

Original-Betriebsanleitung

LRS - Line Range Sensor Lichtschnittsensoren

The Sensor People

Technische Änderungen vorbehalten DE • 2025-03-31 • 50112363

© 2025 Leuze electronic GmbH & Co. KG In der Braike 1 D-73277 Owen / Germany Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com info@leuze.com

1	Allgemeines		
	1.1	Zeichenerklärung	
	1.2	Konformitätserklärung	
2	Sich	orboit 7	
2	2.1		
	2.1	Verbereehbere Eeblenwendung	
	2.2		
	2.3	Beranigte Personen	
	2.4 2.5	Hantungsausschluss	
	2.5		
3	Funk	ktionsprinzip	
	3.1	Generierung von 2D-Profilen	
	3.2	Grenzen der Lichtschnittsensorik	
	3.2.1	Abschattung	
	3.2.2	Mindestobjektgröße	
4	Gerä	itebeschreibung	
	4.1	Lichtschnittsensoren im Überblick	
	4.1.1	Mechanischer Aufbau	
	4.1.2	Generelle Leistungsmerkmale	
	4.1.3	Line Range Sensor - LRS 36	
	4.Z 4 2 1	Anbindung an PC / Prozess-Steuerung 15	
	4.2.2	Aktivierung - Laser ein/aus	
	4.2.3	Triggerung - Free Running	
	4.2.4	Kaskadierung	
	4.3	Erkennungsfunktionen LRS 36	
	4.3.1	Analysis Window (AW)	
	4.3.3	Definition von AWs und Auswerteergebnisse	
	4.3.4	Applikationsbeispiele	
	4.3.5	LRS Teach-Algorithmen 21	
	4.0.0		
5	Insta	allation und Montage	
	5.1	Lagern, transportieren	
	5.2	Montage des LRS 36	
	5.2.1	Befestigungsteil BT 56	
	5.2.Z	Corätoppordnung	
	5.3.1	Wahl des Montageortes	
	5.3.2	Ausrichtung des Sensors	
	5.4	Laserwarnschild anbringen	
	5.5	Reinigen	
6	Elak	triacher Anachluca 22	
U		Sicherheitshinweise 22	
	0.1 6.2	Schirmung und Leitungelängen	
	0.Z	Anschließen	
	6.3.1	Anschluss X1 - Loaik und Power	
	6.3.2	Anschluss X2 - Ethernet	
	6.3.3	Anschluss X3 - Schaltein-/ausgänge (nur LRS 36/6)	
	6.3.4	Anschluss X4 - PROFIBUS DP (nur LRS 36/PB)	

7	Display und Bedienfeld	39
	7.1 Anzeige- und Bedienelemente	. 39
	7.1.1 LED-Statusanzeigen	. 39
	7.1.2 Bedientasten	. 39
		. 59
	7.2 Mendbeschleibung	. 41
	7.2.2 Bedienung/Navigation	. 43
	7.3 Rücksetzen auf Werkseinstellungen	. 44
8	Inbetriebnahme und Parametrierung	45
	8.1 Einschalten	. 45
	8.2 Verbindung zum PC herstellen	. 45
	8.3 Inbetriebnahme	. 46
0	Paramatriara offusiona L PSa off	40
9		40
	9.1 Systemanforderungen	. 48
	9.2 Installation	. 48
	9.2.1 Mogliche Fehlemeldung	. 52 53
	9.3 Start von LRSsoft/Reiter Communication	. 00 54
	9.4 Parametereinstellungen/Reiter Parameters	55
	9.4.1 Bereich Task Parameters	. 56
	9.4.2 Bereich Analysis Functions	. 57
	9.4.3 Bereich Single Shot Mode	. 62
	9.4.4 Bereich Global Parameters	. 62
	9.5 Erkennungsfunktion/Reiter Visualisierung. 9.5.1 Gespeicherte Erkennungsdaten auswerten	. 62 . 62
	9.6 Menübefehle	. 63
	9.6.1 Parametereinstellungen speichern/Menü File	. 63
	9.6.2 Parametereinstellungen übertragen/Menü Configuration	. 63
	9.6.3 Erkennungsdaten verwalten/Menu Measure Records	. 64
	9.7 Definition von Inspektionsaufgaben	. 64
		. 04
10	Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)	66
	10.1 Allgemeines	. 66
	10.2 Protokollaufbau Ethernet	. 66
	10.2.1 Befehlsnummer	. 67
	10.2.2 Pakeinummer	. 07
	10.2.4 Status	. 67
	10.2.5 Encoder High / Low	. 68
	10.2.6 Scannummer	. 68
	10.2.7 I yp	. 68
	10.2.9 Auswertetelegramm	. 68
	10.3 Ethernet-Befehle	69
	10.3.1 Elementare Befehle	. 70
	10.3.2 Befehle im Befehlsmodus	. 71
	10.3.3 Erläuterung der Nutzdaten im Befehlsmodus (Befehlsparameter)	. 71
	10.3.4 Betehle im Erkennungsmodus	. /6 76
	10.4 Arbeiten mit dem Protokoll (Ethornot)	. 10
		. 10 77
	10.6 Betrieb mit Native C++ DLI	. 11 70

	10.7 Weitergehende Unterstützung bei der Sensoreinbindung	78
11	Einbindung des LRS 36/PB in den PROFIBUS	. 79
	11.1 Allgemeines	79
	11.2 PROFIBUS Adressvergabe	79
	11.3 Allgemeine Infos zur GSD-Datei	80
	11.4 Übersicht der GSD Module	81
	11.5 Beschreibung der Ausgangsdaten	83
	11.6 Beschreibung der Eingangsdaten	84
	11.6.2 Modul M2	85
	11.6.3 Modul M3	85
	11.6.4 Modul M4	86
	11.6.5 Modul M5	80
12	Pflegen, Instand halten und Entsorgen	. 87
	12.1 Allgemeine Wartungshinweise	87
	12.2 Reparatur, Instandhaltung	87
	12.3 Abbauen, Verpacken, Entsorgen	87
13	Diagnose und Fehlerbehebung	. 88
	13.1 Allgemeine Fehlerursachen	88
	13.2 Schnittstellenfehler	88
	13.3 Fehlermeldungen im Display (ab Firmware V01.40)	89
14	Service und Support	. 90
	14.1 Was tun im Servicefall?	90
15	Tachnische Daton	01
15	15.1 Allgemeine technische Daten	. 91
	15.1 Allgemeine lechnische Daten	91 02
	15.2 Typischer Enassungsbereich	93
16	Typenübersicht und Zubehör	. 94
	16.1 Typenübersicht	
	16.1.1 LPS	94 94
	16.1.3 LES	
	16.2 Zubehör	95
	16.2.1 Befestigung	95
	16.2.2 Zubenör vorkonfektionierte Leitungen zur Spannungsversorgung X1	95
	16.2.4 Zubehör vorkonfektionierte Leitungen für X3 (nur LRS 36/6)	
	16.2.5 Anschlusszubehör / vorkonfektionierte Leitungen für X4 (nur LRS 36/PB)	98
	16.2.6 Parametriersoftware	. 100
		. 100
17	Anhang	101
	1/.1 Glossar	. 101
	17.2 Revision History / Feature list	. 102
	17.2.2 Parametriersoftware	. 102

Abbildungs- und Tabellenverzeichnis

Bild 2.1:	Laseraustrittsöffnungen, Laserwarnschilder	. 10
Bild 2.2:	Laserwarn- und Laserhinweisschilder – beigelegte Aufkleber	. 10
Bild 3.1:	Aufbau von Lichtschnittsensoren	. 11
Bild 3.2:	Abschattung	. 12
Bild 3.3:	Typische Mindestobjektgröße LRS 36	. 13
Bild 4.1:	Mechanischer Aufbau der Leuze-Lichtschnittsensoren	. 14
Bild 4.2:	Signalfolge Aktivierungseingang	. 16
Bild 4.3:	Signalfolge Triggereingang	. 16
Bild 4.4:	Applikationsbeispiel Kaskadierung	. 17
Bild 4.5:	Signalfolge bei Kaskadierung	. 17
Bild 4.6:	Prinzip der Objekterkennung - Bereiche mit Laserabschattung sind orange dargestellt.	. 19
Bild 4.7:	Leerkontrolle von Behältern	. 20
Bild 4.8:	Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken	. 20
Bild 4.9:	Teach "Flächentaster" (Area Scan Basic)	. 21
Bild 4.10:	Teach "Flächentaster" (Area Scan Basic) - Objekterkennung im AW01	. 22
Bild 4.11:	Teach "Hintergrundausblendung" (Area Scan Advanced)	. 23
Bild 4.12:	Teach "Hintergrundausblendung" (Area Scan Advanced) -	
	Objekterkennung in den AWs	. 24
Bild 4.13:	Teach "Mehrspurige Vollständigkeitskontrolle" (Track Scan)	. 25
Bild 5.1:	Gerätetypenschild LRS 36	. 27
Bild 5.2:	Befestigungsmöglichkeiten	. 28
Bild 5.3:	Befestigungsbeispiel LRS 36	. 28
Bild 5.4:	Befestigungsteil BT 56	. 29
Bild 5.5:	Befestigungsteil BT 59	. 29
Bild 5.6:	Ausrichtung zur Messebene	. 30
Bild 6.1:	Lage der elektrischen Anschlüsse	. 32
Bild 6.2:	Anschlüsse des LRS 36	. 32
Tabelle 6.1:	Schnittstellenausführung von X3 und X4	. 32
Tabelle 6.2:	Leitungslängen und Schirmung	. 33
Bild 6.3:	Auflegen des Erdpotenzials am Lichtschnittsensor	. 35
Bild 6.4:	Auflegen des Kabelschirms im Schaltschrank.	. 35
Bild 6.5:	Auflegen des Kabelschirms an der SPS	35
Tabelle 6.3:	Anschlussbelegung X1	36
Bild 6.6:	Interne Beschaltung an X1	36
Tabelle 6 4 [.]	Anschlussbelegung X2	37
Bild 6 7	Leitungsbelegung HOST / BUS IN auf R.I-45	37
Tabelle 6.5	Anschlussbelegung X3	37
Tabelle 6.6	Anschlussbelegung X3	38
Rild 7 1	Anzeige- und Bedienelemente LRS 36	39
Tabelle 7 1	I ED Funktionsanzeige	39
Tabelle 7.2	Menüstruktur	<u>41</u>
Tabelle 8 1	Adressvergabe im Ethernet	45
Rild 9 1.	Startbildschirm I RSsoft	54
Bild 9.2	PROFIBILIS Finstellungen	55
Bild 9.3	Parametereinstellungen I RSsoft	55
Bild 9.4	Fenster "Analysis Window Definitions"	57
Bild 9.4.	Definition von Auswertefenstern (AW)	50
Bild 9.6	Fenster "Analysis Window Combination Tables"	50
Taballe 0 1.	Parametereinstellungen zur Ansteuerung der Schaltzusgänge	60
	Definition von logischen Verknüpfungen mehrorer AWe	61
	Vieualisiorupa I DSsoft	62
DIIU 3.0.	visualisierully LINOSUL	. UZ

