Detection exit

 GRAD 2: Die Ereignisse werden für einen einzelnen Bereich auf der Ebene der Steuerungseinheit aufgezeichnet; als Zusatzinformationen werden angegeben: Erfassungsbereich, Erfassungsabstand (in mm) und Erfassungswinkel (in°)*zu Erfassungsbeginn, Erfassungsbereich am Erfassungsende

Format:

CONTROLLER Detection access (field #n, distance mm/azimuth°)

CONTROLLER Detection exit (field #n)

- GRAD 3/GRAD 4/GRAD 5: Die Ereignisse werden wie folgt aufgezeichnet:
 - für einen einzelnen Bereich auf der Ebene der Steuerungseinheit; als Zusatzinformationen werden angegeben: Erfassungsbereich, Erfassungsabstand (in mm) und Erfassungswinkel (in °)* zu Erfassungsbeginn, Erfassungsbereich am Erfassungsende
 - auf Sensorebene; folgende Zusatzinformationen werden vom Sensor ausgelesen: Erfassungsabstand (in mm) und Erfassungswinkel (in °)* zu Erfassungsbeginn und Erfassungsbereich am Erfassungsende

Format:

CONTROLLER #k Detection access (field #n, distance mm/azimuth°)

SENSOR #k Detection access (distance mm/azimuth°)

CONTROLLER Detection exit (field #n)

SENSOR #k Detection exit

Info*: siehe Winkelkonventionen für die Zielobjektposition auf Seite 150.

11.3 INFO-Ereignisse

11.3.1 System Boot

Das Ereignis wird bei jedem Einschalten des Systems aufgezeichnet; dabei wird die fortlaufende Nummer des Starts ab dem Beginn der Lebensdauer des Geräts angegeben.

Format: System Boot #n

Beispiel:

0 2020/11/18 16:47:25 [INFO] CONTROLLER SYSTEM BOOT #60

11.3.2 System configuration

Das Ereignis wird bei jeder Konfiguration des Systems aufgezeichnet; dabei wird die fortlaufende Nummer der Konfiguration ab dem Beginn der Lebensdauer des Geräts angegeben.

Format: System configuration #3

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER System configuration #3

11.3.3 Factory reset

Das Ereignis wird bei jedem Zurücksetzen auf Werkseinstellungen aufgezeichnet.

Format: Factory reset

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Factory reset

11.3.4 Stop signal

Falls konfiguriert, wird jede Änderung des Stoppsignals als ACTIVATION oder DEACTIVATION aufgezeichnet.

Format: Stop signal ACTIVATION/DEACTIVATION

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Stop signal ACTIVATION

11.3.5 Restart signal

Falls konfiguriert, wird immer dann, wenn das System auf das Wiederanlaufsignal wartet oder das Wiederanlaufsignal empfangen wird, das Ereignis als WAITING oder RECEIVED aufgezeichnet.

Format: Restart signal WAITING/RECEIVED

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Restart signal RECEIVED

11.3.6 Detection access

Jedes Mal, wenn eine Bewegung erfasst wird, wird ein Erfassungsbeginn mit zusätzlichen Parametern entsprechend dem gewählten Ausführlichkeitsgrad aufgezeichnet: die Nummer des Erfassungsbereichs, der die Bewegung erfassende Sensor, der Erfassungsabstand (in mm) und der Erfassungswinkel (in °)* (siehe Ausführlichkeitsgrad für die Ereignisse Erfassungsbeginn und Erfassungsende auf der vorherigen Seite).

Format: Detection access (field #n, distance mm/azimuth°)

Info*: siehe Winkelkonventionen für die Zielobjektposition auf Seite 150.

Beispiel:

20 2020/11/18 16:47:25 [INFO] SENSOR #1 Detection access (field #1, 1200 mm/30°)

11.3.7 Detection exit

Nach mindestens einem Ereignis "Erfassungsbeginn" wird ein Ereignis "Erfassungsende" für denselben Bereich aufgezeichnet, wenn das Erfassungssignal in seinen standardmäßigen Zustand der Bewegungsfreiheit zurückkehrt.

Ja nach dem gewählten Ausführlichkeitsgrad werden weitere Parameter aufgezeichnet: die Nummer des Erfassungsbereichs, der die Bewegung erfassende Sensor.

Format: Detection exit (field #n)

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Detection exit (field #1)

11.3.8 Dynamic configuration in use

Bei jedem Wechsel der dynamischen Konfiguration wird die neue ID der gewählten dynamischen Konfiguration aufgezeichnet.

Format: Dynamic configuration #1

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Dynamic configuration #1

11.3.9 Muting status

Jede Änderung des Muting-Zustandes der einzelnen Sensoren wird mit den Werten disabled oder enabled aufgezeichnet.

Info: Das Ereignis gibt eine Änderung des Muting-Zustandes des Systems an. Es entspricht nicht einer Muting-Anforderung.

Format: Muting disabled/enabled

Beispiel:

20 2020/11/18 16:47:25 [INFO] SENSOR#1 Muting enabled

11.3.10 Fieldbus connection

Der Zustand der Feldbuskommunikation wird mit den Werten CONNECTED, DISCONNECTED oder FAULT aufgezeichnet.

Format: Fieldbus connection CONNECTED/DISCONNECTED/FAULT

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Fieldbus connection CONNECTED

11.3.11 MODBUS connection

Der Zustand der MODBUS-Kommunikation wird mit den Werten CONNECTED oder DISCONNECTED aufgezeichnet.

Format: MODBUS connection CONNECTED/DISCONNECTED

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER MODBUS connection CONNECTED

11.3.12 Session authentication

Der Zustand der Authentifizierungssitzung und die verwendete Schnittstelle (USB/ETH) werden aufgezeichnet.

Format: Session OPEN/CLOSE/WRONG PASSWORD/UNSET PASSWORD/TIMEOUT/PASSWORT ÄNDERN via USB/ETH

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Session OPEN via USB

11.3.13 Validation

Jeder Beginn oder jedes Ende einer Prüftätigkeit am Gerät wird als Ereignis aufgezeichnet. Auch die verwendete Schnittstelle (USB/ETH) wird aufgezeichnet.

Format: Validation STARTED/ENDED via USB/ETH

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Validation STARTED via USB

11.3.14 Log download

Jeder ausgeführte Protokoll-Download wird als Ereignis aufgezeichnet. Auch die verwendete Schnittstelle (USB/ETH) wird aufgezeichnet.

Format: Log download via USB/ETH

Beispiel:

20 2020/11/18 16:47:25 [INFO] CONTROLLER Log download via USB

11.4 FEHLER-Ereignisse (Steuerungseinheit)

11.4.1 Einleitung

Jedes Mal, wenn die Funktionen für die periodische Diagnose einen Eingangs- oder Ausgangsfehler bei der Steuerungseinheit feststellen, wird ein Diagnosefehler registriert.

11.4.2 Temperaturfehler (TEMPERATURE ERROR)

Fehler	Bedeutung
BOARD TEMPERATURE TOO LOW	Temperatur der Karte unter dem Minimum
BOARD TEMPERATURE TOO HIGH	Temperatur der Karte über dem Maximum

11.4.3 Spannungsfehler Steuerungseinheit (POWER ERROR)

Fehler	Bedeutung
Spannung Steuerungseinheit UNDERVOLTAGE	Unterspannungsfehler für die angezeigte Spannung
Spannung Steuerungseinheit OVERVOLTAGE	Überspannungsfehler für die angezeigte Spannung
ADC CONVERSION ERROR	Umwandlungsfehler des in den Mikrocontroller integrierten ADC

In der nachstehenden Tabelle sind die Spannungen der Steuerungseinheit aufgeführt:

Siebdruck	Beschreibung	
VIN	Versorgungsspannung (+24 V DC)	
V12	Interne Versorgungsspannung	
V12 sensors	Versorgungsspannung der Sensoren	
VUSB	Spannung des USB-Anschlusses	
VREF	Referenzspannung für die Eingänge (VSNS Error)	
ADC	Analog-Digital-Wandler	

11.4.4 Fehler Peripheriefunktionen (PERIPHERAL ERROR)

Von der Diagnose erfasster Fehler des Mikrocontrollers, seiner internen Peripheriefunktionen oder Speicher.

11.4.5 Konfigurationsfehler (FEE ERROR)

Zeigt an, dass das System noch konfiguriert werden muss. Diese Meldung kann beim erstmaligen Einschalten des Systems oder nach dem Zurücksetzen auf Werkseinstellungen angezeigt werden. Sie kann auch andere FEE-Fehler (interner Speicher) anzeigen.

11.4.6 Fehler der Ausgänge (OSSD ERROR)

Fehler	Bedeutung
OSSD 1 SHORT- CIRCUIT	Kurzschlussfehler am Ausgang MOS 1
OSSD 2 SHORT- CIRCUIT	Kurzschlussfehler am Ausgang MOS 2
OSSD 3 SHORT- CIRCUIT	Kurzschlussfehler am Ausgang MOS 3
OSSD 4 SHORT- CIRCUIT	Kurzschlussfehler am Ausgang MOS 4
OSSD 1 NO LOAD	Keine Last an OSSD 1
OSSD 2 NO LOAD	Keine Last an OSSD 2
OSSD 3 NO LOAD	Keine Last an OSSD 3
OSSD 4 NO LOAD	Keine Last an OSSD 4

11.4.7 Flash-Fehler (FLASH ERROR)

Ein Flash-Fehler steht für einen Fehler am externen Flash-Speicher.

11.4.8 Fehler bei der dynamischen Konfiguration (DYNAMIC CONFIGURATION ERROR)

Ein Fehler bei der dynamischen Konfiguration weist auf eine ungültige Kennung der dynamischen Konfiguration hin.

11.4.9 Fehler bei der internen Kommunikation (INTERNAL COMMUNICATION ERROR)

Gibt an, dass ein Fehler bei der internen Kommunikation vorliegt.

11.4.10 Eingangsfehler (INPUT ERROR)

Fehler	Bedeutung
INPUT 1 REDUNDANCY	Redundanzfehler Eingang 1
INPUT 2 REDUNDANCY	Redundanzfehler Eingang 2
ENCODING	Ungültige Codierung bei aktivierter Option Kanalcodierung
PLAUSIBILITY	Übergang 0->1->0 ist nicht kompatibel mit der Spezifikation der Eingangsfunktion

11.4.11 Feldbusfehler (FIELDBUS ERROR)

Mindestens einer der Eingänge und Ausgänge wurde als **Gesteuert über Feldbus** konfiguriert, aber die Feldbuskommunikation wurde nicht hergestellt oder ist ungültig.

Fehler	Bedeutung
NOT VALID COMMUNICATION	Feldbusfehler

11.4.12 RAM-Fehler (RAM ERROR)

Fehler	Bedeutung
INTEGRITY	Integritätsprüfung der RAM nicht bestanden
ERROR	

11.4.13 Fehler bei der Sicherung oder Wiederherstellung über SD-Karte (SD BACKUP OR RESTORE ERROR)

Fehler	Bedeutung
GENERIC FAIL	Unbekannter Fehler
TIMEOUT	Timeout des internen Vorgangs beim Schreiben und Lesen
NO_SD	microSD-Karte nicht vorhanden
WRITE OPERATION FAILED	Fehler beim Schreiben auf die microSD-Karte
CHECK OPERATION FAILED	Datei beschädigt oder keine Datei bei der Wiederherstellung von microSD-Karte

11.4.14 Konfigurationsfehler der Sensoren (SENSOR CONFIGURATION ERROR)

Während des Konfigurationsvorgangs oder beim Einschalten des Systems ist ein Sensorfehler aufgetreten. Mindestens einer der angeschlossenen Sensoren wurde nicht ordnungsgemäß konfiguriert.

Die detaillierte Beschreibung enthält die Auflistung der nicht konfigurierten Sensoren.

11.5 FEHLER-Ereignisse (Sensor)

11.5.1 Einleitung

Jedes Mal, wenn die Funktionen für die periodische Diagnose einen Eingangs- oder Ausgangsfehler am Sensor feststellen, wird ein Diagnosefehler registriert.

Wenn der Sensor auf Muting geschaltet ist, sind keine Sensorfehler verfügbar.