Bild 9.9:	Zoom-Funktion	64
Bild 11.1:	PROFIBUS Adressvergabe mit LRSsoft	80
Tabelle 11.1:	PROFIBUS - Übersicht der Ausgangsdaten (aus Sicht der Steuerung)	81
Tabelle 11.2:	PROFIBUS - Übersicht der Eingangsdaten (aus Sicht der Steuerung)	81
Tabelle 11.3:	Eingangsdaten-Byte uSensorInfo	
Tabelle 11.4:	Eingangsdaten-Byte uSensorState	85
Tabelle 11.5:	Eingangsdaten-Bytes wResultAWs (High- und Low-Byte)	85
Tabelle 13.1:	Allgemeine Fehlerursachen	
Tabelle 13.2:	Schnittstellenfehler	88
Tabelle 13.3:	Fehlermeldungen im Display	89
Bild 15.1:	Typischer Erfassungsbereich LRS 36	92
Bild 15.2:	Maßzeichnung LRS 36	
Tabelle 16.1:	Typenübersicht LPS	
Tabelle 16.2:	Typenübersicht LRS	
Tabelle 16.3:	Typenübersicht LES	
Tabelle 16.4:	Befestigungsteile für den LRS 36	
Tabelle 16.5:	Leitungsbelegung KD S-M12-8A-P1	
Tabelle 16.6:	X1-Leitungen für den LRS 36	95
Tabelle 16.7:	Leitungsbelegung KS ET-M12-4A-P7	
Tabelle 16.8:	Ethernet-Anschlussleitungen M12-Stecker/offenes Leitungsende	
Tabelle 16.9:	Leitungsbelegung KSS ET-M12-4A-RJ45-A-P7	
Tabelle 16.10:	Ethernet-Anschlussleitungen M12-Stecker/RJ-45	
Tabelle 16.11:	Leitungsbelegung KSS ET-M12-4A-M12-4A-P7	
Tabelle 16.12:	Ethernet-Anschlussleitungen M12-Stecker/M12-Stecker	
Tabelle 16.13:	Steckverbinder für den LRS 36	
Tabelle 16.14:	Leitungsbelegung KS S-M12-8A-P1	
Tabelle 16.15:	X3-Leitungen für den LRS 36/6	
Tabelle 16.16:	Anschlussbelegung X4	
Bild 16.1:	Leitungsaufbau PROFIBUS-Anschlusskabel	
Tabelle 16.17:	PROFIBUS Anschlusszubehör für den LRS 36/PB	
Tabelle 16.18:	PROFIBUS-Leitungen für den LRS 36/PB	
Tabelle 16.19:	Konfigurationsspeicher für LxS 36	100
Tabelle 17.1:	Revision History - Firmware	102
Tabelle 17.2:	Revision History - Parametriersoftware	104

1 Allgemeines

۲

i

1.1 Zeichenerklärung

Nachfolgend finden Sie die Erklärung der in dieser technischen Beschreibung verwendeten Symbole.

ACHTUNG!

Dieses Symbol steht vor Textstellen, die unbedingt zu beachten sind. Nichtbeachtung führt zu Verletzungen von Personen oder zu Sachbeschädigungen.

ACHTUNG LASER

Dieses Symbol warnt vor Gefahren durch gesundheitsschädliche Laserstrahlung. Die Lichtschnittsensoren der Baureihe LRS 36 verwenden einen Laser der Klasse 2M: Das Betrachten des Laserausgangs mit bestimmten optischen Instrumenten wie z.B. Lupen, Mikroskopen oder Ferngläsern kann zu Augengefährdungen führen.

Dieses Symbol kennzeichnet Textstellen, die wichtige Informationen enthalten.

1.2 Konformitätserklärung

Die Laserlichtschnittsensoren der Baureihen 36 und 36HI wurden unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt. Sie entsprechen den Sicherheitsstandards UL508 und CSA C22.2 No. 14 (Industrial Control Equipment).

HINWEIS

Die CE-Konformitätserklärung der Geräte können Sie beim Hersteller anfordern.

Der Hersteller der Produkte, die Leuze electronic GmbH & Co KG in D-73277 Owen, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

2 Sicherheit

Der vorliegende Sensor ist unter Beachtung der geltenden Sicherheitsnormen entwickelt, gefertigt und geprüft worden. Er entspricht dem Stand der Technik.

2.1 Bestimmungsgemäße Verwendung

Die Lichtschnittsensoren der Baureihe LRS 36 sind Laser-Sensoren zur Ermittlung der Anwesenheit von Objekten in definierten Bereichen.

Einsatzgebiete

Die Lichtschnittsensoren der Baureihe LRS 36 sind insbesondere für folgende Einsatzgebiete konzipiert:

- · Leerkontrolle von Behältern
- · Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken
- Kontrolle ob Objekt oder Deckel vorhanden

▲ VORSICHT!

Bestimmungsgemäße Verwendung beachten!

Der Schutz von Betriebspersonal und Gerät ist nicht gewährleistet, wenn das Gerät nicht entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird.

b Setzen Sie das Gerät nur entsprechend der bestimmungsgemäßen Verwendung ein.

Die Leuze electronic GmbH + Co. KG haftet nicht f
ür Sch
äden, die durch nicht bestimmungsgem
äße Verwendung entstehen.

Lesen Sie diese Betriebsanleitung vor der Inbetriebnahme des Geräts. Die Kenntnis dieses Dokuments gehört zur bestimmungsgemäßen Verwendung.

HINWEIS

Bestimmungen und Vorschriften einhalten!

Beachten Sie die örtlich geltenden gesetzlichen Bestimmungen und die Vorschriften der Berufsgenossenschaften.

ANWENDUNGSHINWEIS GEMÄß UL-ZERTIFIZIERUNG!

CAUTION – Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.

1

UL-Applikationen!

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

2.2 Vorhersehbare Fehlanwendung

Eine andere als die unter "Bestimmungsgemäße Verwendung" festgelegte oder eine darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß.

Unzulässig ist die Verwendung des Gerätes insbesondere in folgenden Fällen:

- in Räumen mit explosiver Atmosphäre
- als eigenständiges Sicherheitsbauteil im Sinn der Maschinenrichtlinie 1.)
- zu medizinischen Zwecken

^{1.)} Bei entsprechender Konzeption der Bauteilekombination durch den Maschinenhersteller ist der Einsatz als sicherheitsbezogene Komponente innerhalb einer Sicherheitsfunktion möglich.

 HINWEIS

 Image: Second S

2.3 Befähigte Personen

Anschluss, Montage, Inbetriebnahme und Einstellung des Geräts dürfen nur durch befähigte Personen durchgeführt werden.

Voraussetzungen für befähigte Personen:

- Sie verfügen über eine geeignete technische Ausbildung.
- · Sie kennen die Regeln und Vorschriften zu Arbeitsschutz und Arbeitssicherheit.
- · Sie kennen die Technische Beschreibung des Gerätes.
- Sie wurden vom Verantwortlichen in die Montage und Bedienung des Gerätes eingewiesen.

Elektrofachkräfte

Elektrische Arbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Elektrofachkräfte sind aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen und Bestimmungen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen.

In Deutschland müssen Elektrofachkräfte die Bestimmungen der Unfallverhütungsvorschrift BGV A3 erfüllen (z. B. Elektroinstallateur-Meister). In anderen Ländern gelten entsprechende Vorschriften, die zu beachten sind.

2.4 Haftungsausschluss

Die Leuze electronic GmbH + Co. KG haftet nicht in folgenden Fällen:

- Das Gerät wird nicht bestimmungsgemäß verwendet.
- · Vernünftigerweise vorhersehbare Fehlanwendungen werden nicht berücksichtigt.
- · Montage und elektrischer Anschluss werden nicht sachkundig durchgeführt.
- Veränderungen (z. B. baulich) am Gerät werden vorgenommen.

2.5 Lasersicherheitshinweise

	ACHTUNG LASERSTRAHLUNG – LASER KLASSE 2M
^	LASERSTRAHLUNG – LASER KLASSE 2M
	Nicht in den Strahl blicken oder Anwender von Teleskopoptiken bestrahlen!
	Das Gerät erfüllt die Anforderungen gemäß IEC 60825-1:2014 / EN 60825-1:2014+A11:2021 für ein Produkt der Laserklasse 2M sowie die Bestimmungen gemäß U.S. 21 CFR 1040.10 mit den Abweichungen entsprechend der Laser Notice No. 56 vom 08.05.2019.
	Schauen Sie niemals direkt in den Laserstrahl oder in die Richtung von reflektierten Laser- strahlen! Bei länger andauerndem Blick in den Strahlengang besteht die Gefahr von Netz- hautverletzungen.
	🌣 Richten Sie den Laserstrahl des Geräts nicht auf Personen!
	Unterbrechen Sie den Laserstrahl mit einem undurchsichtigen, nicht reflektierenden Objekt, wenn der Laserstrahl versehentlich auf einen Menschen gerichtet wird.
	Vermeiden Sie bei Montage und Ausrichtung des Geräts Reflexionen des Laserstrahls durch spiegelnde Oberflächen!
	VORSICHT! Wenn andere als die hier angegebenen Bedienungs- oder Justiereinrichtungen benutzt oder andere Verfahrensweisen ausgeführt werden, kann dies zu gefährlicher Strah- lungsexposition führen.
	Die Verwendung optischer Instrumente oder Einrichtungen (z. B. Lupen, Ferngläser) mit dem Gerät erhöht die Gefahr von Augenschäden.
	beachten Sie die geltenden gesetzlichen und örtlichen Laserschutzbestimmungen.
	🗞 Eingriffe und Veränderungen am Gerät sind nicht zulässig.
	Das Gerät enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.
	VORSICHT! Das Öffnen des Gerätes kann zu gefährlicher Strahlungsexposition führen!
	Eine Reparatur darf ausschließlich von Leuze electronic GmbH + Co. KG durchgeführt wer- den.
	Das Gerät emittiert einen divergenten, gepulsten Laserstrahl. Laserleistung, Pulsdauer und Wellenlänge siehe technische Daten.
	HINWEIS
6	Laserwarn- und Laserhinweisschilder anbringen! Auf dem Gerät sind Laserwarn- und Laserhinweisschilder angebracht (siehe Bild 2.1):

Zusätzlich sind dem Gerät selbstklebende Laserwarn- und Laserhinweisschilder (Aufkleber) in mehreren Sprachen beigelegt (siehe Bild 2.2).

Bringen Sie das sprachlich zum Verwendungsort passende Laserhinweisschild am Gerät an.

Bei Verwendung des Geräts in den U.S.A. verwenden Sie den Aufkleber mit dem Hinweis "Complies with 21 CFR 1040.10".

Bringen Sie die Laserwarn- und Laserhinweisschilder in der N\u00e4he des Ger\u00e4ts an, falls auf dem Ger\u00e4t keine Schilder angebracht sind (z. B. weil das Ger\u00e4t zu klein daf\u00fcr ist) oder falls die auf dem Ger\u00e4t angebrachten Laserwarn- und Laserhinweisschilder aufgrund der Einbausituation verdeckt werden.

Bringen Sie die Laserwarn- und Laserhinweisschilder so an, dass man sie lesen kann, ohne dass es notwendig ist, sich der Laserstrahlung des Geräts oder sonstiger optischer Strahlung auszusetzen.

- A Laseraustrittsöffnung
- B Laserwarnschild
- C Laserhinweisschild mit Laserparametern

Laserwarn- und Laserhinweisschilder – beigelegte Aufkleber

3 Funktionsprinzip

3.1 Generierung von 2D-Profilen

Lichtschnittsensoren arbeiten nach dem Triangulationsprinzip. Ein Laserstrahl wird mit einer Sendeoptik zu einer Linie aufgeweitet und auf ein Objekt gerichtet. Das vom Objekt remittierte Licht wird von einer Kamera, besteht aus einer Empfangsoptik und dem CMOS-Flächendetektor, empfangen.

- A CMOS-Flächendetektor
- B Laser mit Aufweitungsoptik
- **C** Nullpunkt des Koordinatensystems ist der Schnittpunkt von optischer Achse und Gehäusevorderkante.
- D Empfangsoptik
- Bild 3.1: Aufbau von Lichtschnittsensoren

Je nach Abstand des Objekts wird die Laserlinie an einer anderen Position auf dem CMOS-Flächendetektor abgebildet, wie in Bild 3.1 zu sehen ist. Anhand dieser Position kann man den Abstand des Objekts berechnen.

3.2 Grenzen der Lichtschnittsensorik

3.2.1 Abschattung

Die Erfassung von hohen und ausgedehnten Objekten von nur einem Punkt aus bringt prinzipiell das Problem mit sich, dass je nach Objektkontur Teile des Objekts von anderen verdeckt werden können. Diesen Effekt nennt man Abschattung.

Das Bild 3.2 verdeutlicht die Problematik:

+X Z -X

Laserabschattung

Der Empfänger "sieht" im rot markierten Bereich keine Objektkonturen, weil sie durch die obere rechte Kante des Objekts verdeckt werden. Beim Verschieben des Objekts nach links wird die Objektkontur zwar vom Laser erfasst, aber die Laserlinie liegt dort nicht im Sichtbereich des Empfängers und somit können keine Messwerte ermittelt werden.

Bild 3.2: Abschattung

Mögliche Maßnahme gegen Laserabschattung

 Verwendung mehrerer Lichtschnittsensoren mit gedrehter Blickrichtung. Im Applikationsbeispiel rechts kann man gut erkennen, dass die Blickfelder der drei Sensoren sich ergänzen und ineinander übergehen. Der erste der Sensoren wird als Master betrieben, die beiden anderen werden kaskadiert angesteuert (siehe "Kaskadierung" auf Seite 17). Damit wird die gegenseitige Beeinflussung der Sensoren sicher ausgeschlossen.

Mögliche Maßnahmen gegen Empfängerabschattung

Ausrichtung der Objekte, so dass alle Profildaten die erkannt werden sollen, vom Empfänger gesehen werden.
 Oder:

Der Laser trifft in den rot markierten Bereichen nicht auf das Objekt. Folglich können hier auch keine Daten ermittelt werden.

Funktionsprinzip

 Anbringen eines zweiten Sensors mit um 180° um die Z-Achse gedrehter Blickrichtung, so dass die Objekte von 2 Seiten aus gesehen werden.

Der linke Sensor erkennt im Beispiel rechts die Profildaten auf der linken Seite des Produkts und der rechte Sensor die Profildaten auf der rechten Seite. Der zweite Sensor wird dann kaskadiert angesteuert. Siehe "Kaskadierung" auf Seite 17.

3.2.2 Mindestobjektgröße

Die Länge der Laserlinie in X-Richtung ist variabel und hängt vom Abstand in Z-Richtung ab. Es wird aber immer die gleiche Anzahl an Messpunkten gemessen. Entscheidend für die Objekterkennung sind die Messpunkte auf dem Objekt im Erkennungsfeld.

Daraus folgt, dass die Mindestobjektgröße (also das kleinste erkennbare Objekt) in X-Richtung mit zunehmendem Abstand in Z-Richtung zunimmt.

Kleine Objekte können im Nahbereich besser erkannt werden.

Aufgrund des Messprinzips der Triangulation fällt der reflektierte Laserstrahl je nach Objektabstand in unterschiedlichen Winkeln auf den CMOS-Empfänger. Das führt dazu, dass auch die Mindestobjektgröße in Z-Richtung mit zunehmendem Abstand zunimmt.

Das Bild 3.3 zeigt diesen Zusammenhang:

Objektabstand in Z-Richtung in mm

Bild 3.3: Typische Mindestobjektgröße LRS 36...

4 Gerätebeschreibung

4.1 Lichtschnittsensoren im Überblick

4.1.1 Mechanischer Aufbau

A Display mit Folientastatur

HINWEIS

- B Laser-Sender
- **C** Empfänger (CMOS-Kamera)
- D Nut zur Schwalbenschwanzbefestigung und Befestigungsbohrungen
- E Elektrische Anschlüsse und Erdungsklemme

i

Hier ist beispielhaft ein Lichtschnittsensor dargestellt.

Eine Übersicht der erhältlichen Typen finden Sie in Kapitel 16.1

Bild 4.1: Mechanischer Aufbau der Leuze-Lichtschnittsensoren

4.1.2 Generelle Leistungsmerkmale

- · Lichtschnittsensor für die Objekterkennung
- Messzeit/Ansprechzeit: 10ms
- Messbereich/Erkennungsbereich: 200 ... 800mm
- Länge der Laserlinie: max. 600mm
- · Parametrierung und Übertragung von Prozessdaten über Fast Ethernet
- · OLED-Display mit Folientastatur
- · Messwertanzeige in mm auf OLED-Display als Ausrichthilfe
- Bis zu 16 Inspektionsaufgaben
- Kompakte Baugröße
- · Robuste Bauweise und einfache Bedienung
- Aktivierungseingang, Triggereingang, Kaskadierausgang

Gerätebeschreibung

4.1.3 Line Range Sensor - LRS 36

Line Range Sensoren dienen der tastenden Objekterkennung entlang der Laserlinie. Vergleichbar zu einem Lichtgitter oder Laserscanner erkennt der Sensor tastend das Vorhandensein von Objekten. Mit einem Sensor können über individuelle Parametrierung Einzelobjekte oder mehrere Objekte erkannt werden.

Spezifische Leistungsmerkmale

- Parametriersoftware LRSsoft
- · Datenberechnung und -verarbeitung direkt im Sensor
- Integrierte PROFIBUS-Schnittstelle oder 4 Schaltausgänge
- · Bis zu 16 Erkennungsfelder mit logischer Verknüpfungsmöglichkeit
- · detaillierte Informationen über Auswertefenster, Schaltzustand und Sensorstatus per Ethernet und PROFIBUS

Typische Einsatzgebiete

- · Lage- und Postionskontrolle
- · An- und Abwesenheitskontrolle von Objekten in festgelegten Bereichen
- · Höhen- und Breitenkontrolle
- Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken
- Leerkontrolle von Behältern

4.2 **Betrieb des Sensors**

4.2.1 Anbindung an PC / Prozess-Steuerung

Parametrierung

Zur Inbetriebnahme werden die Lichtschnittsensoren über die Ethernetschnittstelle (siehe "Anschluss X2 - Ethernet" auf Seite 36) an einen PC angeschlossen und über die mitgelieferte Parametriersoftware LRSsoft eingestellt.

Erkennungsbetrieb

Im Erkennungsbetrieb wird der LRS 36/6 über seine 4 Schaltausgänge, der LRS 36/PB über PROFIBUS mit der Prozess-Steuerung verbunden. Alternativ kann der LRS 36 über die Ethernet-Schnittstelle an X2 betrieben werden, siehe Kapitel 10 "Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)". Es stehen dann zusätzliche Sensorinformationen zur Verfügung.

4.2.2 Aktivierung - Laser ein/aus

Uber den Aktivierungseingang InAct (Pin 2 an X1), über PROFIBUS (Masterausgang 'uActivation' = 1) oder den Befehl 'Ethernet Trigger' kann der Laser und die Datenübertragung gezielt ein- und ausgeschaltet werden. Damit kann eine mögliche Blendung durch Laserstrahlung in den Zeiten verhindert werden, in denen nicht gemessen wird.

	HINWEIS
1	Ab Werk wird der Sensor in der Einstellung Activation Input Disregard ausgeliefert. Die möglichen Aktivierungsquellen (Aktivierungseingang, PROFIBUS-Aktivierung und Ethernet-Ak- tivierung) werden ignoriert - die Messfunktion des Sensors ist freigegeben.
	Über die Parametriersoftware kann die Aktivierungsfunktion eingeschaltet werden. Dazu muss der Parameter Activation Input auf Regard gestellt werden. Der Sensor misst dann nur, wenn eine der Aktivierungsquellen aktiviert ist. Wartet der Sensor auf die Aktivierung, so zeigt er im Display !Act an.