Info: Wenn Sie vom technischen Kundendienst darum gebeten werden, klicken Sie unter Einstellungen > Aktivitätsverlauf auf Debugdaten der Sensoren herunterladen, um die Dateien herunterzuladen, und übermitteln Sie diese für das Debugging an Leuze.

11.5.2 Konfigurationsfehler der Sensoren (SENSOR CONFIGURATION ERROR)

Während des Konfigurationsvorgangs oder beim Einschalten des Systems ist ein Sensorfehler aufgetreten. Mindestens einer der angeschlossenen Sensoren ist nicht ordnungsgemäß konfiguriert.

Folgende Konfigurationsfehler sind bei den Sensoren möglich:

Fehler	Bedeutung
UNKNOWN MODEL-TYPE	Unbekannter Modell-Typ
WRONG MODEL- TYPE	Der Modell-Typ unterscheidet sich von der bei der Systemkonfiguration vorgenommenen Einstellung
RADIO BANDWIDTH n.a.	Die ausgewählte Funkfrequenzbandbreite wird nicht unterstützt
STATIC OBJECT DETECTION n.a.	Die Erfassung statischer Objekte wird nicht unterstützt
CUSTOM TARGET DETECTION n.a.	Die Erfassung eines benutzerdefinierten Zielobjekts wird nicht unterstützt
ADVANCED FOV n.a.	Die erweiterte Sichtfeldform wird nicht unterstützt
ANTI-MASKING REF	Während der Referenzierung für die Verdeckungsschutzfunktion ist ein Fehler aufgetreten
ANTI-ROTATION REF	Während der Referenzierung für die Verdrehschutzfunktion ist ein Fehler aufgetreten
TIMEOUT	Während der Systemwiederherstellung ist ein Timeoutfehler aufgetreten
ASSIGN NODE ID ERROR	Während der Node-ID-Vergabe im Zuge der Systemwiederherstellung ist ein Fehler aufgetreten
SEQUENCE, STREAM SEQUENCE, STREAM END, STREAM CRC	Während der Sensorkonfiguration ist ein Sequenzfehler aufgetreten
MISSING SENSORS	Während der Systemwiederherstellung fehlen zu viele Sensoren

11.5.3 Konfigurationsfehler (MISCONFIGURATION ERROR)

Der Konfigurationsfehler tritt auf, wenn der Sensor keine gültige Konfiguration besitzt oder von der Steuerungseinheit eine ungültige Konfiguration empfangen hat.

11.5.4 Zustandsfehler und Ausfall (STATUS ERROR/FAULT ERROR)

Der Zustandsfehler tritt auf, wenn sich der Sensor in einem ungültigen internen Zustand befindet oder in den Zustand eines internen Ausfalls übergegangen ist.

11.5.5 Protokollfehler (PROTOCOL ERROR)

Der Protokollfehler tritt auf, wenn der Sensor Befehle in einem unbekannten Format empfängt.

11.5.6 Spannungsfehler Sensor (POWER ERROR)

Fehler	Bedeutung
Sensorspannung UNDERVOLTAGE	Unterspannungsfehler für die angezeigte Spannung
Sensorspannung OVERVOLTAGE	Überspannungsfehler für die angezeigte Spannung

In der nachstehenden Tabelle sind die Spannungen des Sensors aufgeführt:

Siebdruck	Beschreibung	
VIN	Versorgungsspannung (+12 V DC)	
V3.3	Versorgungsspannung der internen Chips	
V1.2	Versorgungsspannung des Mikrocontrollers	
V1.8	Versorgungsspannung der internen Chips (1,8 V)	
V1	Versorgungsspannung der internen Chips (1 V)	

11.5.7 Manipulationsschutzsensor (TAMPER ERROR)

Fehler	Bedeutung
TILT ANGLE ERROR	Drehung des Sensors um die x-Achse
ROLL ANGLE ERROR	Drehung des Sensors um die z-Achse
PAN ANGLE ERROR	Drehung des Sensors um die y-Achse

Info: Angegeben ist die Größe des Winkels (in Grad).

11.5.8 Signalfehler (SIGNAL ERROR)

Der Signalfehler tritt auf, wenn der Sensor einen Fehler in Bezug auf die RF-Signale festgestellt hat, insbesondere:

Fehler	Bedeutung
MASKING	Der Sensor ist verdeckt
MASKING REFERENCE MISSING	Im Zuge der Konfiguration konnte keine Referenz in Bezug auf die Verdeckung ermittelt werden
SIGNAL PATTERN ERROR	Interner Fehler des Radars oder unerwartete Signalsequenz

11.5.9 Temperaturfehler (TEMPERATURE ERROR)

Fehler	Bedeutung
BOARD TEMPERATURE TOO LOW	Temperatur der Karte unter dem Minimum
BOARD TEMPERATURE TOO HIGH	Temperatur der Karte über dem Maximum
CHIP TEMPERATURE TOO LOW	Interner Chip unter dem Mindestwert
CHIP TEMPERATURE TOO HIGH	Interner Chip über dem Höchstwert
IMU TEMPERATURE TOO LOW	IMU unter dem Mindestwert
IMU TEMPERATURE TOO HIGH	IMU über dem Höchstwert

11.5.10 MSS-Fehler und DSS-Fehler (MSS ERROR/DSS ERROR)

Von der Diagnose erfasster Fehler der internen Mikrocontroller (MSS und DSS), ihrer internen Peripheriefunktionen oder der Speicher

11.6 FEHLER-Ereignisse (CAN-BUS)

11.6.1 Einleitung

Jedes Mal, wenn die Funktionen für die periodische Diagnose einen Eingangs- oder Ausgangsfehler bei der CAN-Bus-Kommunikation feststellen, wird ein Diagnosefehler registriert.

Je nach Seite des Kommunikationsbusses kann als Quelle die Steuerungseinheit oder ein einzelner Sensor aufgezeichnet werden.

11.6.2 CAN-Fehler (CAN ERROR)

Fehler	Bedeutung	
TIMEOUT	Timeout bei einer Meldung an den Sensor/die Steuerungseinheit	
CROSS CHECK	Zwei redundante Meldungen stimmen nicht überein	
SEQUENCE NUMBER	Meldung mit einer Sequence Number, die nicht den Erwartungen entspricht	
CRC CHECK	Prüfsumme des Pakets stimmt nicht überein	
COMMUNICATION LOST	Keine Kommunikation mit dem Sensor möglich	
PROTOCOL ERROR	Die Firmware-Versionen der Steuerungseinheit und der Sensoren unterscheiden sich und sind nicht miteinander kompatibel	
POLLING TIMEOUT	Timeout Datenpolling	

HINWEIS

Ein geschirmtes Kabel zwischen der Steuerungseinheit und dem ersten Sensor sowie zwischen den Sensoren wird ausdrücklich empfohlen. Die CAN-Kabel trotzdem getrennt von Starkstrom- und Hochfrequenzleitungen in einem eigenen Kabelkanal verlegen.

12 Wartung Leuze

12 Wartung

12.1 Planmäßige Wartung

Allgemeines Wartungspersonal

Das allgemeine Wartungspersonal besteht aus Personen, die nur für die Durchführung einfacher Wartungstätigkeiten qualifiziert sind und nicht über Administratorrechte zum Ändern der Konfiguration von LBK SBV System über die Anwendung verfügen.

12.1.1 Reinigung

Den Sensor von eventuellen Bearbeitungsrückständen und leitfähigem Material reinigen und frei halten, um eine Verdeckung und/oder eine Fehlfunktion des Systems zu vermeiden.

12.2 Außerplanmäßige Wartung

12.2.1 Wartungspersonal der Maschine

Das Wartungspersonal der Maschine besteht aus qualifizierten Personen, die über die entsprechenden Administratorrechte verfügen, um die Konfiguration von LBK SBV System über die Anwendung LBK Designer zu ändern sowie Wartungstätigkeiten und Problemlösungen durchzuführen.

12.2.2 Firmware-Update der Steuerungseinheit

- 1. Die letzte Version der Anwendung LBK Designer über die Website www.leuze.com herunterladen und auf dem Computer installieren.
- 2. Die Steuerungseinheit über Ethernet verbinden und als Administrator anmelden.

Info: Das Update über USB ist nur für LBK ISC-03 und LBK ISC110 verfügbar.

- 3. Unter Einstellungen > Allgemein prüfen, ob ein neues Update zur Verfügung steht.
- 4. Das Update durchführen, ohne die Verbindung zum Gerät zu trennen oder das Gerät auszuschalten.

12.2.3 Austausch eines Sensors: Funktion Systemwiederherstellung

Die Funktion Systemwiederherstellung dient dazu, einen Sensor auszutauschen, ohne die aktuellen Einstellungen zu ändern. Die Funktion kann über Digitaleingänge (Systemwiederherstellung oder Wiederanlaufsignal + Systemwiederherstellung) oder über Feldbus (nur Systemwiederherstellung) aktiviert werden.

♠ WARNUNG

Wenn die Funktion Systemwiederherstellung über den Sicherheitsfeldbus und über die Digitaleingänge konfiguriert wurde, kann sie auf beide Weisen verwendet werden.

Info: Die Szene während der Ausführung der Systemwiederherstellung statisch halten, sodass die Manipulationsschutzfunktionen ihre Referenzen speichern können.

Info: Während der Ausführung der Systemwiederherstellung geht das System in den sicheren Zustand über und deaktiviert die OSSDs, bis der Vorgang abgeschlossen ist.

- 1. Die Digitaleingänge oder den Feldbus für die Ausführung der Systemwiederherstellung konfigurieren.
- 2. Einen Sensor ohne Node-ID an der Position des ausgetauschten Sensors in der CAN-Bus-Leitung anschließen.

12 Wartung Leuze

Info: Es darf nur ein Sensor gleichzeitig angeschlossen werden, damit der Vorgang ordnungsgemäß abgeschlossen werden kann.

3. Die Funktion (über Digitaleingänge oder Feldbus) aktivieren und warten, bis der Vorgang ausgeführt wird. Siehe LEDs an der Steuerungseinheit auf Seite 123 für die Anzeige des Systemzustandes.

Folgende Schritte werden ausgeführt:

- Die erste verfügbare Node-ID wird dem neuen Sensor zugewiesen.
- Die vorhergehende Systemkonfiguration wird übernommen (Vorgang ÄNDERUNG ÜBERNEHMEN).
 Der Vorgang wird im Ereignisprotokoll als Standardereignis für die System configuration gespeichert.
- Das Ereignis wird im Berichtarchiv (Einstellungen > Aktivitätsverlauf > Seite Konfigurationsberichte) mit den folgenden Zeichenketten in der Spalte Benutzer, PC protokolliert:
 - "sys-recondition-i", wenn die Funktion über einen Digitaleingang ausgeführt wird
 - ° "sys-recondition-f", wenn der Feldbus verwendet wird

Info: Für weitere Informationen siehe Digitaleingangssignale auf Seite 164.

12.2.4 Sicherung der Konfiguration auf einen PC

Für die aktuelle Konfiguration kann ein Back-up ausgeführt werden; dieses enthält auch die Einstellungen für die Eingabe/Ausgabe. Die Konfiguration wird in einer .cfg-Datei gespeichert, die zum Wiederherstellen der Konfiguration oder zur Erleichterung der Konfiguration mehrerer LBK SBV System verwendet werden kann.

- 1. Unter **Einstellungen > Allgemein** auf **BACKUP** klicken.
- 2. Den Speicherort für die Datei auswählen und speichern.

Info: Bei diesem Sicherungsmodus werden die Anmeldeinformationen nicht gespeichert.

12.2.5 Sicherung der Konfiguration auf eine microSD-Karte

Wenn die Steuerungseinheit über einen microSD-Slot verfügt, können eine Sicherungsdatei der Systemeinstellungen und (optional) die Anmeldeinformationen aller Benutzer auf der microSD-Karte gespeichert werden. Die Sicherung auf SD-Karte und die Sicherung der Anmeldeinformationen aller Benutzer können über die Anwendung LBK Designer aktiviert/deaktiviert werden. Standardmäßig sind beide Optionen deaktiviert.