Ein oder mehrspurige An- und Abweser heitskontrolle auf Fördermedien

Füllgradkontrolle

Bild 4.2: Signalfolge Aktivierungseingang

Das Bild 4.2 zeigt die Auswirkung der Aktivierung auf Laser und Messwertausgabe im "Free Running" Modus.

4.2.3 Triggerung - Free Running

Die Lichtschnittsensoren können in zwei Modi messen:

- Im "Free Running"-Betrieb ermittelt der Lichtschnittsensor Messergebnisse mit einer Frequenz von 100Hz und gibt diese kontinuierlich über die Schnittstelle X2 aus.
- Alternativ dazu können auch Einzelmessungen durchgeführt werden. Dazu benötigt der Lichtschnittsensor entweder ein Triggersignal am Triggereingang (Pin 5 an X1), einen PROFIBUS-Trigger oder den Befehl Ethernet Trigger im Erkennungsmodus (siehe Kapitel 10.3.4"Befehle im Erkennungsmodus" auf Seite 76).

Bei der Triggerung über Pin 5 an X1 ist zu beachten:

- es wird auf die steigende Flanke getriggert.
- der Triggerimpuls muss mindestens 100µs lang sein.
- vor dem nächsten Trigger muss die Triggerleitung mindestens 1ms auf low-Pegel sein.
- Aktivierung muss mindestens 100µs vor der Triggerflanke erfolgen.
- Der kürzestmögliche zeitliche Abstand zwischen zwei aufeinanderfolgenden Triggerflanken beträgt 10ms.

HINWEIS

ĭ

Ab Werk ist der LRS 36 auf Free Running eingestellt (Anzeige am Display: fRun). Damit er auf Signale am Triggereingang reagiert muss die Betriebsart über die Parametriersoftware LRSsoft auf Input Triggered eingestellt werden (Anzeige am Display: Trig).

Achsen: p = Pegel, t = Zeit

Bild 4.3: Signalfolge Triggereingang

PROFIBUS-Trigger

Damit je PROFIBUS-Zyklus eine Messung getriggert werden kann, reagiert der PROFIBUS-Trigger des LRS auf eine Änderung des Master-Ausgangsbytes **uTrigger**. Die Steuerung muss lediglich den Triggerwert inkrementieren, um eine neue Messung auszulösen.

Die maximale Triggerfrequenz liegt bei 100 Hz. Erfolgt die Triggerung während einer Messung, so wird das Triggersignal, ebenso wie in der Betriebsart Free Running, ignoriert.

4.2.4 Kaskadierung

Bild 4.4: Applikationsbeispiel Kaskadierung

Beim Betrieb mehrerer Lichtschnittsensoren besteht die Gefahr der gegenseitigen Beeinflussung, wenn der reflektierte Laserstrahl eines Sensors vom Empfänger eines weiteren Sensors zum Lesezeitpunkt empfangen werden kann.

Das ist in Bild 4.4 gut zu erkennen. Hier werden drei Lichtschnittsensoren eingesetzt, um die Stammdicke von allen Seiten zuverlässig zu ermitteln.

- В Triggereingang, Pin 5 an X1
- С Laser
- D Messwertausgabe
- Е Kaskadierungsausgang, Pin 6 an X1

Bild 4.5: Signalfolge bei Kaskadierung

Um die gegenseitige Beeinflussung zu verhindern, können die Lichtschnittsensoren kaskadiert betrieben werden: Die Belichtung des zweiten Sensors wird nach Abschluss der Belichtung des ersten Sensors gestartet. Dazu muss der Kaskadierungsausgang des ersten Sensors mit dem Triggereingang des zweiten Sensors verbunden werden. Bis zu 6 Sensoren können so kaskadiert betrieben werden.

Triggereinstellungen

Der Sensor 1, bzw. der Master, kann dabei sowohl getriggert als auch freilaufend betrieben werden. Alle anderen Sensoren müssen getriggert betrieben werden.

Kaskadierungseinstellungen

Bei allen Sensoren bis auf den letzten Slave muss der Kaskadierungsausgang per Parametriersoftware freigeschaltet werden: Cascading Output: Enable.

A

HINWEIS

Im PROFIBUS-Betrieb funktioniert die Kaskadierung nur wie oben beschrieben über die Ein-/ Ausgänge **InTrig** und **OutCas** an X1. In diesem Fall wird die maximale Erkennungsrate von 100Hz erreicht. Es ist jedoch darauf zu achten, dass die Eingangsdaten der PROFIBUS-Lichtschnittsensoren noch im gleichen Buszyklus übertragen werden, ggf. sind die Scannummern zu überwachen.

Alternativ können Lichtschnittsensoren mit PROFIBUS gezielt nacheinander getriggert werden. Pro SPS-Zyklus wird der Master-Output 'uTrigger' des zu triggernden Sensors hochgezählt, die Master-Outputs der anderen Sensoren bleiben unverändert. Mit diesem Verfahren wird die maximale Erkennungsrate von 100Hz nicht erreicht.

Werden mehrere Sensoren in einem PROFIBUS-Zyklus getriggert, kann es zu gegenseitigen Beeinflussungen der Sensoren kommen, wenn diese den gleichen Sichtbereich haben und die Zeit zwischen der Aktualiserung der 'uTrigger'-Bytes kleiner der maximalen Belichtungszeit (Exposure Time) von 1,3ms ist.

4.3 Erkennungsfunktionen LRS 36

Mit dem LRS können Sie An-/Abwesenheits- und Bereichskontrollen bei stabilem Schaltverhalten und einfacher Parametrierung durchführen. Gemäß den Anforderungen unterschiedlicher Applikationen wird in der Parametriersoftware LRSsoft die entsprechende Sensorparametrierung in einzelnen Inspektionsaufgaben (Inspections Tasks) gespeichert.

4.3.1 Inspection Task

Der LRS 36 erlaubt das Arbeiten mit bis zu 16 einzelnen Inspektionsaufgaben, die jeweils bis zu 16 voneinander unabhängig parametrierbare und sich beliebig überlappende rechteckige Auswertefenster (Analysis Windows, AWs) enthalten können.

Pro Inspektion Task können 1-16 AWs definiert werden. Die Ergebnisse der einzelnen AWs können logisch miteinander verknüpft werden (UND, ODER, NICHT). Für jeden der 4 Schaltausgänge Out1 bis Out4 können unterschiedliche logische Verknüpfungen definiert werden.

Die Auswahl der Inspection Tasks erfolgt:

- über die Schalteingänge des X3 Anschlusses (hier lassen sich nur die Inspection Tasks 0-7 auswählen)
- über PROFIBUS
- über LRSsoft (an einem über X2 angeschlossenen PC)
- über Ethernet (an einer über X2 angeschlossenen Prozesssteuerung)
- ab Firmware V01.40 über das Bedienfeld am Sensor.

4.3.2 Analysis Window (AW)

Die Definition der AWs erfolgt in der Parametriersoftware LRSsoft (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters"). Hier werden pro AW die räumliche Lage, Größe und die Anzahl der zu erkennenden Objektpunkte definiert.

Eine Auswertung wird nur innerhalb der aktiven AW vorgenommen. Bereiche außerhalb des Sensorsichtfelds werden ebenso nicht ausgewertet. Erkannt wird ein Objekt, wenn die Anzahl der Objektpunkte (Hit Points) im AW einen frei definierbaren Mindestwert erreicht oder übersteigt.

HINWEIS

Die Anzahl der Objektpunkte korrespondiert nicht zwingend mit der Objektgröße, da die Anzahl der Objektpunkte abhängig von der Distanz z ist. Ein in x-Richtung ausgedehntes Objekt weist bei geringer Distanz zum Sensor (z. B. 300mm) fast doppelt so viele Objektpunkte wie bei größerer Distanz (z. B. 600mm) auf. Bei identischer Objektdistanz bleibt die Anzahl der Objektpunkte nahezu konstant.

Auswertungsergebnisse

Die Auswertungsergebnisse einzelner AWs können über die Parametriersoftware LRSsoft logisch miteinander kombiniert werden. Das Ergebnis dieser logischen Verknüpfung wird über die Schaltzustände der vier Schaltausgänge Out1-Out4 an X3 oder über PROFIBUS ausgegeben.

i

Detaillierte Auswerteergebnisse, wie z. B. der Status aller AWs, die Anzahl der Objektpunkte sowie der Zustand der Schaltausgänge werden über Ethernet übertragen und können über PROFIBUS abgefragt werden. Näheres dazu finden Sie in Kapitel 10.

4.3.3 Definition von AWs und Auswerteergebnisse

In Bild 4.6 sind 5 AWs definiert (die blauen Rechtecke). Für jedes AW gilt, dass mindestens 5 Objektpunkte erkannt werden müssen, um als Auswerteergebnis "1" zu erhalten, werden weniger Objektpunkte erkannt, ist das Auswerteergebnis "0".

Im dargestellten Beispiel ergibt sich dann folgendes

- AW1: 8 Objektpunkte (auf O1) Ergebnis =1
 AW2: 4 Objektpunkte (auf O2) Ergebnis =0
 AW3: 1 Objektpunkt (auf O2) Ergebnis =0
 AW4: 3 Objektpunkte (auf O2) Ergebnis =0
- AW5: 11 Objektpunkte (auf O4) Ergebnis =1

Warum wird O2 nicht erkannt?

O2 wird in AW2 nicht erkannt, weil fehlende Objektpunkte abgeschattet sind. Für AW3 liegt O2 zu weit links. Für AW4 müsste die Anzahl der zu erkennenden Objektpunkte auf 3 gesenkt werden.

Warum wird O3 nicht erkannt?

O3 liegt zwar in AW3, aber die obere Objektkante wird von AW3 nicht erfasst und damit erfolgt keine Erkennung. In AW5 wird O3 wegen des aus Sicht des Sensors davorliegenden O4 nicht erkannt.

4.3.4 Applikationsbeispiele

Leerkontrolle von Behältern

In Bild 4.7 wird mit AW1 und AW2 geprüft, ob sich ein Behälter bestimmter Höhe und Breite an einer vordefinierten Position im Erfassungsbereich befindet.

Mit AW3 wird geprüft, ob der Behälter leer ist. Er ist nicht leer, wenn Objektpunkte in AW3 erkannt werden.

Bild 4.7: Leerkontrolle von Behältern

Ein- oder mehrspurige An- und Abwesenheitskontrolle auf Förderstrecken

In Bild 4.8 wird wie in Bild 4.7 mit AW1 und AW2 geprüft, ob sich ein Behälter bestimmter Höhe und Breite an einer vordefinierten Position im Erfassungsbereich befindet.

Mit AW3 bis AW8 wird geprüft, ob und wo sich Objekte im Behälter befinden und wie hoch diese sind.

4.3.5 Erstellen von Inspektionsaufgaben

Die zur Parametrierung der AWs erforderlichen Einstellungen, die Zuordnung der AW-Stati zu den Schaltausgängen, sowie die Einstellung allgemeiner Parameter wie Betriebsmodus, Aktivierung, Kaskadierung, Erfassungsbereich (FoV) u.a. erfolgen in **LRSsoft**, siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters" und Kapitel 9.7. ĭ

Ĭ

4.3.6 LRS Teach-Algorithmen

Die Line Range Sensoren bieten **ab Firmware V01.50** verschiedene Teach-Algorithmen an, die eine Inbetriebnahme bei typischen Applikationen deutlich erleichtern. Hierbei werden Auswertefenster, Ein-/ Ausschaltbedingungen und die Zuordnung zu den Schaltausgängen automatisch erstellt. Die Teach-Algorithmen können über das Bedienfeld direkt am Sensor oder über das Kommando-Interface via Ethernet aufgerufen werden.

HINWEIS

Durch einen Teach wird immer der aktuell eingestellte Inspection Task verändert. Insgesamt können die Line Range Sensoren 16 unterschiedliche Inspections Tasks speichern. Jeder Inspection Task kann mit einem individuellen Teach-Vorgang konfiguriert werden.

Die gewünschte Belichtungszeit (Exposure Time) muss der Benutzer vor einem Teach bzw. vor einer Messung einstellen. Die Belichtungszeit kann über das Bedienfeld geändert werden:

- · Helle Objekte (Belichtungszeit vordefiniert)
- · Normale Objekte (Belichtungszeit vordefiniert)
- Dunkle Objekte (Belichtungszeit vordefiniert)
- Manuelle Einstellung (vom Anwender über LRSsoft festgelegte Belichtungszeit)

HINWEIS

Bei dunklem Förderband und hellen Objekten, ist es sinnvoll, zum Teachen die Belichtungszeit auf "Dunkle Objekte" einzustellen und danach zum Messen wieder auf "Helle Objekte".

Die Einstellung wird permanent für den aktuell gewählten Inspection Task gespeichert. Für jeden Inspection Task können individuelle Applikationseinstellungen vorgenommen werden.

Teach "Flächentaster" (Area Scan Basic)

Für einfache Bereichsüberwachungen kann der LRS als Flächentaster konfiguriert werden, so dass Objekte z. B. auf einer Förderstrecke an beliebiger Position innerhalb des Erfassungsbereichs (FoV) erkannt werden.

Der Teach-Algorithmus "Flächentaster" generiert hierzu ein einzelnes Auswertefenster, das den gesamten Erkennungsbereich bis zu einem gefundenen Hintergrund abdeckt.

Der Hintergrund wird als Mittelwert aus den ermittelten Abstandswerten während eines Teach-Vorgangs ermittelt.

Typische Applikation:

Bild 4.9: Teach "Flächentaster" (Area Scan Basic)

Wird kein "Hintergrund" innerhalb des Erfassungsbereichs des LRS gefunden, wird nicht geteacht und die Einstellungen bleiben unverändert.

i

HINWEIS

Der Hintergrund muss eine weitestgehend ebene Fläche parallel zur X-Achse des LRS sein. Unebenheiten führen zu einem erhöhten Abstand des AWs zum Hintergrund, um Fehlschaltungen zu vermeiden.

Zu starke Abweichungen oder Schrägstellungen führen zu einem Teach-Fehler, da der LRS diese nicht mehr ausgleichen kann.

Der Teach wird über das Displaymenü (Appl. Settings -> Teach Functions -> Area Scan Basic, siehe Kapitel 7.2) oder über das Ethernet-Kommando-Interface ausgelöst. Dabei wird nur der Zmax-Wert des AWs angepasst. Die anderen Werte werden fest eingestellt auf: Xmin|Xmax = -300mm|300mm / Zmin = 190mm.

Wenn nach abgeschlossenem Teach im neu eingestellten AW keine Objektpunkte gefunden werden, wird 3s lang "Teach ok" angezeigt. Danach wechselt der LRS in den Erkennungsmodus.

Ansonsten wird "Teach Error" angezeigt. Durch eine Quittierung mit der Enter Taste gelangen Sie wieder ins Menü zurück und können einen erneuten Teach ausführen.

Bei Teach-Ausführung per Ethernet-Befehl enthält die Befehlsantwort eine Fehlernummer, die Auskunft über das Ergebnis des erfolgten Teachvorgangs liefert (siehe Seite 74).

Erkennt der LRS anschließend im Erkennungsmodus ein Objekt innerhalb dieses AWs wird der Schaltausgang OUT1 aktiviert (alle anderen Ausgänge sind inaktiv).

Bild 4.10: Teach "Flächentaster" (Area Scan Basic) - Objekterkennung im AW01

Als Auswertefenster (Analysis Window) wird "AW01" verwendet. Die anderen AWs werden auf "inaktiv" gesetzt.

Die zu detektierende Objektgröße (Sensitivity) kann in 3 Stufen ausgewählt werden:

- "Klein" (fine) Sum Hits On = 10 Sum Hits Off = 6
- "Mittel" (medium) Sum Hits On = 20

Sum Hits Off = 12(Werkseinstellung)

• "Groß" (coarse) Sum Hits On = 40

Sum Hits Off = 24

Dabei entspricht 1 Hit der optischen Auflösung im effektivem Messabstand (0,5 ... 1,5mm).

Beispiel: Bei 800mm Abstand entsprechen 20 Objektpunkte ca. 33mm und bei 200mm Abstand ca. 8mm.

Die gewünschte Objektgröße kann über das Bedienfeld am Sensor ausgewählt und so das Schaltverhalten des Sensors angepasst werden (Appl. Settings -> Teach Parameters -> Sensitivity). Das Auswertefenster wird mit einem "Sicherheitsabstand" (Offset) zum gefundenen Hintergrund erstellt. Dieser Abstand kann über das Bedienfeld am Sensor geändert und so das Schaltverhalten des Sensors angepasst werden (Appl. Settings -> Teach Parameters -> Offset). Werkseinstellung: Offset = 20mm

Teach "Hintergrundausblendung" (Area Scan Advanced)

Für komplexere Bereichsüberwachungen kann der LRS während des Teach-Vorganges vorhandene Konturen, z. B. Begrenzungen, Rahmen, o. ä., berücksichtigen, so dass Objekte innerhalb dieser Begrenzung an beliebiger Position erkannt werden.

Der Teach-Algorithmus "Hintergrundausblendung" nutzt hierzu alle 16 Auswertefenster, die über den gefundenen Hintergrund verteilt werden.

Die gleichmäßige Einteilung der Breiten der 16 AWs erfolgt gemäß der Erkennungsfeldbreite im Abstand des Punktes mit der größten Distanz zum Hintergrund.

HINWEIS

ĭ

Die Unterteilung in 16 Auswertefenster bestimmt die Toleranzen und Abstände zum gefundenen Hintergrund. Hierdurch kann es zu Blindbereichen innerhalb des Erkennungsbereichs kommen, in denen keine Objekte erkannt werden.

Der Teach wird über das Displaymenü (Appl. Settings -> Teach Functions -> Area Scan adv., siehe Kapitel 7.2) oder über das Ethernet-Kommando-Interface ausgelöst. Dabei wird nur der Zmax-Wert der AWs angepasst. Die Messfeldbreite bei maximalem Abstand wird in 16 gleichbreite AWs unterteilt. Dadurch ergeben sich automatisch Xmin und Xmax der einzelnen AWs.

Wenn nach abgeschlossenem Teach in den neu eingestellten AWs keine Objektpunkte gefunden werden, wird 3s lang "Teach ok" angezeigt. Danach wechselt der LRS in den Erkennungsmodus.

Ansonsten wird "Teach Error" angezeigt. Durch eine Quittierung mit der Enter Taste gelangen Sie wieder ins Menü zurück und können einen erneuten Teach ausführen.

Bei Teach-Ausführung per Ethernet-Befehl enthält die Befehlsantwort eine Fehlernummer, die Auskunft über das Ergebnis des erfolgten Teachvorgangs liefert (siehe Seite 75).

Erkennt der LRS anschließend im Erkennungsmodus ein Objekt innerhalb aller 16 AWs wird der Schaltausgang OUT1 aktiviert (alle anderen Ausgänge sind inaktiv). Dabei werden die gefunden Messpunkte über alle AWs summiert ausgewertet.

Bild 4.12: Teach "Hintergrundausblendung" (Area Scan Advanced) - Objekterkennung in den AWs

Die zu detektierende Objektgröße (Sensitivity) kann in 3 Stufen ausgewählt werden:

Sum Hits On = 20

• "Klein" (fine) Sum Hits On = 10

Sum Hits Off = 12(Werkseinstellung)

Sum Hits Off = 6

Sum Hits Off = 24

• "Groß" (coarse) Sum Hits On = 40

"Mittel" (medium)

Dabei entspricht 1 Hit der optischen Auflösung im effektivem Messabstand (0,5 ... 1,5mm).

Beispiel: Wenn die Größte Distanz 800 mm ist, ist die Messbreite 600 mm und die einzelnen AWs sind 600 / 16 = 37,5mm breit und werden gleichmäßig von -300 bis +300mm verteilt.

Die gewünschte Objektgröße kann über das Bedienfeld am Sensor ausgewählt und so das Schaltverhalten des Sensors angepasst werden (Appl. Settings -> Teach Parameters -> Sensitivity). Die Auswertefenster 1 ... 16 werden mit einem "Sicherheitsabstand" (Offset) zum gefundenen Hintergrund erstellt. Dieser Abstand kann über das Bedienfeld am Sensor geändert und so das Schaltverhalten des Sensors angepasst werden (Appl. Settings -> Teach Parameters -> Offset). Werkseinstellung: Offset = 20mm

Teach "Mehrspurige Vollständigkeitskontrolle" (Track Scan)

Mit dem Teach "Mehrspurige Vollständigkeitskontrolle" soll der LRS automatisch so konfiguriert werden, dass erkannt wird, ob sich 1 Objekt mehr oder 1 Objekt weniger wie eingelernt auf der Förderstrecke oder innerhalb einer Transporteinheit befindet (prüfen auf Vollständigkeit).