- Zum Aktivieren der Sicherung auf SD-Karte unter Admin > SD-Karte Automatische Sicherung auswählen.
- 2. Zum Aktivieren der Speicherung der Anmeldeinformationen aller Benutzer **Inklusive Benutzerdaten** auswählen.
- 3. Zum Ausführen der Sicherung eine microSD-Karte in den Speicherkartenslot der Steuerungseinheit einstecken.

Info: Die microSD-Karte ist nicht im Lieferumfang der Steuerungseinheit enthalten. Für nähere Informationen zu den Spezifikationen der microSD-Karte siehe Spezifikationen der microSD-Karte auf der nächsten Seite

4. In der Anwendung LBK Designer auf ÄNDERUNG ÜBERNEHMEN klicken: Die Sicherung wird automatisch ausgeführt.

Info: Die Einstellungen für die Option **Automatische Sicherung** werden während der Sicherung auf microSD nicht gespeichert.

12.2.6 Laden einer Konfiguration von einem PC

- 1. Unter Einstellungen > Allgemein auf WIEDERHERSTELLUNG klicken.
- 2. Die zuvor gespeicherte .cfg-Datei auswählen (siehe Sicherung der Konfiguration auf einen PC oben) und öffnen.

12 Wartung Leuze

Info: Eine neu importierte Konfiguration muss von Neuem in die Steuerungseinheit geladen und gemäß den Vorgaben im Sicherheitsplan genehmigt werden.

12.2.7 Laden einer Konfiguration von einer microSD-Karte

Wenn die Steuerungseinheit über einen microSD-Slot verfügt, kann der Administrator sowohl die Systemeinstellungen als auch die Anmeldeinformationen aller Benutzer (sofern vorhanden) wiederherstellen. Dafür wird eine gültige Sicherungsdatei auf einer microSD-Karte benötigt. Die Wiederherstellung von SD-Karte kann über die Anwendung LBK Designer aktiviert/deaktiviert werden. Standardmäßig ist die Option aktiviert.

Info: Diese Funktion zur Wiederherstellung von SD-Karte beinhaltet auch eine Systemwiederherstellung, siehe Austausch eines Sensors: Funktion Systemwiederherstellung auf Seite 140.

- 1. Zum Ausführen der Wiederherstellung die microSD-Karte mit der darauf gespeicherten Konfiguration in den Speicherkartenslot der neuen Steuerungseinheit einstecken.
 - **Info**: Die microSD-Karte ist nicht im Lieferumfang der Steuerungseinheit enthalten. Für nähere Informationen zu den Spezifikationen der microSD-Karte siehe Spezifikationen der microSD-Karte unten
- 2. Die Taste für die Wiederherstellung von SD-Karte auf der Steuerungseinheit mindestens 5 Sekunden lang drücken: Die Systemzustands-LEDs erlöschen und beim Zurücksetzen kehren die LEDs wieder in den vorherigen Zustand zurück.

Info: Zum Deaktivieren der Wiederherstellung von SD-Karte unter Admin > SD-Karte Wiederherstellung über Schaltfläche aktivieren abwählen.

Folgende Schritte werden ausgeführt:

- Die Systemkonfiguration wird übernommen (Vorgang ÄNDERUNG ÜBERNEHMEN).
- Das Ereignis wird im Berichtarchiv (Einstellungen > Aktivitätsverlauf > Seite Konfigurationsberichte) mit der Zeichenkette Wiederherstellung über SD-Karte protokolliert.

12.2.8 Spezifikationen der microSD-Karte

Тур	microSD
Dateisystem	FAT32
Empfohlene Speicherkapazität	32 GB oder weniger

13 Technische Spezifikationen

13.1 Technische Daten

13.1.1 Allgemeine Merkmale

Erfassungsmethode	Algorithmus zur Erfassung von Bewegungen auf Basis von FMCW-Radar
Frequenz	Arbeitsbandbreite: 60,6–62,8 GHz
	Maximale Strahlungsleistung: siehe National configuration addendum
	Modulation: FMCW
Erfassungsbereich	Zugangserfassung: 0 bis 9 m
	Wiederanlaufsperre: 0 bis 5 m
RCS des zu erfassenden Zielobjekts (Erfassung des menschlichen Körpers)	0,17 m ²
Sichtfeld	Horizontale Winkelabdeckung: programmierbar von 10° bis 100°.
	Horizontale Winkelabdeckung, programmierbar in Abhängigkeit vom Abstand:
	in den ersten 5 m von 10° bis 100°
	zwischen 5 und 9 m von 10° bis 40°
	Vertikale Winkelabdeckung: 20°
Decision probability	> 1-(2,5E-07)
CRT (Certified Restart Timeout)	4 s
Garantierte Reaktionszeit	Zugangserfassung: < 100 ms *
	Wiederanlaufsperre: 4000 ms
	↑ WARNUNG
	Während der Echtzeitprüfung und des Downloads der Protokolldatei ist die Reaktionszeit nicht gewährleistet.
Gesamtverbrauch	Max. 25,4 W (Steuerungseinheit und sechs Sensoren)
Elektrische Schutzeinrichtungen	Verpolungsschutz
	Überstrom über integrierte rückstellbare Sicherung (max. 5 s bei 8 A)
Überspannungskategorie	II
Höhe	Max. 1500 m ü.d.M.
Luftfeuchtigkeit	Max. 95 %
Schallemission	Irrelevant**

Info*: Der Wert ist abhängig von der elektromagnetischen Störfestigkeitsstufe, die über die Anwendung LBK Designer festgelegt wird, siehe Elektromagnetische Störfestigkeit auf Seite 79.

Info**: Der A-bewertete Emissionsschalldruckpegel beträgt maximal 70 dB(A).

13.1.2 Sicherheitsparameter

SIL (Safety Integrity Level)	2
HFT	0
SC*	2
TYPE	В
PL (Performance Level)	d
ESPE Type (EN 61496-1)	3
Kategorie (EN ISO 13849)	3 äquivalent
Klasse (IEC TS 62998-1)	D
Kommunikationsprotokoll (Sensoren–Steuerungseinheit)	CAN konform nach EN 50325-5
Mission time	20 Jahre

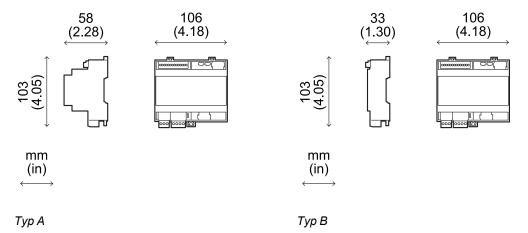
MTTF _D	42 Jahre
PFH _D	Mit Feldbuskommunikation:
	Zugangserfassung: 1,40E-08 [1/h]
	Wiederanlaufsperre: 1,40E-08 [1/h]
	Muting: 6,37E-09 [1/h]
	• Stoppsignal: 6,45E-09 [1/h]
	Wiederanlaufsignal: 6,45E-09 [1/h]
	Dynamischer Konfigurationswechsel: 6,37E-09 [1/h]
	Gesteuert über Feldbus: 6,45E-09 [1/h]
	Ohne Feldbuskommunikation:
	Zugangserfassung: 1,30E-08 [1/h]
	Wiederanlaufsperre: 1,30E-08 [1/h]
	Muting: 5,37E-09 [1/h]
	Stoppsignal: 5,45E-09 [1/h]
	Wiederanlaufsignal: 5,45E-09 [1/h]
	Dynamischer Konfigurationswechsel: 5,37E-09 [1/h]
	Gesteuert über Feldbus: 5,45E-09 [1/h]
SFF	≥99,89 %
DCavg	≥ 99,46 %
MRT**	< 10 min
Sicherer Zustand bei Fehler	Mindestens ein Kanal für jeden Sicherheitsausgang befindet sich im OFF-state. Stoppmeldung über Feldbus übermittelt (falls verfügbar) oder Kommunikation unterbrochen

Info*: Die systematische Eignung (Systematic Capability) ist nur dann sichergestellt, wenn der Benutzer das Produkt gemäß den Angaben in dieser Anleitung und in einer geeigneten Umgebung verwendet.

Info**: Als MRT wird die Technical Mean Repair Time herangezogen, d. h., es wird die Verfügbarkeit von qualifiziertem Personal, geeigneten Mitteln und Ersatzteilen berücksichtigt. In Anbetracht des Gerätetyps entspricht die MRT der Zeit, die für den Austausch des Geräts erforderlich ist.

13.1.3 Ethernet-Verbindung (falls verfügbar)

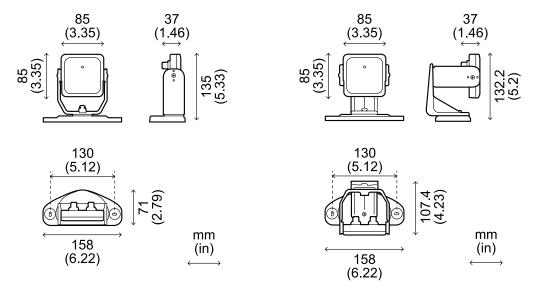
Standardmäßige IP-Adresse	192.168.0.20
Standardmäßiger TCP-Port	80
Standardmäßige Netzmaske	255.255.255.0
Standardmäßiger Gateway	192.168.0.1


13.1.4 Technische Daten Steuerungseinheit

Ausgänge	Konfigurierbar wie folgt: • 4 OSSD (Output Signal Switching Devices), verwendet als Einzelkanäle • 2 zweikanalige Sicherheitsausgänge • 1 zweikanaliger Sicherheitsausgang und 2 OSSD (Output Signal Switching Devices)
Merkmale der OSSD	 Max. ohmsche Last: 100 kΩ Min. ohmsche Last: 70 Ω Max. kapazitive Last: 1000 nF Min. kapazitive Last: 10 nF
Sicherheitsausgänge	High-Side-Ausgänge (mit erweiterter Schutzfunktion) • Max. Strom: 0,4 A • Max. Leistung: 11,2 W Die OSSD stellen Folgendes bereit: • ON-state: von Uv-1V bis Uv (Uv = 24 V +/- 4 V) • OFF-state: von 0 V bis 2,5 V r.m.s.

Eingänge	 Konfigurierbar wie folgt: 4 einkanalige (Kat. 2) Digitaleingänge Typ 3 mit gemeinsamer Masse (GND) 2 zweikanalige (Kat. 3) Digitaleingänge Typ 3 mit gemeinsamer Masse (GND) 1 zweikanaliger (Kat. 3) und 2 einkanalige (Kat. 2) Digitaleingänge Typ 3 mit gemeinsamer Masse (GND) Siehe Spannungs- und Stromgrenzwerte für die Digitaleingänge auf Seite 149.
Feldbusschnittstelle (falls verfügbar)	Ethernetbasierte Schnittstelle mit diversen Feldbusstandards
Spannungsversorgung	24 V DC (20–28 V DC) * Max. Strom: 1,2 A
Verbrauch	Max. 5 W
Montage	Auf DIN-Schiene
Gewicht	Für Typ A: mit Abdeckung: 170 g
	Für Typ B: mit Abdeckung: 160 g
Schutzart	IP20
Klemmen	Querschnitt: max. 1 mm ²
	Max. Strom: 4 A bei Kabeln mit einem Querschnitt von 1 mm ²
Stoßprüfung	Für Typ A: 0,5 J, Kugel mit 0,25 kg aus einer Höhe von 20 cm
	Für Typ B: 1 J, Kugel mit 0,25 kg aus einer Höhe von 40 cm
Schläge/Stöße	Für Typ A: gemäß IEC/EN 61496-1:2013, Abschnitt 5.4.4.2 (IEC 60068-2-27)
	Für Typ B: gemäß IEC/EN 61496-1:2020, Abschnitt 5.4.4.2, Klasse 5M3 (IEC 60068-2-27)
Vibrationen	Für Typ A: gemäß IEC/EN 61496-1:2013, Abschnitt 5.4.4.1 (IEC 60068-2-6)
	Für Typ B: gemäß IEC/EN 61496-1:2020, Abschnitt 5.4.4.1, Klasse 5M3 (IEC 60068-2-6 und IEC 60068-2-64)
Verschmutzungsgrad	2
Verwendung im Freien	Nein
Betriebstemperatur	-30 bis +60 °C
Lagerungstemperatur	-40 bis +80 °C

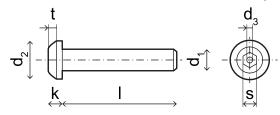
Info*: Die Einheit muss über eine isolierte Spannungsquelle versorgt werden, die der Norm IEC/EN 60204-1 entspricht und folgende Anforderungen erfüllt:


- Energiebegrenzter Stromkreis gemäß IEC/UL/CSA 61010-1/ IEC/UL/CSA 61010-2-201 oder
- Stromversorgungssystem mit Leistungsbegrenzung oder LPS (Limited Power Source) gemäß IEC/UL/CSA 60950-1 oder
- (Nur für Nordamerika und/oder Kanada) Stromversorgungssystem der Klasse 2 gemäß National Electrical Code (NEC), NFPA 70, Art. 725.121, und Canadian Electrical Code (CEC), Teil I, C22.1. (Typische Beispiele sind ein Transformator der Klasse 2 oder ein Stromversorgungssystem der Klasse 2 gemäß UL 5085-3/CSA-C22.2 No. 66.3 oder UL 1310/CSA-C22.2 No. 223.)

13.1.5 Technische Daten Sensor

Steckverbinder	2 M12-Steckverbinder mit 5 Pins (1 Stecker und 1 Buchse)			
Endwiderstand CAN-Bus	120 Ω (nicht im Lieferumfang enthalten; muss mit einem Busabschluss installiert werden)			
Spannungsversorgung	12 V DC ± 20 %, über die Steuerungseinheit			
Verbrauch	Durchschnitt 2,2 W			
	Spitze 3,4 W			
Schutzart	Gehäuse type 3 gemäß UL 50E, Schutzart IP 67			
Material	Sensor: PA66			
	Bügel: PA66 und Glasfaser (GF)			
Bildfrequenz	62 fps			
Gewicht	Mit Bügel mit 2 Achsen: 300 g			
	Mit Bügel mit 3 Achsen: 355 g			
Schläge/Stöße	Gemäß IEC/EN 61496-1:2013, Abschnitt 5.4.4.2 (IEC 60068-2-27)			
Vibrationen	Gemäß IEC/EN 61496-1:2013, Abschnitt 5.4.4.1 (IEC 60068-2-6)			
Verschmutzungsgrad	4			
Verwendung im Freien	Ja			
Betriebstemperatur	-30 bis +60 °C*			
Lagerungstemperatur	-40 bis +80 °C			

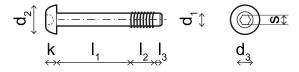
Info *: Bei Umgebungsbedingungen, unter denen die Betriebstemperatur über den zulässigen Bereich ansteigen kann, eine Abdeckung installieren, um den Sensor vor Sonnenstrahlung zu schützen.



13.1.6 Empfohlene Spezifikationen für CAN-Bus-Kabel

Abschnitt	2 x 0,50 mm2 Versorgung 2 x 0,22mm ² Datenleitung
Тур	Zwei verdrillte Doppeladern (Versorgung und Daten) und eine Erdungsader (oder geschirmte Ader)
Steckverbinder	M12, 5-polig, (siehe M12-Steckverbinder CAN-Bus auf Seite 150)
	Die Steckverbinder müssen gemäß type 3 (dicht) ausgeführt sein.
Impedanz	120 Ω ±12 Ω (f = 1 MHz)
Abschirmung	Abschirmgeflecht aus verzinntem Kupfer. Anzuschließen an die Erdung der Spannungsversorgungsleiste der Steuerungseinheit.
Normen	Die Kabel müssen entsprechend der Anwendung gemäß den Vorgaben des National Electrical Code NFPA 70 und des Canadian Electrical Code C22.1 gelistet sein. Maximale Gesamtlänge der CAN-Bus-Leitung: 80 m

13.1.7 Spezifikation manipulationssichere Schrauben

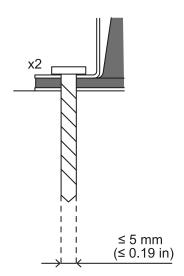

Sechskant-Sicherheitsschraube mit Linsenkopf

d ₁	M4
I	10 mm
d_2	7,6 mm
k	2,2 mm
t	min. 1,3 mm
s	2,5 mm
d_3	max. 1,1 mm

13.1.8 Spezifikation manipulationssichere Schrauben

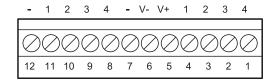
Sechskant-Linsenkopfschraube

d ₁	M4
I ₁	19 mm
I ₂	6 mm
l ₃	2 mm
d ₂	7,6 mm
k	3 mm
s	2,5 mm
d_3	4 mm


13.1.9 Spezifikation der unteren Schrauben

Als untere Schrauben können verwendet werden:

- Zylinderkopfschrauben
- Linsenkopfschraube


Info: Keine Senkschrauben verwenden.

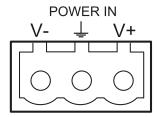
13.2 Pinbelegung der Anschlussleisten und des Steckers

13.2.1 Anschlussleiste Digitaleingänge und -ausgänge

Info: Wenn Sie so auf die Steuerungseinheit blicken, dass sich die Anschlussleiste oben links befindet, liegt die Nummer 12 am nächsten zur Ecke der Steuerungseinheit.

Anschlussleiste	Symbol	Beschreibung				
Digital In	4	Eingang 2, Kanal 2, 24 V DC type 3 - INPUT #2-2	1			
	3	Eingang 2, Kanal 1, 24 V DC type 3 - INPUT #2-1				
	2	Eingang 1, Kanal 2, 24 V DC type 3 - INPUT #1-2	3			
	1	Eingang 1, Kanal 1, 24 V DC type 3 - INPUT #1-1	4			
	V+	V+ (SNS), 24 V DC, für die Diagnose der Digitaleingänge (obligatorisch, wenn mindestens ein Eingang verwendet wird)				
	V-	V- (SNS), gemeinsames Bezugspotenzial für alle Digitaleingänge (obligatorisch, wenn mindestens ein Eingang verwendet wird)	6			
Digital Out	-	- GND, gemeinsames Bezugspotenzial für alle Digitalausgänge				
	4 Ausgang 4 (OSSD4)					
	3 Ausgang 3 (OSSD3)		9			
	2 Ausgang 2 (OSSD2)					
	1	Ausgang 1 (OSSD1)	11			
- GND, gemeinsames Bezugspotenzial für alle Digitalausgänge						

Info: Die verwendeten Kabel dürfen max. 30 m lang sein und müssen eine maximale Betriebstemperatur von mindestens 80 °C haben.

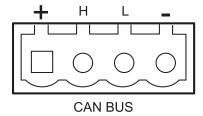

Info: Nur Kupferdrähte mit Mindestquerschnitt 18 AWG und Anziehdrehmoment 0,62 Nm verwenden.

13.2.2 Spannungs- und Stromgrenzwerte für die Digitaleingänge

Die Digitaleingänge (Eingangsspannung 24 V DC) weisen die folgenden Spannungs- und Stromgrenzwerte gemäß IEC/EN 61131-2:2003 auf.

	Type 3		
Spannungsgrenzwerte			
0	von -3 bis 11 V		
1	von 11 bis 30 V		
Stromgrenzwerte			
0	15 mA		
1	von 2 bis 15 mA		

13.2.3 Anschlussleiste Spannungsversorgung


Info: Vorderansicht Stecker.

Symbol	Beschreibung				
V-	GND				
<u></u>	Erde				
V+	+ 24 V DC				

Info: Die Kabel müssen eine maximale Betriebstemperatur von mindestens 70 °C haben.

Info: Nur Kupferdrähte mit Mindestquerschnitt 18 AWG und Anziehdrehmoment 0,62 Nm verwenden.

13.2.4 Anschlussleiste CAN-Bus

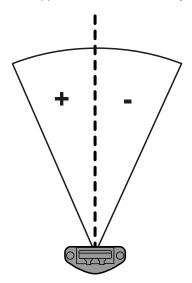
Symbol	Beschreibung		
+	Ausgang + 12 V DC		
Н	CAN H		
L	CAN L		
-	GND		

Info: Die Kabel müssen eine maximale Betriebstemperatur von mindestens 70 °C haben.

13.2.5 M12-Steckverbinder CAN-Bus

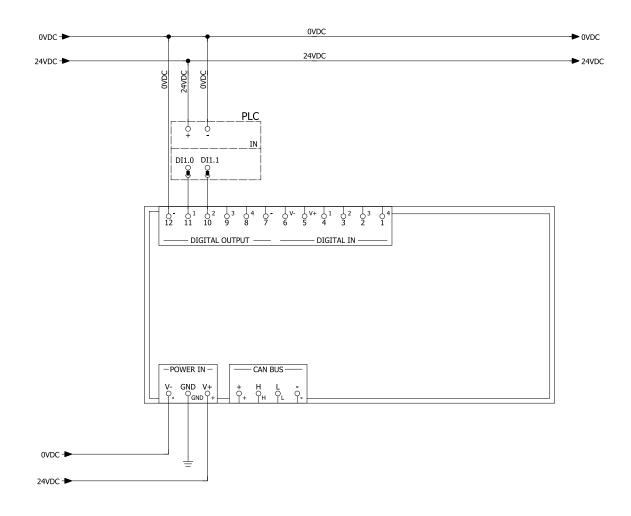
Stecker

Buchse


Pin	Funktion
1	Abschirmung, anzuschließen an die Funktionserdung der Spannungsversorgungsleiste der Steuerungseinheit.
2	+12 V DC
3	GND
4	CAN H
5	CAN L

13.3 Winkelkonventionen für die Zielobjektposition

13.3.1 Vorzeichen des Winkels


Für die Angabe des Winkels der Zielobjektposition gelten die folgenden Konventionen:

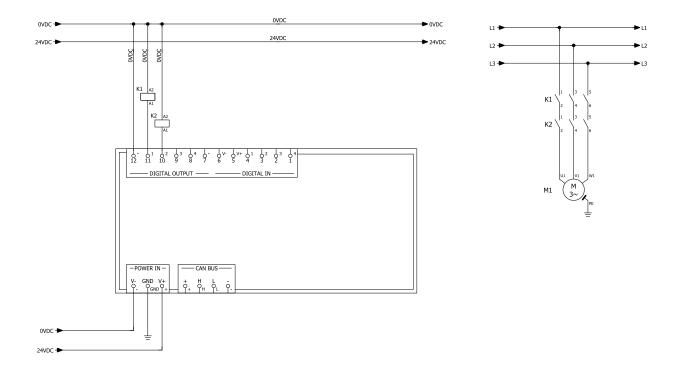
- Der Winkel hat ein positives Vorzeichen (+), wenn das sich Zielobjekt links vom Sensor befindet.
- Der Winkel hat ein negatives Vorzeichen (-), wenn das sich Zielobjekt rechts vom Sensor befindet.