Bild 4.13: Teach "Mehrspurige Vollständigkeitskontrolle" (Track Scan)

Als Analysefenster werden AW01 und AW02 verwendet. Die anderen AWs werden dabei auf "inaktiv" gesetzt.

Ausgang1 (OUT1) wird für den Fall "Objekte vollständig" verwendet. Ausgang2 (OUT2) wird für den Fall "zu viele Objekte" verwendet. Die anderen Ausgänge werden dabei auf "inaktiv" gesetzt.

Logik der beiden Ausgänge:

- Ausgang1 (OUT1) = 1, wenn die Objekte vollständig sind.
- Ausgang2 (OUT2) = 1, wenn es zu viele Objekte gibt .

Die Anzahl der Objekte wird vom Benutzer vorgegeben (Num. of Objects). Es wird vorausgesetzt, dass:

- der Sensor (im Mittel) bis auf 1° genau zum Hintergrund parallel ausgerichtet ist.
- es sich nur um ebene bzw. leicht gebogene Objekte handelt.
- alle Objekte die gleichen Abmessungen haben.

Über die Häufigkeitsverteilung der Messpunkte beim Teach wird festgestellt, in welchem Abstand sich die Oberseite der Objekte befindet. Die Mindestanzahl an Objektpunkten wird aus dem Parameter "Sensitivity" abgeleitet.

Es wird Zmax und Zmin der Fenster ermittelt.

Zmax = Objektoberseite + "Offset"; Zmin = Objektoberseite - "Offset"

Die anderen Werte werden fest eingestellt auf: Xmin|Xmax = -300mm|300mm

Der Teach wird über das Displaymenü (Appl. Settings -> Teach Functions -> Track Scan, siehe Kapitel 7.2) oder über das Ethernet-Kommando-Interface ausgelöst.

Bei Teach-Ausführung per Ethernet-Befehl enthält die Befehlsantwort eine Fehlernummer, die Auskunft über das Ergebnis des erfolgten Teachvorgangs liefert (siehe Seite 75).

ĭ

HINWEIS

Nach Möglichkeit sollten die Randbegrenzungen und Spurbleche deutlich niedriger wie die Objektoberseite sein. Der Parameter "Offset" muss vom Benutzer unter Berücksichtigung von Randbegrenzungen und Spurblechen entsprechend gewählt werden.

Anhand der erfassten Objektpunkte ermittelt der Teach-Algorithmus die Größe der einzelnen Spuren:

Spurweite = Objektpunkte (beim Teach) / Number of Objects

Im Erkennungsmodus darf die Anzahl der Messpunkte maximal um $\pm 0.4 \cdot$ Spurweite vom eingeteachtem Wert abweichen:

Anzahl der Messpunkte > Teachwert - 0,4 · Spurweite: -> Objekte vollständig -> OUT1 = aktiv

Nach einer Schalthysterese von 20% wird OUT1 wieder inaktiv.

Anzahl der Messpunkte < Teachwert - 0,6 · Spurweite: -> Objekte fehlen -> OUT1 = inaktiv

Anzahl der Messpunkte > Teachwert + 0,6 · Spurweite -> Objekte zu viel -> OUT2 = aktiv

Nach einer Schalthysterese von 20% wird OUT2 wieder inaktiv.

Dann gilt:

ab Anzahl der Messpunkte < Teachwert + 0,4 · Spurweite: -> Objekte wieder vollständig -> OUT2 = inaktiv

Teach-Parameter einstellen

- Einstellungen über das Bedienfeldsiehe Kapitel 7.2
- Einstellungen über Ethernet-Befehlesiehe Kapitel 10.3.2

5 Installation und Montage

5.1 Lagern, transportieren

ACHTUNG!

Verpacken Sie den Lichtschnittsensor für Transport und Lagerung stoßsicher und geschützt gegen Feuchtigkeit. Optimalen Schutz bietet die Originalverpackung. Achten Sie auf die Einhaltung der in den technischen Daten spezifizierten zulässigen Umgebungsbedingungen.

Auspacken

- Achten Sie auf unbeschädigten Packungsinhalt. Benachrichtigen Sie im Fall einer Beschädigung den Postdienst bzw. den Spediteur und verständigen Sie den Lieferanten.
- billion Sie den Lieferumfang anhand Ihrer Bestellung und der Lieferpapiere auf:
 - Liefermenge
 - · Gerätetyp und Ausführung laut Typenschild
 - Laser-Warnschilder
 - Kurzanleitung

Das Typenschild gibt Auskunft, um welchen Lichtschnittsensor-Typ es sich bei Ihrem Gerät handelt. Genaue Informationen hierzu entnehmen Sie bitte dem Kapitel 16.

Bild 5.1: Gerätetypenschild LRS 36

✤ Bewahren Sie die Originalverpackung f
ür den Fall einer sp
äteren Einlagerung oder Verschickung auf. Bei auftretenden Fragen wenden Sie sich bitte an Ihren Lieferanten bzw. das f
ür Sie zust
ändige Leuze electronic Vertriebsb
üro.

beachten Sie bei der Entsorgung von Verpackungsmaterial die örtlich geltenden Vorschriften.

5.2 Montage des LRS 36

Die Lichtschnittsensoren können auf unterschiedliche Arten montiert werden:

- Über zwei M4x6 Schrauben auf der Geräterückseite
- Über ein Befestigungsteil BT 56 an den beiden Befestigungsnuten.
- Über ein Befestigungsteil BT 59 an den beiden Befestigungsnuten.

- A Schwalbenschwanz-BefestigungsnutenB M4-Gewindebohrungen
- Bild 5.2: Befestigungsmöglichkeiten

Bild 5.3: Befestigungsbeispiel LRS 36

5.2.1 Befestigungsteil BT 56

Zur Befestigung des LRS 36 über die Befestigungsnuten steht Ihnen das Befestigungsteil BT 56 zur Verfügung. Es ist für eine Stangenbefestigung (Ø 16mm bis 20mm) vorgesehen. Bestellhinweise entnehmen Sie bitte dem Kapitel "Typenübersicht und Zubehör" auf Seite 94.

C Klemmbacken zur Befestigung am LRS 36

 ${\bf D}$ Klemmprofil zur Befestigung an runden oder ovalen Rohren Ø 16 ... 20 mm alle Maße in mm

Bild 5.4: Befestigungsteil BT 56

5.2.2 Befestigungsteil BT 59

Zur Befestigung des LRS 36 über die Befestigungsnuten an ITEM-Profilen steht Ihnen das Befestigungsteil BT 59 zur Verfügung. Bestellhinweise entnehmen Sie bitte dem Kapitel "Typenübersicht und Zubehör" auf Seite 94.

- C Schraube-Zylinder M8x16, Rippenscheibe M8, Nutenstein M8, Verbinder für ITEM-Profil (2x)
 D Klemmbacken zur Befestigung am LRS 36
- alle Maße in mm

Bild 5.5: Befestigungsteil BT 59

Leuze

5.3 Geräteanordnung

5.3.1 Wahl des Montageortes

Für die Auswahl des richtigen Montageortes müssen Sie eine Reihe von Faktoren berücksichtigen:

- Die gewünschte Auflösung. Diese ergibt sich aus dem Abstand und der daraus resultierenden Linienlänge.
- Die zulässigen Leitungslängen zwischen LRS 36 und dem Host-System je nach verwendeter Schnittstelle.
- Das Display und Bedienfeld sollte gut sichtbar und zugänglich sein.
- Shorten Sie bei der Wahl des Montageortes weiterhin auf:
 - Die Einhaltung der zulässigen Umgebungsbedingungen (Feuchte, Temperatur).
 - Mögliche Verschmutzung der Optikabdeckungen von Sender und Empfänger durch austretende Flüssigkeiten, Abrieb von Kartonagen oder Rückstände von Verpackungsmaterial.
 - Geringstmögliche Gefährdung des LRS 36 durch mechanische Zusammenstöße oder sich verklemmende Teile.
 - Möglichen Fremdlichteinfluss (kein direktes bzw. über das Messobjekt reflektiertes Sonnenlicht).
 - Die optimale Perspektive zur Erkennung der relevanten Objektkonturen, siehe Kapitel 3.2.1 "Abschattung".

ACHTUNG LASERSTRAHLUNG – LASER KLASSE 2

Vermeiden Sie bei der Montage und Ausrichtung des LRS 36 Reflexionen des Laserstrahls durch spiegelnde Oberflächen!

HINWEIS

Die Vermeidung von Fremdlicht durch z.B. Abschirmung des Sensors sorgt für stabile und genaue Messwerte. Sekundärreflexionen der Laserlinie an spiegelnden Gegenständen sind zu vermeiden, da diese zu Fehlmessungen führen können.
 Sie erzielen die besten Messergebnisse wenn:

 Sie den Betriebsmodus (hell/dunkel) auf die Applikation anpassen

- Sie keine hochglänzenden Objekte detektieren.
- Keine direkte Sonneneinstrahlung vorliegt.

5.3.2 Ausrichtung des Sensors

Nullpunkt des Sensor-Koordinatensystems ist der Schnittpunkt von optischer Achse und Gehäusevorderkante. Generell gilt, dass der Lichtschnittsensor so ausgerichtet sein sollte, dass die Sensorrückseite parallel zum Förderband bzw. zur Messebene ausgerichtet ist. Eine Verdrehung um die Y-Achse ist unerwünscht.

Das Bild 5.6 verdeutlicht die Problematik:

Bild 5.6: Ausrichtung zur Messebene

Eine Verdrehung des Sensors um die Y-Achse verdreht das gesamte Koordinatensystem, auf das die Messwerte bezogen sind. Der Sensor misst entlang der durchgezogenen Linie im rechten Bild, die Messebene befindet sich aber auf der gestrichelten Linie und eine Messung auf das grau dargestellte Förderband würde eine schräge Ebene ergeben. Beim Einrichten einer Applikation sollte daher unbedingt auf korrekte Ausrichtung geachtet werden und die integrierte Ausrichthilfe am Display verwendet werden.