13.4 Elektrische Anschlüsse

13.4.1 Anschluss der Sicherheitsausgänge an die Programmable Logic Controller (PLC)

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert


Digitaleingang #2 Nicht konfiguriert

Digitalausgang #1 Erfassungssignal 1

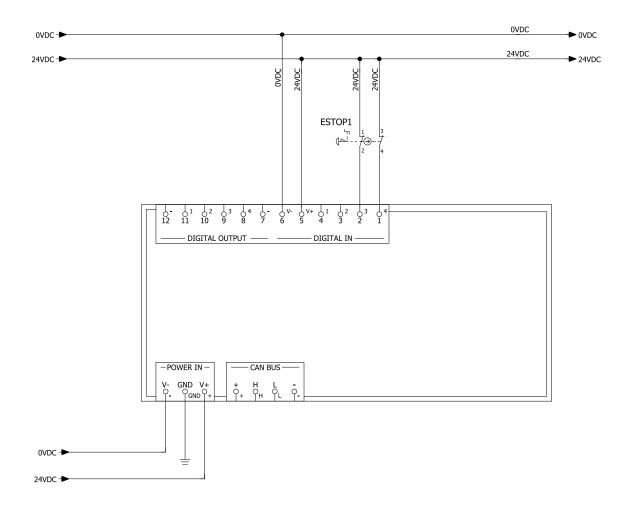
Digitalausgang #2 Erfassungssignal 1

Digitalausgang #3 Nicht konfiguriert

13.4.2 Anschluss der Sicherheitsausgänge zu einem externen Sicherheitsrelais

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert


Digitaleingang #2 Nicht konfiguriert

Digitalausgang #1 Erfassungssignal 1

Digitalausgang #2 Erfassungssignal 1

Digitalausgang #3 Nicht konfiguriert

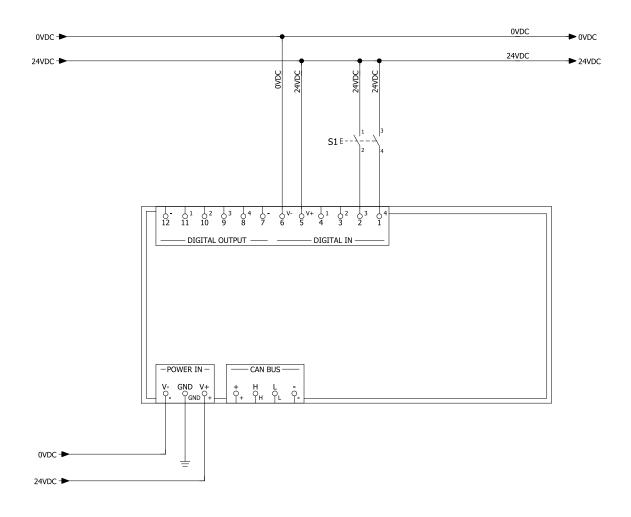
13.4.3 Anschluss des Stoppsignals (Not-Aus-Taste)

Info: Die erwähnte Not-Aus-Taste öffnet bei Betätigung den Kontakt.

Info: Die für die Verkabelung der Digitaleingänge verwendeten Kabel dürfen max. 30 m lang sein.

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert


Digitaleingang #2 Stoppsignal

Digitalausgang #1 Nicht konfiguriert

Digitalausgang #2 Nicht konfiguriert

Digitalausgang #3 Nicht konfiguriert

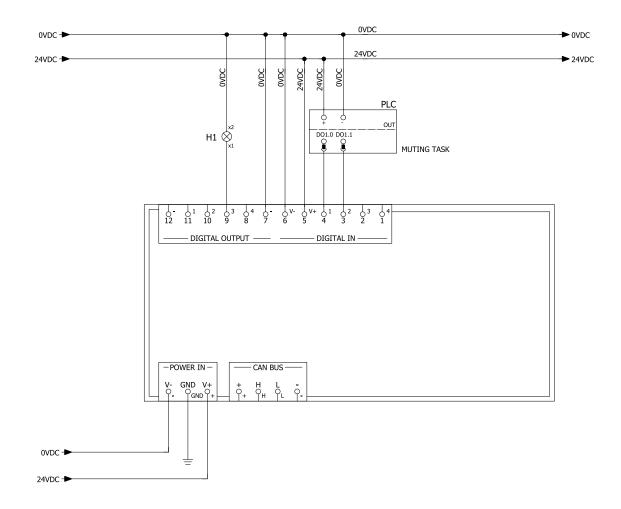
13.4.4 Anschluss des Wiederanlaufsignals (zweikanalig)

Info: Die angegebene Taste für das Wiederanlaufsignal schließt bei Betätigung den Kontakt.

Info: Die für die Verkabelung der Digitaleingänge verwendeten Kabel dürfen max. 30 m lang sein.

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert


Digitaleingang #2 Wiederanlaufsignal

Digitalausgang #1 Nicht konfiguriert

Digitalausgang #2 Nicht konfiguriert

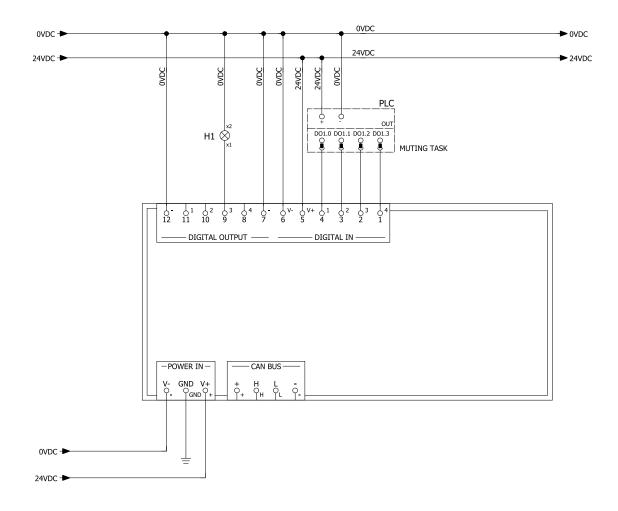
Digitalausgang #3 Nicht konfiguriert

13.4.5 Anschluss des Ein- und Ausgangs für das Muting (eine Sensorgruppe)

Info: Die für die Verkabelung der Digitaleingänge verwendeten Kabel dürfen max. 30 m lang sein.

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Muting-Gruppe 1


Digitaleingang #2 Nicht konfiguriert

Digitalausgang #1 Nicht konfiguriert

Digitalausgang #2 Nicht konfiguriert

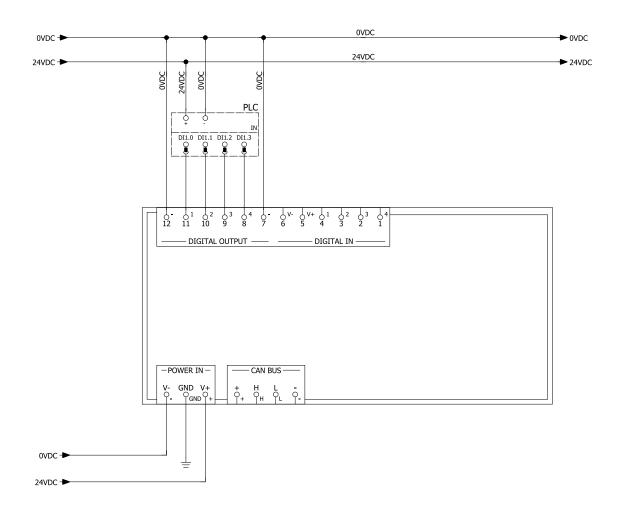
Digitalausgang #3 Feedbacksignal Muting-Aktivierung

13.4.6 Anschluss des Ein- und Ausgangs für das Muting (zwei Sensorgruppen)

Info: Die für die Verkabelung der Digitaleingänge verwendeten Kabel dürfen max. 30 m lang sein.

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Muting-Gruppe 1


Digitaleingang #2 Muting-Gruppe 2

Digitalausgang #1 Nicht konfiguriert

Digitalausgang #2 Nicht konfiguriert

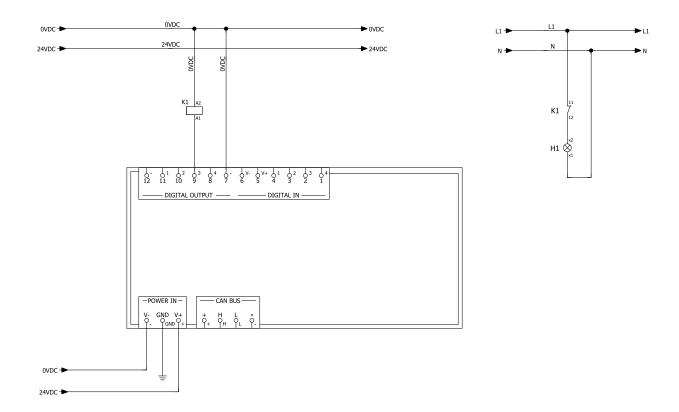
Digitalausgang #3 Feedbacksignal Muting-Aktivierung

13.4.7 Anschluss des Erfassungssignals 1 und 2

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert

Digitaleingang #2 Nicht konfiguriert


Digitalausgang #1 Erfassungssignal 1

Digitalausgang #2 Erfassungssignal 1

Digitalausgang #3 Erfassungssignal 2

Digitalausgang #4 Erfassungssignal 2

13.4.8 Anschluss des Diagnoseausgangs

Info: Die für die Verkabelung der Digitaleingänge verwendeten Kabel dürfen max. 30 m lang sein.

Einstellungen der digitalen E/A (über die Anwendung LBK Designer)

Digitaleingang #1 Nicht konfiguriert

Digitaleingang #2 Nicht konfiguriert

Digitalausgang #1 Nicht konfiguriert

Digitalausgang #2 Nicht konfiguriert

Digitalausgang #3 Systemdiagnosesignal

13.5 Konfiguration der Anwendungsparameter

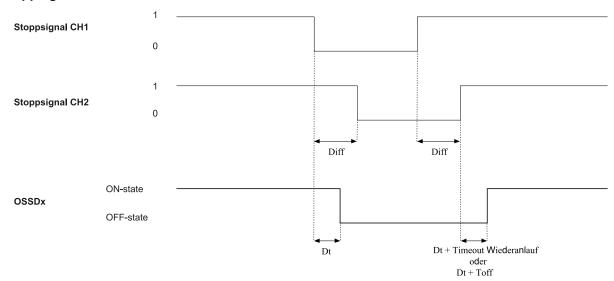
13.5.1 Parameterliste

Parameter	Min.	Max.	Standardwert		
Einstellungen > Konto					
Passwort	-	-	Nicht verfügbar		
Einstellungen > Allgemein					
System	LBK S-01 System, LBh	SBV System	LBK S-01 System		
Sensormodell und -typ	Sensoren mit Reichwe Reichweite 9 m	ite 5 m, Sensoren mit	5 meters range sensors		
Land	Europa, sonstige zertif Länderverzeichnis	izierte Länder oder	Europa, sonstige zertifizierte Länder		
Auswahl der Anwendungsart	Fest installiert, Bewegl	ich, Fahrzeug	Fest installiert		
	Konfiguration				
Anzahl der installierten Sensoren	1	6	1		
Ebene	Maß X: 1000 mm	Maß X: 65000 mm	Maß X: 10000 mm		
	Maß Y: 1000 mm	Maß Y: 65000 mm	Maß Y: 7000 mm		
Position (für jeden Sensor)	X: 0 mm	X: 65000 mm	Standardmäßige		
	Y: 0 mm	Y: 65000 mm	Position des Sensors #1:		
			X: 2000 mm		
			Y: 3000 mm		
Drehung 1 (für jeden Sensor)	0°, 90°, 180°, 270°		0°		
Drehung 2 (für jeden Sensor)	0°	359°	180°		
Drehung 3 (für jeden Sensor)	-90°	90°	0°		
Installationshöhe Sensoren (für jeden Sensor)	0 mm	10000 mm	0 mm		
RCS-Grenzwert (für jeden Sensor)	0 dB	70 dB	0 dB		
RCS-Grenzwert (für jeden Erfassungsbereich eines jeden Sensors)	0 dB	70 dB	0 dB		
Erfassungsabstand 1, 2 (für jeden Sensor)	0 mm Info: Der Mindestwert für den ersten Erfassungsbereich mit Abstand > 0 beträgt 200 mm.	9000 mm Info: Die Summe aller Erfassungsabstände (für jeden Sensor) kann 9000 mm nicht	1000 mm		
Erfassungsabstand 2, 3 und 4 (für	0 mm	überschreiten. 9000 mm	0 mm		
jeden Sensor)	Info: Der Mindestwert für den ersten Erfassungsbereich mit Abstand > 0 beträgt 200 mm.	Info: Die Summe aller Erfassungsabstände (für jeden Sensor) kann 9000 mm nicht überschreiten.			

Parameter	Min.	Max.	Standardwert
Erfassungsbereichsform	Klassisch, Korridor		Klassisch
Horizontale Winkelabdeckung links (Form Klassisch), für einen Gesamterfassungsabstand kleiner als oder gleich 5000 mm	0° Info: Die minimale horizontale Winkelabdeckung (links + rechts) beträgt 10°.	50°	45°
Horizontale Winkelabdeckung rechts (Form Klassisch), für einen Gesamterfassungsabstand kleiner als oder gleich 5000 mm	0° Info: Die minimale horizontale Winkelabdeckung (links + rechts) beträgt 10°.	50°	45°
Horizontale Winkelabdeckung links (Form Klassisch), für einen Gesamterfassungsabstand größer als 5000 mm	0° Info: Die minimale horizontale Winkelabdeckung (links + rechts) beträgt 10°.	20°	-
Horizontale Winkelabdeckung rechts (Form Klassisch), für einen Gesamterfassungsabstand größer als 5000 mm	0° Info: Die minimale horizontale Winkelabdeckung (links + rechts) beträgt 10°.	20°	-
(Form Korridor) – Korridor links	0 mm Info: Die minimale Korridorbreite (links + rechts) beträgt 200 mm in den ersten 5 m; sie beträgt 300 mm zwischen 5 und 9 m.	4000 mm	500 mm
(Form Korridor) – Korridor rechts	0 mm Info: Die minimale Korridorbreite (links + rechts) beträgt 200 mm in den ersten 5 m; sie beträgt 300 mm zwischen 5 und 9 m.	4000 mm	500 mm
Sicherheitsmodus (für jeden Erfassungsbereich eines jeden Sensors)	Zugangserfassung und Wiederanlaufsperre, Immer Zugangserfassung, Immer Wiederanlaufsperre		Zugangserfassung und Wiederanlaufsperre
Erfassung statischer Objekte (für jeden Erfassungsbereich eines jeden Sensors)	Aktiviert, Deaktiviert		Deaktiviert

Parameter	Min.	Max.	Standardwert
Timeout Wiederanlauf (für jeden Erfassungsbereich eines jeden Sensors)	100 ms	60000 ms	4000 ms
T _{OFF}	100 ms	60000 ms	100 ms
	Einstellungen > Erw	eitert	
Abhängigkeit der Erfassungsbereiche	Aktiviert, Deaktiviert		Aktiviert
Robustheit gegenüber Umwelteinflüssen	Aktiviert, Deaktiviert		Deaktiviert
Elektromagnetische Störfestigkeit	Standard, Hoch, Sehr	hoch	Standard
Empfindlichkeit bei der Erfassung statischer Objekte	-20 dB	+20 dB	0 dB
Entprellfilter Stoppsignal	Aktiviert, Deaktiviert		Deaktiviert
Einstellungen > Erweiter	rt > Synchronisierung	mehrerer Steuerungs	einheiten
Kanal der Steuerungseinheit	0	3	0
Eins	tellungen > Manipulat	ionsschutz	
Empfindlichkeit Verdeckungsschutz (für jeden Sensor)	Deaktiviert, Gering, Mi	ttel, Hoch	Gering
Abstand Verdeckungsschutz (für jeden Sensor)	200 mm	1000 mm	1000 mm
Schutz vor Drehung um die Achsen (für jeden Sensor)	Deaktiviert, Aktiviert		Deaktiviert
Schutz vor Drehung um die Achsen - Bestimmte Achse aktivieren - Tilt (für jeden Sensor)	Deaktiviert, Aktiviert		Deaktiviert
Schutz vor Drehung um die Achsen - Bestimmte Achse aktivieren -Roll (für jeden Sensor)	Deaktiviert, Aktiviert		Deaktiviert
Schutz vor Drehung um die Achsen - Bestimmte Achse aktivieren - Pan (für jeden Sensor)	Deaktiviert, Aktiviert		Deaktiviert
Einste	llungen > Digitaleinga	ing/-ausgang	
Digitaleingang (für jeden Eingang)	Nicht konfiguriert, Stoppsignal, Wiederanlaufsignal, Muting-Gruppe "N", Dynamischer Konfigurationswechsel, Gesteuert über Feldbus, Systemwiederherstellung, Wiederanlaufsignal + Systemwiederherstellung, Einkanalig (Kategorie 2), Speichern der Referenz für den Verdeckungsschutz, Speichern der Referenz für den Verdrehschutz		Nicht konfiguriert
Digitaleingangskanal (für jeden Kanal eines jeden Eingangs)	Nicht konfiguriert, Wiederanlaufsignal, Gesteuert über Feldbus, Systemwiederherstellung, Wiederanlaufsignal + Systemwiederherstellung Kohärent, Invers		Nicht konfiguriert Kohärent
1 TOGUTUUTIZITIOUUS	Nonaioni, invers		1 Charont

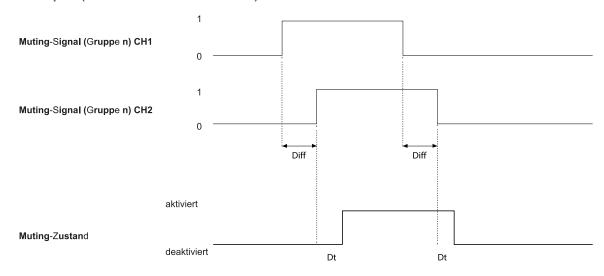
Parameter	Min.	Max.	Standardwert
Verschlüsselter Kanal	Aktiviert, Deaktiviert		Deaktiviert
	Info: nur verfügbar, wenn die Option Dynamischer Konfigurationswechsel für beide Digitaleingänge konfiguriert ist		
Digitalausgang (für jeden Ausgang)	Nicht konfiguriert, Systemdiagnosesignal, Feedbacksignal Muting-Aktivierung, Gesteuert über Feldbus, Feedback des Wiederanlaufsignals, Erfassungssignal "N", Erfassungswarnung "N", Feedbacksignal Erfassung statischer Objekte, Erfassungssignalgruppe 1, Erfassungswarnungsgruppe 1, Erfassungswarnungsgruppe 2*		Nicht konfiguriert
OSSD-Impulsbreite	Kurz (300 μs), Lang (2	ms)	Kurz (300 µs)
Kurzschluss/Diagnose von offenen Stromkreisen	Aktiviert, Deaktiviert		Deaktiviert
	Einstellungen > Mu	iting	
Gruppe für die Muting-Funktion (für jeden Sensor)	Keine, Gruppe 1, Grup	pe 2, beide	Gruppe 1
Impulsbreite (für jeden Eingang)	0 μs (= Periode und Phasenverschiebung deaktiviert)	2000 μs	0 μs
Deriodo (für inden Eingeng)	200 μs 200 ms	2000 ms	200 ms
Periode (für jeden Eingang) Phasenverschiebung (für jeden	0,4 ms	1000 ms	0,4 ms
Eingang)	·		0,41115
	Einstellungen > Wiede		T
Erfassungsbereich 1, 2, 3, 4	Automatisch, Manuell,		Automatisch
	nstellungen > Aktivitä □-		T.
Ausführlichkeitsgrad der Protokolle	0	5	0
	ungen > Erfassungsbe		T
Erfassungsbereich 1, 2, 3, 4 (für jeden Sensor)	Keine, Gruppe 1, Gruppe 2, Beide		Keine
	Admin > Netzwe	rk	
IP-Adresse	-		192.168.0.20
Netzwerkmaske	-		255.255.255.0
Gateway	-		192.168.0.1
TCP-Port	1	65534	80
	Admin > Feldbuspara PROFINET/PROFIS		
Konfiguration und Systemzustand PS2v6	1	65535	145
Informationen über die Sensoren PS2v6	1	65535	147
Erfassungszustand Sensor 1 PS2v6	1	65535	149


Parameter	Min.	Max.	Standardwert
Erfassungszustand Sensor 2 PS2v6	1	65535	151
		65535	153
Erfassungszustand Sensor 4 PS2v6	1	65535	155
Erfassungszustand Sensor 5 PS2v6	1	65535	157
Erfassungszustand Sensor 6 PS2v6	1	65535	159
Konfiguration und Systemzustand PS2v4	1	65535	146
Informationen über die Sensoren PS2v4	1	65535	148
Erfassungszustand Sensor 1 PS2v4	1	65535	150
Erfassungszustand Sensor 2 PS2v4	1	65535	152
Erfassungszustand Sensor 3 PS2v4	1	65535	154
Erfassungszustand Sensor 4 PS2v4	1	65535	156
Erfassungszustand Sensor 5 PS2v4	1	65535	158
Erfassungszustand Sensor 6 PS2v4	1	65535	160
Endianness des Feldbusses	Big Endian, Little Endia	an	Big Endian
	FSoE		
FSoE Safe Address	1	65535	145
	Ethernet/IP™ - CIP Sa	afety™	1
IP-Adresse	-		DHCP
Netzmaske	-		DHCP
Gateway	-	-	
•		[leer]	
Sicherheitsnetzwerknummer (SNN)	-		0xFFFFFFFFFF
Endianness des Feldbusses (nur für nicht sichere Verbindungen)	Indianness des Feldbusses (nur für Big Endian, Little Endian		Big Endian
	Admin > MODBUS-Pai	rameter	1
Aktivierung MODBUS Aktiviert, Deaktiviert Aktiviert		Aktiviert	
Überwachungsport	1	65534	502
	Admin > Systemetik	etten	
Steuerungseinheit	-		-
Sensor 1	-		-
Sensor 2	-		-
Sensor 3	Sensor 3 -		-
Sensor 4	-		-
Sensor 5	-		-
Sensor 6	-		-
	Admin > Benutzerverv	valtung	
Benutzername	-		-
Zugriffsebene	bene Admin, Engineer, Expert, Observer, Service		Observer
Admin > SD-Karte			
Automatische Sicherung Aktiviert, Deaktiviert D		Deaktiviert	

Parameter	Min.	Max.	Standardwert
Inklusive Benutzerdaten	Aktiviert, Deaktiviert		Deaktiviert
Wiederherstellung über Schaltfläche aktivieren	Aktiviert, Deaktiviert		Aktiviert

Info*: Erfassungswarnung "N", Erfassungswarnungsgruppe 1 und Erfassungswarnungsgruppe 2 sind nur für LBK ISC110E-C verfügbar.

13.6 Digitaleingangssignale

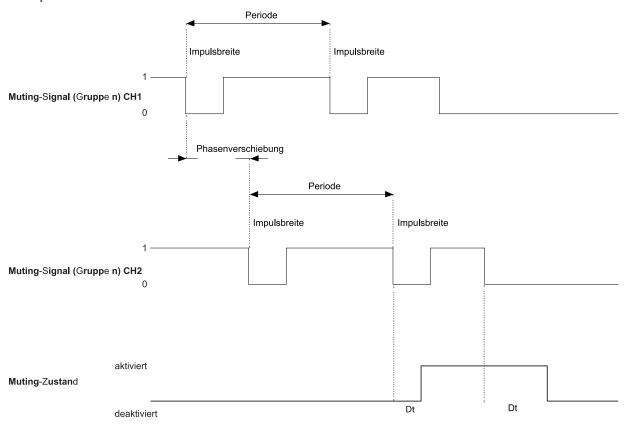

13.6.1 Stoppsignal

Teil	Beschreibung
OSSDx: Erfassungssignal "N" /Erfassungssignal	Erfassungssignalausgänge werden an der abfallenden Flanke von mindestens einem der beiden Eingangskanäle des Eingangssignals deaktiviert. Bleiben im OFF-state, solange einer der beiden Eingangskanäle auf dem logischen Pegel Low (0) bleibt.
Gruppe "N"	
Stoppsignal CH1	Austauschbarer Kanal. Wenn ein Kanal zum logischen Pegel Low (0) übergeht,
Stoppsignal CH2	werden das Erfassungssignal 1 und das Erfassungssignal 2 in den OFF-state gesetzt.
Diff	Kleiner als 50 ms. Wenn der Wert über 50 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
Dt	Aktivierungsverzögerung. Wenn der Entprellfilter des Stoppsignals deaktiviert ist, unter 5 ms. Wenn der Entprellfilter des Stoppsignals aktiviert ist, unter 50 ms.

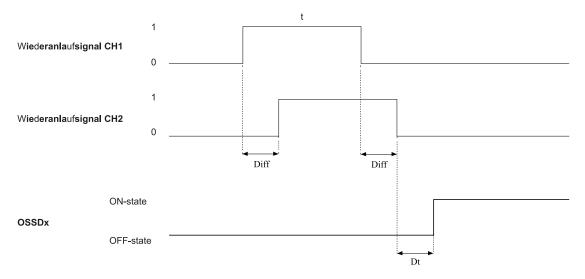

13.6.2 Muting (mit/ohne Impuls)

Ohne Impuls (kohärenter Redundanzmodus)

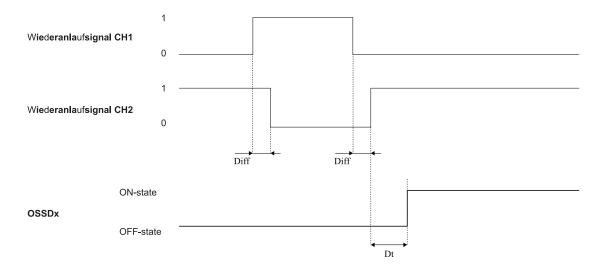
Teil	Beschreibung
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
Muting-Signal (Gruppe n) CH 1	Austauschbarer Kanal.
Muting-Signal (Gruppe n) CH 2	
Muting-Zustand	Aktiviert, solange beide Kanäle den logischen Pegel High (1) aufweisen, und deaktiviert, wenn beide Kanäle zum logischen Pegel Low (0) übergehen.
Dt	Aktivierungs-/Deaktivierungsverzögerung. Kleiner als 50 ms.