5.4 Laserwarnschild anbringen

	ACHTUNG LASERSTRAHLUNG – LASER KLASSE 2
>	Beachten Sie die Sicherheitshinweise in Kapitel 2.
	Bringen Sie die dem Lichtschnittsensor beigefügten Aufkleber (Laserwarnschilder und Laser- austrittssymbol) unbedingt am Lichtschnittsensor an! Sollten die Schilder aufgrund der Ein- bausituation des LRS 36 verdeckt werden, so bringen Sie die Schilder statt dessen in der Nähe des LRS 36 so an, dass beim Lesen der Hinweise nicht in den Laserstrahl geblickt wer- den kann!
	Verwenden Sie bei Installation des LRS 36 in Nordamerika den Aufkleber mit dem Satz "Complies with 21 CFR 1040.10".

5.5 Reinigen

Reinigen Sie nach der Montage die Optikabdeckungen des LRS 36 mit einem weichen Tuch. Entfernen Sie alle Verpackungsreste, wie z.B. Kartonfasern oder Styroporkugeln. Vermeiden Sie dabei Fingerabdrücke auf den Optikabdeckungen des LRS 36.

ACHTUNG!

Verwenden Sie zur Reinigung der Geräte keine aggressiven Reinigungsmittel wie Verdünner oder Aceton.

ĭ

6 Elektrischer Anschluss

Die Lichtschnittsensoren werden über unterschiedlich kodierte M12-Rundsteckverbinder angeschlossen. Somit ist eine eindeutige Anschlusszuordnung gewährleistet.

Die generelle Position der einzelnen Geräteanschlüsse entnehmen sie bitte unten dargestelltem Geräteausschnitt.

HINWEIS

Sie erhalten zu allen Anschlüssen die entsprechenden Gegenstecker bzw. vorkonfektionierten Leitungen. Näheres hierzu finden Sie in Kapitel 16.

Bild 6.1: Lage der elektrischen Anschlüsse

Alle Lichtschnittsensoren verfügen über mindestens zwei M12 Stecker/Buchsen die A- und D-kodiert sind.

Bild 6.2: Anschlüsse des LRS 36

Die Steckerbelegung von X1 und X2 ist bei allen Lichtschnittsensoren identisch, X3 und X4 sind je nach Gerätetyp unterschiedlich.

Kontrollieren Sie anhand des Typenschilds die genaue Typenbezeichnung. Die Ausführung von X3/X4 können Sie nachfolgender Tabelle entnehmen:

Typenbezeichnung	Х3	X4	zutreffendes Kapitel
LRS 36/6	Schaltein-/-ausgänge	nicht belegt	Kapitel 6.3.3
LRS 36/PB	nicht belegt	PROFIBUS DP	Kapitel 6.3.4

Tabelle 6.1: Schnittstellenausführung von X3 und X4

6.1 Sicherheitshinweise

ACHTUNG!
Öffnen Sie den Lichtschnittsensor in keinem Fall selbst! Es besteht ansonsten die Gefahr, dass Laserstrahlung aus dem Lichtschnittsensor unkontrolliert austritt. Das Gehäuse des LRS 36 enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.
Vergewissern Sie sich vor dem Anschließen, dass die Versorgungsspannung mit dem angege- benen Wert auf dem Typenschild übereinstimmt.
Der Anschluss des Gerätes und die Reinigung dürfen nur durch eine elektrotechnische Fach- kraft erfolgen.
Können Störungen nicht beseitigt werden, ist der LRS 36 außer Betrieb zu setzen und gegen versehentliche Inbetriebnahme zu schützen.
Die Lichtschnittsensoren der Baureihe LRS 36 sind in Schutzklasse III zur Versorgung durch PELV (Protective Extra Low Voltage) ausgelegt (Schutzkleinspannung mit sicherer Trennung).

HINWEIS

i

Die Schutzart IP 67 wird nur mit verschraubten Steckverbindern bzw. mit verschraubten Abdeckkappen erreicht! Die verwendeten Steckverbinder müssen mit O-Ring-Dichtungen ausgestattet sein. Verwenden Sie daher vorzugsweise die vorkonfektionierten Leitungen von Leuze.

6.2 Schirmung und Leitungslängen

Die Lichtschnittsensoren der Baureihe 36/36HI besitzen eine moderne Elektronik, die für den industriellen Einsatz entwickelt wurde. Im industriellen Umfeld kann eine Vielzahl an Störungen auf die Sensoren einwirken. Im Folgenden werden Hinweise zur EMV-gerechten Verdrahtung der Sensoren und der anderen Komponenten im Schaltschrank und an der Maschine gegeben.

beachten Sie folgende maximale Leitungslängen:

Verbindung zum Sensor	Schnittstelle	max. Leitungslänge	Schirmung
Netzteil	X1	50 m	erforderlich
Aktivierung / Kaskadierung /	X1	50 m	erforderlich
Trigger			
PC/Host	X2	50 m	erforderlich
Encoder	X3	50 m	erforderlich
Schaltein- / -ausgänge	X3	10 m	erforderlich
PROFIBUS DP	X4	10 m	erforderlich

 Tabelle 6.2:
 Leitungslängen und Schirmung

Schirmung:

1. Erden des LRS 36 Gehäuses:

Verbinden Sie das Gehäuse des LRS 36 über die dafür vorgesehene Funktionserde (FE)-Schraube (siehe Bild 6.3, Geräte ab April 2011) mit dem Schutzleiter am Maschinensternpunkt. Die Leitung soll eine möglichst niedrige Impedanz für hochfrequente Signale haben, d. h. möglichst kurz sein und eine große Querschnittsfläche (Erdungsband, ...) besitzen.

Hat der LRS 36 noch keine eigene FE-Schraube, so verwenden Sie bitte eine der M4-Bohrungen am Schwalbenschwanz.

2. Alle Anschlussleitungen zum LRS 36 schirmen:

Legen Sie den Schirm beidseitig auf FE. Auf der LRS 36-Seite ist dies gewährleistet, wenn das LRS 36 Gehäuse wie unter 1. beschrieben auf FE (PE) gelegt ist (Schirm geht über die Steckerhülsen zum Gehäuse).

Klemmen Sie den Schirm im Schaltschrank flächig auf FE. Verwenden Sie dazu spezielle **Schirmklemmen** (z. B. Wago, Weidmüller, …).

Halten Sie die Länge des schirmfreien Kabelendes soll so kurz wie möglich.

Der Schirm soll nicht zusammengedrillt an eine Klemme geführt werden (kein "HF-Zopf").

- Trennen von Leistungs- und Steuerleitungen: Führen Sie die Leitungen der Leistungsteile (Motorkabel, Hubmagnete, Frequenzumrichter, …) möglichst weit von den Sensorleitungen entfernt (Abstand > 30cm). Vermeiden Sie die Parallelführung von Leistungs- und Sensorleitungen.
- Führen Sie Leitungskreuzungen möglichst senkrecht aus.4. Leitungen dicht an geerdeten Metallflächen verlegen:
- Durch diese Maßnahme verringern sich die Störeinkoppungen in die Leitungen.
- 5. Ableitströme im Kabelschirm vermeiden: Ableitströme im Kabelschirm entstehen durch einen nicht korrekt ausgeführten Potenzialausgleich. Erden Sie daher alle Teile der Maschine sorgfältig.

HINWEIS

Ableitströme können Sie mit einem Zangenstrommesser messen.

6. Sternförmige Kabelverbindungen:

Achten Sie auf eine sternförmige Verbindung der Geräte, um Beeinflussungen verschiedener Verbraucher untereinander zu vermeiden. Dadurch werden Kabelschleifen vermieden.

	HINWEIS
1	Allgemeine Schirmhinweise:
	Vermeiden Sie bei der Verwendung von Leistungsteilen (Frequenzumrichter, …) Störemissi- onen. Die Technischen Beschreibungen der Leistungsteile geben dazu die notwendigen Vorgaben, unter denen der Leistungsteil seine CE-Konformität erfüllt.
	In der Praxis haben sich die folgenden Maßnahmen bewährt:
	Netzfilter, Frequenzumrichter flächig auf die verzinkte Montageplatte schrauben.
	 Montageplatte im Schaltschrank aus verzinktem Stahlblech, Dicke ≥ 3mm
	 Leitung zwischen Netzfilter und Umrichter so kurz wie möglich halten und Leitungen ver- drillen.
	Motorkabel beidseitig schirmen.
	Das Gesamtsystem gut erden.
	Erden Sie alle Teile der Maschine und des Schaltschranks sorgfältig unter Verwendung von Kupferband, Erdungsschienen oder Erdleitungen mit großem Querschnitt.

Im Folgenden ist beispielhaft der EMV-gerechte Anschluss der Lichtschnittsensoren LRS 36 in der Praxis mit Bildern beschrieben.
Leuze

Auflegen des Erdpotenzials an die Lichtschnittsensoren

Geräte ab Stand April 2011 sind mit einer zusätzlichen Erdungsklemme ausgestattet.

Zahnscheibe unterlegen und die Durchdringung der Eloxalschicht kontrollieren!

Alle Geräte können auch an der M4-Gewindebohrung am Schwalbenschwanz auf Erdpotenzial gelegt werden.

Bild 6.3: Auflegen des Erdpotenzials am Lichtschnittsensor

Auflegen des Kabelschirms im Schaltschrank

· Schirm flächig an PE gelegt

- PE-Sternpunkt mit kurzen Leitungen anschließen
- verzinktes Montageblech

Anmerkung:

abgebildete Schirmkomponenten von Wago, Serie 790 ...:

- 790-108 Schirmklemmbügel 11mm
- 790-300 Sammelschienenhalter für TS35

Bild 6.4: Auflegen des Kabelschirms im Schaltschrank

Auflegen des Kabelschirms an der SPS

- Sensorleitungen so weit wie möglich geschirmt verlegen
- · Schirm mittels Schirmklemmsystem flächig an PE gelegt
- Tragschiene muss gut geerdet sein

Anmerkung:

abgebildete Schirmkomponenten von Wago, Serie 790 ...:

- 790-108 Schirmklemmbügel 11mm
- 790-112 Träger mit Ableitfuß für TS35

Bild 6.5: Auflegen des Kabelschirms an der SPS

6.3 Anschließen

6.3.1 Anschluss X1 - Logik und Power

ACHTUNG!