Ohne Impuls (inverser Redundanzmodus)

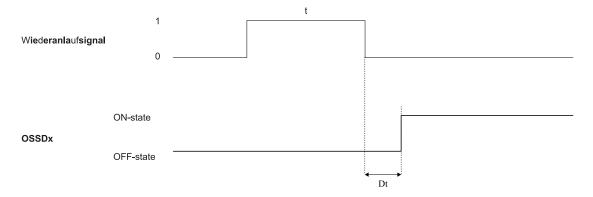
Teil	Beschreibung
	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
	Aktiviert, solange Kanal 1 des Muting-Signals den logischen Pegel High (1) und Kanal 2 den logischen Pegel Low (0) aufweist. Deaktiviert, solange Kanal 1 den logischen Pegel Low (0) und Kanal 2 den logischen Pegel High (1) aufweist.


Teil	Beschreibung
Dt	Aktivierungs-/Deaktivierungsverzögerung. Kleiner als 50 ms.

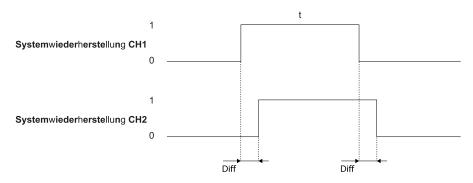
Mit Impuls


Teil	Beschreibung
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
Muting-Signal (Gruppe n) CH 1	Austauschbarer Kanal.
Muting-Signal (Gruppe n) CH 2	
Muting-Zustand	Aktiviert, solange beide Eingangssignale den konfigurierten Muting-Parametern (Impulsbreite, Impulsfolge und Phasenverschiebung des Impulses) folgen.
Dt	Aktivierungs-/Deaktivierungsverzögerung. Kleiner als die dreifache Periode.

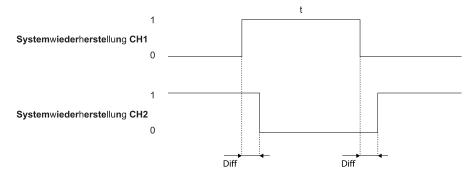
13.6.3 Wiederanlaufsignal (zweikanalig, kohärenter Redundanzmodus)


Teil	Beschreibung
OSSDx:	Erfassungssignalausgänge gehen in den ON-state über, sobald der letzte Kanal
Erfassungssignal "N"	den Übergang 0 -> 1 -> 0 korrekt abgeschlossen hat.
/Erfassungssignal Gruppe "N"	
Wiederanlaufsignal CH1	Austauschbarer Kanal. Beide Kanäle des Wiederanlaufsignals müssen einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Sie müssen über einen
Wiederanlaufsignal CH2	Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben.
Dt	Aktivierungsverzögerung. Kleiner als 50 ms.
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.

13.6.4 Wiederanlaufsignal (zweikanalig, inverser Redundanzmodus)


Teil	Beschreibung
OSSDx:	Erfassungssignalausgänge gehen in den ON-state über, sobald der letzte Kanal
Erfassungssignal "N" /Erfassungssignal Gruppe "N"	den Übergang korrekt abgeschlossen hat.
Wiederanlaufsignal CH1 Wiederanlaufsignal CH2	Kanal 1 des Wiederanlaufsignals muss einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Kanal 2 des Wiederanlaufsignals muss einen Übergang des logischen Pegels von 1 -> 0 -> 1 ausführen. Kanal 1 muss über einen Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben; Kanal 2 muss für denselben Zeitraum auf einem niedrigen logischen Pegel verbleiben.
Dt	Aktivierungsverzögerung. Kleiner als 50 ms.
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.

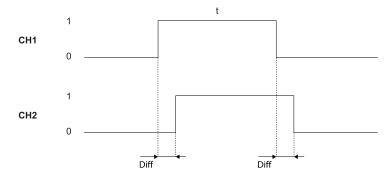
13.6.5 Wiederanlaufsignal (einkanalig)


Teil	Beschreibung
OSSDx: Erfassungssignal "N" /Erfassungssignal Gruppe "N"	Erfassungssignalausgänge gehen in den ON-state über, sobald das Wiederanlaufsignal den Übergang 0 -> 1 -> 0 korrekt abgeschlossen hat.
Wiederanlaufsignal	Der Kanal muss einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Sie müssen über einen Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben.
Dt	Aktivierungsverzögerung. Kleiner als 50 ms.

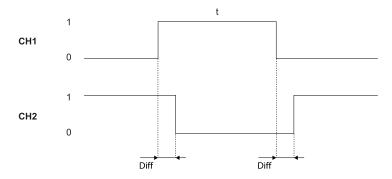
13.6.6 Systemwiederherstellung (zweikanalig, kohärenter Redundanzmodus)

Teil	Beschreibung
Systemwiederherstellung CH1 Systemwiederherstellung CH2	Austauschbarer Kanal. Beide Kanäle der Systemwiederherstellung müssen einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Sie müssen über einen Zeitraum (t) von mindestens 10 s und höchstens 30 s auf einem hohen logischen Pegel verbleiben.
OHZ	
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.

13.6.7 Systemwiederherstellung (zweikanalig, inverser Redundanzmodus)


Teil	Beschreibung
Systemwiederherstellung CH1 Systemwiederherstellung CH2	Kanal 1 der Systemwiederherstellung muss einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Kanal 2 der Systemwiederherstellung muss einen Übergang des logischen Pegels von 1 -> 0 -> 1 ausführen. Kanal 1 muss über einen Zeitraum (t) von mindestens 10 s und höchstens 30 s auf einem hohen logischen Pegel verbleiben; Kanal 2 muss für denselben Zeitraum auf einem niedrigen logischen Pegel verbleiben.
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.

13.6.8 Systemwiederherstellung (einkanalig)

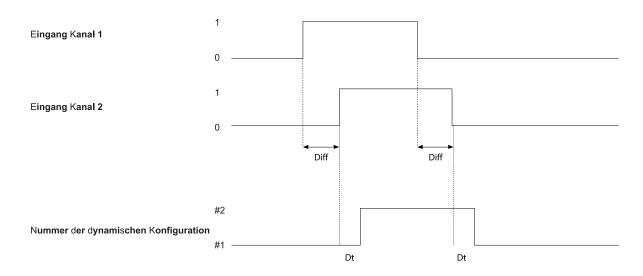

Teil	Beschreibung	
Systemwiederherstellung	g Der Kanal muss einen Übergang des logischen Pegels von 0 -> 1 -> 0	
	ausführen. Er muss über einen Zeitraum (t) von mindestens 10 s und	
	höchstens 30 s auf einem hohen logischen Pegel verbleiben.	

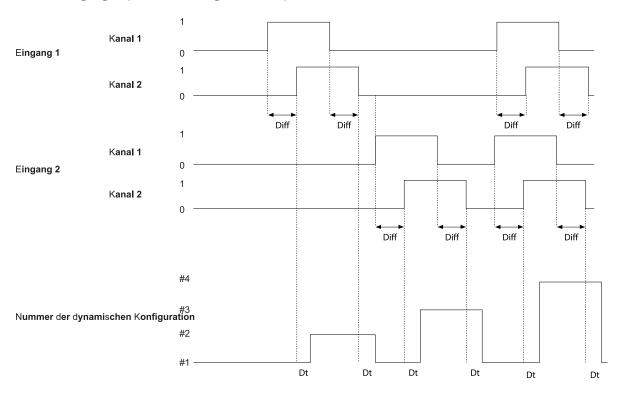
13.6.9 Wiederanlaufsignal + Systemwiederherstellung (zweikanalig, kohärenter Redundanzmodus)

Teil	Beschreibung
CH1 CH2 (Wiederanlaufsignal)	Austauschbarer Kanal. Beide Kanäle müssen einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Sie müssen über einen Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben.
	Für nähere Informationen zum Verhalten der Ausgänge des Erfassungssignals 1 und 2 und zur Deaktivierungsverzögerung siehe Wiederanlaufsignal (zweikanalig, kohärenter Redundanzmodus) auf Seite 167.
CH1 CH2 (Systemwiederherstellung)	Austauschbarer Kanal. Beide Kanäle müssen einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Sie müssen über einen Zeitraum (t) von mindestens 10 s und höchstens 30 s auf einem hohen logischen Pegel verbleiben.
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.

13.6.10 Wiederanlaufsignal + Systemwiederherstellung (zweikanalig, inverser Redundanzmodus)

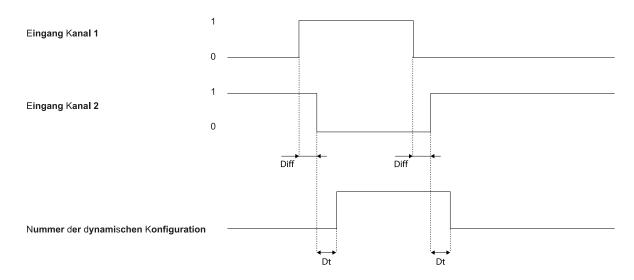
Teil	Beschreibung	
CH1	Kanal 1 des Wiederanlaufsignals muss einen Übergang des logischen	
CH2	Pegels von 0 -> 1 -> 0 ausführen. Kanal 2 des Wiederanlaufsignals muss einen Übergang des logischen Pegels von 1 -> 0 -> 1 ausführen. Kanal 1	
(Wiederanlaufsignal)	muss über einen Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben; Kanal 2 muss für denselben Zeitraum auf einem niedrigen logischen Pegel verbleiben.	
	Für nähere Informationen zum Verhalten der Ausgänge des Erfassungssignals 1 und 2 und zur Deaktivierungsverzögerung siehe Wiederanlaufsignal (zweikanalig, inverser Redundanzmodus) auf Seite 168.	
CH1	CH2 Pegels von 0 -> 1 -> 0 ausführen. Kanal 2 der Systemwiederherstellung muss einen Übergang des logischen Pegels von 1 -> 0 -> 1 ausführen.	
CH2		
(Systemwiederherstellung)		
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, hält das System die Ausgänge deaktiviert.	

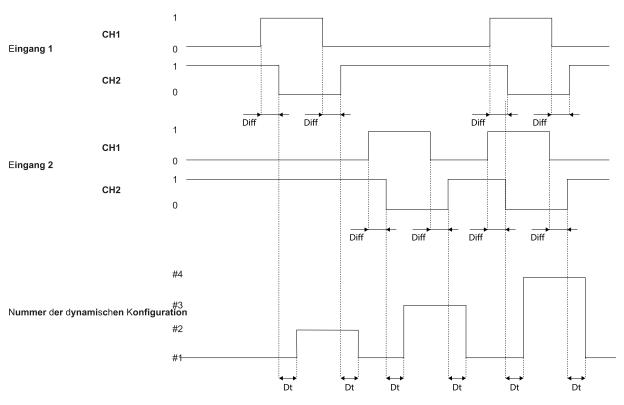

13.6.11 Wiederanlaufsignal + Systemwiederherstellung (einkanalig)


Teil	Beschreibung	
Wiederanlaufsignal	Der Kanal muss einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Er muss über einen Zeitraum (t) von mindestens 200 ms und höchstens 5 s auf einem hohen logischen Pegel verbleiben.	
	Für nähere Informationen zum Verhalten der Ausgänge des Erfassungssignals 1 und 2 und zur Deaktivierungsverzögerung siehe Wiederanlaufsignal (einkanalig) auf Seite 169.	
Systemwiederherstellung	Der Kanal muss einen Übergang des logischen Pegels von 0 -> 1 -> 0 ausführen. Er muss über einen Zeitraum (t) von mindestens 10 s und höchstens 30 s auf einem hohen logischen Pegel verbleiben.	

13.6.12 Dynamischer Konfigurationswechsel (kohärenter Redundanzmodus)

Mit einem Eingang


Mit zwei Eingängen (Kanalcodierung deaktiviert)


Teil	Beschreibung
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
Nummer der dynamischen Konfiguration	Für nähere Informationen zur Nummer der dynamischen Konfiguration und zur Option Kanalcodierung siehe Dynamische Konfigurationen über Digitaleingänge auf Seite 48.
Dt	Aktivierungs-/Deaktivierungsverzögerung. Kleiner als 50 ms.

13.6.13 Dynamischer Konfigurationswechsel (inverser Redundanzmodus)

Mit einem Eingang

Mit zwei Eingängen

Teil	Beschreibung
Diff	Kleiner als 100 ms. Wenn der Wert über 100 ms liegt, wird der Diagnosealarm aktiviert und das System deaktiviert die Sicherheitsausgänge.
Nummer der dynamischen Konfiguration	Für nähere Informationen zur Nummer der dynamischen Konfiguration und zur Option Kanalcodierung siehe Dynamische Konfigurationen über Digitaleingänge auf Seite 48.
Dt	Aktivierungs-/Deaktivierungsverzögerung. Kleiner als 50 ms.

14 Anhang

14.1 Systemsoftware

14.1.1 Einleitung

Zweck dieses Anhangs ist es, eindeutige Informationen über die Systemsoftware bereitzustellen. Er enthält die Informationen, die der Integrator für die Installation und Systemintegration gemäß IEC 61508-3 Anhang D benötigt.

Da es sich bei LBK SBV System um ein integriertes System handelt, das mit einer bereits implementierten Firmware geliefert wird, müssen Installationspersonal und Endbenutzer keine weitere Softwareintegration vornehmen. Die folgenden Abschnitte enthalten alle Informationen, die in der Norm IEC 61508-3 Anhang D vorgesehen sind.

14.1.2 Konfiguration

Die Systemkonfiguration kann mit einem PC-basierten Konfigurationstool ausgeführt werden, das als LBK Designer-Anwendung bezeichnet wird.

Die Systemkonfiguration ist unter Installation und Verwendung auf Seite 98 beschrieben.

14.1.3 Kompetenzen

Obwohl keine spezifischen Kompetenzen für die Softwareintegration erforderlich sind, muss die Installation und Konfiguration des Systems von einer qualifizierten Person ausgeführt werden (siehe dazu Installation und Verwendung auf Seite 98).

14.1.4 Installationsanleitung

Die Firmware ist bereits in der Hardware implementiert. Das PC-basierte Konfigurationstool enthält ein selbsterklärendes Installationsprogramm.

14.1.5 Bekannte Fehler

Zum Zeitpunkt der Erstausgabe dieses Dokuments sind keine Fehler oder Bugs in der Software/Firmware bekannt.

14.1.6 Abwärtskompatibilität

Die Abwärtskompatibilität ist sichergestellt.

14.1.7 Änderungskontrolle

Eventuelle Änderungsvorschläge des Integrators oder des Endbenutzers sind an Leuze zu übermitteln und werden vom Produkteigentümer geprüft.

14.1.8 Implementierte Sicherheitsmaßnahmen

Die Pakete mit den Firmware-Updates werden vom technischen Kundendienst von Leuze verwaltet und sind signiert, sodass keine ungeprüften Binärdateien verwendet werden können.

14.2 Entsorgung

LBK SBV System enthält elektrische Teile. Gemäß der Europäischen Richtlinie 2012/19/EU darf das Produkt nicht mit unsortierten Siedlungsabfällen entsorgt werden.

Der Eigentümer/Händler ist dafür verantwortlich, diese Produkte sowie sonstige Elektro- und Elektronikgeräte über eigene Sammelstellen zu entsorgen, die von den Entsorgungsdienstleistern benannt sind.

Die ordnungsgemäße Entsorgung und das Recycling tragen dazu bei, potenziell nachteilige Auswirkungen für die Umwelt und die Gesundheit zu vermeiden.

Für nähere Informationen zur Entsorgung wenden Sie sich an die Entsorgungsdienstleister oder den Händler, bei dem Sie das Produkt erworben haben.

14.3 Kundendienst und Support

14.3.1 Servicehotline

Die Kontaktinformationen für die Hotline in Ihrem Land finden Sie auf unserer Website www.leuze.com unter **Kontakt & Support**.

Reparaturservice und Rücksendung

Defekte Geräte werden in unserem Servicecenter kompetent und schnell instandgesetzt. Wir bieten Ihnen ein umfassendes Servicepaket, um eventuelle Anlagenstillstandszeiten auf ein Minimum zu reduzieren. Unser Servicecenter benötigt die folgenden Informationen:

- Ihre Kundennummer
- · Bezeichnung des Produkts oder Teils
- Serien- und Chargennummer
- · Grund der Serviceanforderung sowie eine Beschreibung

Bitte registrieren Sie die betroffene Ware. Melden Sie die Ware über unsere Website www.leuze.com unter Kontakt & Support > Reparaturservice & Rücksendung zur Rücksendung an.

Um eine rasche und einfache Bearbeitung Ihrer Anfrage gewährleisten zu können, übermitteln wir Ihnen einen elektronischen Rücksendeauftrag mit der Rücksendeadresse.

14.4 Geistiges Eigentum

14.4.1 Marken

EtherCAT® und EtherCAT P® sind eingetragene Marken und patentierte Technologien, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

14.4.2 US-Patente

Die Produkte der Leuze electronic GmbH + Co. KG sind durch die folgenden US-Patente geschützt:

- US-Patent Nr. 10761205
- US-Patent Nr. 11402481
- US-Patent Nr. 11282372
- US-Patent Nr. 11422227
- US-Patent Nr. 11579249
- US-Patent Nr. 11835616
- US-Patent Nr. 11982983
- US-Patent Nr. 11846724

US-Patent Nr. 11988739US-Patent Nr. 11041937

In den USA sind weitere Patentanmeldungen anhängig.

14.5 Checkliste für die Installation von berührungslos wirkenden Schutzeinrichtungen (BWS; engl.: ESPE)

14.5.1 Einleitung

Die nachstehende Checkliste muss verpflichtend spätestens bis zur Inbetriebnahme des Systems ausgefüllt werden.

Die Checkliste muss mit der Maschinendokumentation aufbewahrt und als Referenz bei periodischen Tests herangezogen werden.

Diese Checkliste ersetzt nicht die Inbetriebnahme oder regelmäßige Inspektion durch qualifiziertes Sicherheitspersonal.

14.5.2 Checkliste

Frage	Ja	Nein
Wurden die Sicherheitsbestimmungen und -vorschriften aus den für die Maschine geltenden Richtlinien und Normen eingehalten?		
Werden die geltenden Richtlinien und Normen in der Konformitätserklärung aufgeführt?		
Entspricht die BWS dem geforderten PL/SIL und PFHd gemäß EN ISO 13849-1/EN 62061 und dem geforderten Typ gemäß EN 61496-1?		
Ist der Zugang zum Gefahrenbereich nur über den Erfassungsbereich der BWS möglich?		
Sind geeignete Maßnahmen für die Erfassung einer jeden Person im Gefahrenbereich umgesetzt?		
Wurden die Sicherheitseinrichtungen gesichert oder verriegelt, um deren Entfernen zu verhindern?		
Wurden zusätzliche mechanische Schutzmaßnahmen, die ein Übergreifen, Untergreifen oder Umgreifen der BWS verhindern, angebracht und gegen Manipulation gesichert?		
Wurde die maximale Nachlaufzeit der Maschine gemessen, angegeben und dokumentiert?		
Wurde die BWS so montiert, dass der erforderliche Mindestabstand zur nächstgelegenen Gefahrenstelle eingehalten wird?		
Wurden die BWS nach der Einstellung ordnungsgemäß montiert und gegen Manipulation geschützt?		
Sind die geforderten Schutzmaßnahmen gegen elektrischen Schlag wirksam umgesetzt (Schutzklasse)?		
lst der Betätigungsschalter zum Zurückstellen der Schutzeinrichtung (BWS) oder für den Neustart der Maschine vorhanden und ordnungsgemäß installiert?		
Sind die Ausgänge der BWS entsprechend dem geforderten PL/SIL gemäß EN ISO 13849-1/EN 62061 integriert und entspricht die Integration den Schaltplänen?		
Wurde die Schutzfunktion entsprechend den Prüfanweisungen in dieser Dokumentation geprüft?		
Sind die angegebenen Schutzfunktionen in jeder möglichen Betriebsart wirksam?		
Werden die Schaltelemente durch die BWS angesteuert?		
Ist die Schutzfunktion der BWS während der gesamten Dauer des Gefährdungszustandes wirksam?		
Wird ein eingetretener Gefährdungszustand durch Ein- oder Ausschalten der BWS, durch einen Wechsel der Betriebsart oder durch Umschalten auf eine andere Schutzeinrichtung gestoppt?		

14.6 Bestellhilfe

14.6.1 Sensoren

ArtNr.	Artikel	Beschreibung
50149654	LBK SBV205	Sensor 60 GHz, 9 m

14.6.2 Steuerungseinheiten

ArtNr.	Artikel	Beschreibung
50145355	LBK ISC BUS PS	PROFIsafe- Steuerungseinheit
50149650	LBK ISC100E-F	FSoE- Steuerungseinheit
50147250	LBK ISC-02	Ethernet- Steuerungseinheit, USB
50147251	LBK ISC-03	USB-Steuerungseinheit
50145356	LBK ISC110E-P	PROFIsafe- Steuerungseinheit, SD- Karte
50149651	LBK ISC110E-F	FSoE- Steuerungseinheit, SD- Karte
50149652	LBK ISC110E	Steuerungseinheit, Ethernet, USB, SD- Karte
50149653	LBK ISC110	Steuerungseinheit, USB, SD-Karte

14.7 Zubehör

14.7.1 Anschlusstechnik - Anschlusskabel

ArtNr.	Artikel	Beschreibung
50143389	KD DN-M12-5W-P1-150	Anschlusskabel, M12 gewinkelt, 5-polig, 15 m
50114696	KB DN/CAN-5000 BA	Anschlusskabel, M12 axial, 5-polig, 5 m
50114699	KB DN/CAN-10000 BA	Anschlusskabel, M12 axial, 5-polig, 10 m

Elektrischer Anschluss

Pin	Leiterfarbe	Funktion
1	-	Abschirmung, anzuschließen an die Erdung der Spannungsversorgungsleiste der Steuerungseinheit.
2	Rot	+12 V DC
3	Schwarz	GND
4	Weiß	CAN H
5	Blau	CAN L

14.7.2 Anschlusstechnik - Verbindungskabel

ArtNr.	Artikel	Beschreibung
50143385	KDS DN-M12-5W-M12- 5W-P3-030	Verbindungskabel, M12 gewinkelt, 3 m
50143386	KDS DN-M12-5W-M12- 5W-P3-050	Verbindungskabel, M12 gewinkelt, 5 m
50143387	KDS DN-M12-5W-M12- 5W-P3-100	Verbindungskabel, M12 gewinkelt, 10 m
50143388	KDS DN-M12-5W-M12- 5W-P3-150	Verbindungskabel, M12 gewinkelt, 15 m

14.7.3 Anschlusstechnik – USB-Verbindungskabel

ArtNr.	Artikel	Beschreibung
50143459	KSS US-USB2-A-mic-	USB-Kabel, USB-A –
	B-V0-018	Micro-USB, 1,8 m

14.7.4 Anschlusstechnik - Abschlusswiderstände

ArtNr.	Artikel	Beschreibung
50040099	TS 01-5-SA	Abschlussstecker, M12

14.7.5 Montagetechnik - Montagebügel

ArtNr.	Artikel	Beschreibung
50150141		Montagebügel für SBV- Sensor als Ersatzteil

14.7.6 Montagetechnik – Schutzkomponenten

ArtNr.	Artikel	Beschreibung
50150219		Mechanischer Schutz für Sensor