Alle Leitungen müssen geschirmt sein!

X1 (8-pol. Stecker, A-kodiert)					
¥1	Pin	Name	Aderfarbe	Bemerkung	
InAct	1	VIN	WS	+24VDC Versorgungsspannung	
GND	2	InAct	br	Aktivierungseingang	
	3	GND	gn	Masse	
	4	OutReady	ge	Ausgang "betriebsbereit"	
InTrig 6 7	5	InTrig	gr	Triggereingang	
OutCas M12-Stecker	6	OutCas	rs	Kaskadierungsausgang	
	7		bl	nicht verbinden	
(А-коаіеп)	8		rt	nicht verbinden	

Tabelle 6.3: Anschlussbelegung X1

♥ Verwenden Sie vorzugsweise die vorkonfektionierten Leitungen "KD S-M12-8A-P1-...", siehe Kapitel 16.2.2.

Bild 6.6: Interne Beschaltung an X1

Stromversorgung

Die technischen Daten zur Stromversorgung finden Sie in Kapitel 15.

Aktivierungseingang InAct

Der Aktivierungseingang dient zum Ein- und Ausschalten des Lasers durch die Prozess-Steuerung. Der Sensor gibt keine Daten mehr aus und reagiert nicht auf Triggerkommandos sowie den Triggereingang. Die Ersatzschaltung der Eingänge an X1 wird in Bild 6.6 gezeigt.

Triggereingang InTrig

Der Triggereingang dient zum Synchronisieren der Messung mit dem Prozess und der Synchronisierung kaskadierter Sensoren. Nähere Informationen finden Sie in Kapitel 4.2.3 und Kapitel 4.2.4. Die interne Ersatzschaltung wird in Bild 6.6 gezeigt.

Kaskadierungsausgang OutCas

Um mehrere Lichtschnittsensoren kaskadiert zu betreiben, muss dieser Ausgang direkt mit dem Triggereingang des nachfolgenden Sensors verbunden werden. Nähere Informationen hierzu finden Sie in Kapitel 4.2.4. Die interne Ersatzschaltung wird in Bild 6.6 gezeigt.

Ausgang "betriebsbereit" OutReady

Dieser Ausgang signalisiert Betriebsbereitschaft des Sensors. Der Zustand des Ausgangs entspricht dem Zustand der grünen LED (siehe "LED-Statusanzeigen" auf Seite 39).

6.3.2 Anschluss X2 - Ethernet

ACHTUNG!

Alle Leitungen müssen geschirmt sein!

Der LRS 36 stellt eine Ethernet-Schnittstelle als Host-Schnittstelle zur Verfügung.

X2 (4-pol. Buchse, D-kodiert)					
X2	Pin	Name	Aderfarbe	Bemerkung	
Tx+	1	Tx+	ge	Transmit Data +	
	2	Rx+	WS	Receive Data +	
Bx- (4 (0) 2) Bx+	3	Tx-	or	Transmit Data -	
	4	Rx-	bl	Receive Data -	
3	Gewinde	FE	-	Funktionserde (Gehäuse)	
Tx- M12-Buchse (D-kodiert)					

Tabelle 6.4: Anschlussbelegung X2

Verwenden Sie vorzugsweise die vorkonfektionierten Leitungen "KS(S) ET-M12-4A-...", siehe Kapitel 16.2.3.

Ethernet-Leitungsbelegung

Bild 6.7: Leitungsbelegung HOST / BUS IN auf RJ-45

HINWEIS ZUM ANSCHLUSS DER ETHERNET-SCHNITTSTELLE!

Achten Sie auf ausreichende Schirmung. Die gesamte Verbindungsleitung muss geschirmt und geerdet sein. Die Adern Rx+/Rx- und Tx+/Tx- müssen paarig verseilt sein. Verwenden Sie CAT 5 Leitungen zur Verbindung.

6.3.3 Anschluss X3 - Schaltein-/ausgänge (nur LRS 36/6)

X3 (8-pol. Buchse, A-kodiert)					
	Pin	Name	Aderfarbe	Bemerkung	
X3	1	Out4	ws	Ausgang Erkennungsergebnis 4	
Out4	2	Out3	br	Ausgang Erkennungsergebnis 3	
InSel 2 7 1 8 InSel 1	3	GND	gn	Masse	
	4	Out2	ge	Ausgang Erkennungsergebnis 2	
	5	Out1	gr	Ausgang Erkennungsergebnis 1	
Out1 5 4 GND Out2	6	InSel3	rs	Auswahl Inspection Task Bit 3 (MSB)	
M12-Buchse	7	InSel2	bl	Auswahl Inspection Task Bit 2	
(A-kodieit)	8	InSel1	rt	Auswahl Inspection Task Bit 1 (LSB)	

Tabelle 6.5:Anschlussbelegung X3

Verwenden Sie vorzugsweise die vorkonfektionierten Leitungen "KS S-M12-8A-P1-...", siehe Kapitel 16.2.4.

Schaltausgänge des X3-Anschlusses

Out1 bis Out4 stellen jeweils eine logische Verknüpfung von Auswerteergebnissen der einzelnen AWs dar. Diese logische Verknüpfung wird in LRSsoft definiert (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters"). Bis zu 16 unterschiedliche logische Verknüpfungen der AWs und entsprechende Ergebnisdarstellungen an Out1 bis Out4 können zu Inspektionsaufgaben (Inspection Tasks) zusammengefasst werden.

Schalteingänge des X3-Anschlusses

Die 3 Schalteingänge InSel1-3 dienen zur Auswahl der Inspektionsaufgabe (Inspection Task) 0-7. Hierbei bedeutet "000" Inspection Task 0, "001" Inspection Task 1, etc. Die Umschaltzeit zwischen 2 Inspection Tasks ist < 100ms

ĭ

HINWEIS

Die Inspection Tasks 8-15 lassen sich über LRSsoft, PROFIBUS oder über Ethernet umschalten. Die Einstellung über Ethernet überschreibt die per Eingang InSel1-3 eingestellte Inspection Task.

6.3.4 Anschluss X4 - PROFIBUS DP (nur LRS 36/PB)

X4 (5-pol. Buchse, B-kodiert)					
	Pin	Name	Bemerkung		
X4 A	1	VP	Versorgungsspannung +5V (Terminierung)		
	2	A	Empfangs-/Sendedaten RxD/TxD-N, grün		
	3	DGND	Datenbezugspotential		
4 FE B	4	В	Empfangs-/Sendedaten RxD/TxD-P, rot		
(B-kodiert)	5	FE	Funktionserde		
(Gewinde	FE	Funktionserde (Gehäuse)		

Tabelle 6.6: Anschlussbelegung X3

HINWEIS

F

i

Der Anschluss X4 ist nur beim LRS 36/PB belegt.

Der Anschluss an den PROFIBUS DP erfolgt über die 5-polige M12-Buchse X4 mit einem externen Y-Steckeradapter. Die Belegung entspricht dem PROFIBUS-Standard. Der Y-Steckeradapter ermöglicht den Austausch des LRS 36/PB ohne Unterbrechung der PROFIBUS-Leitung.

Der externe Y-Steckeradapter wird auch benötigt, wenn der LRS 36/PB der letzte Busteilnehmer ist. Dann wird daran der externe Busabschlusswiderstand (Terminierung) angeschlossen. An X4 ist die 5V-Versorgung für die Terminierung aufgelegt.

HINWEIS

Zur Anschluss empfehlen wir unsere vorkonfektionierten PROFIBUS Leitungen (siehe Kapitel 16.2.5 "Anschlusszubehör / vorkonfektionierte Leitungen für X4 (nur LRS 36/PB)")

Zur Bus-Termininerung empfehlen wir unseren PROFIBUS Abschlusswiderstand (siehe Kapitel 16.2.5 "Anschlusszubehör / vorkonfektionierte Leitungen für X4 (nur LRS 36/PB)")

7.1 Anzeige- und Bedienelemente

- A Geräte LEDs grün und gelb Siehe "LED-Statusanzeigen" auf Seite 39.
- B OLED-Display, 128 x 32 Pixel
- C Folientastatur mit 2 Tasten
- Siehe "Bedientasten" auf Seite 39.
- D Laserstrahl

Bild 7.1: Anzeige- und Bedienelemente LRS 36

Nach dem Einschalten der Versorgungsspannung + $U_{\scriptscriptstyle B}$ und der fehlerfreien Geräteinitialisierung leuchtet die grüne LED dauernd: Der LRS 36 befindet sich im Erkennungsmodus. Das OLED-Display zeigt die Ausrichthilfe und die Statusanzeige.

7.1.1 LED-Statusanzeigen

LED	Zustand	Anzeige im Messbetrieb
grün	Dauerlicht	Sensor betriebsbereit
	aus	Sensor nicht betriebsbereit
gelb	Dauerlicht	Ethernet-Verbindung hergestellt
	blinkend	Ethernet-Datenübertragung aktiv
	aus	Keine Ethernet-Verbindung

Tabelle 7.1: LED Funktionsanzeige

7.1.2 Bedientasten

Die Bedienung des LRS 36 erfolgt über die beiden Tasten ▼ und ↓ , die neben dem OLED-Display angeordnet sind.

7.1.3 Anzeigen im Display

Die Anzeige im Display ändert sich entsprechend der aktuellen Betriebsart. Es gibt dabei folgende 3 Anzeigemodi:

- · Ausrichthilfe und Statusanzeige
- Befehlsmodus
- Menüanzeige

In die Menüanzeige gelangt man durch Drücken einer der beiden Bedientasten. Die Bedienung des LRS 36 über das Menü ist in Kapitel 7.2.2 beschrieben.

Bei PROFIBUS-Geräten wird nach Power-on zunächst der Busstatus angezeigt (Anzeige für ca. 3s). Falls der PROFIBUS erkannt wurde, erfolgt daraufhin die Anzeige von Ausrichthilfe und Status.

Ausrichthilfe

Als Ausrichthilfe wird im OLED-Display der aktuelle Messwert in der Einheit Millimeter am linken Rand (Lxxx), in der Mitte (Mxxx) und am rechten Rand (Rxxx) des Erfassungsbereichs angezeigt. Wird kein Objekt erfasst bzw. ist der Abstand zu gering erscheint im Display der Distanzwert 000 (mm).

Skichten Sie den Lichtschnittsensor durch Drehung um die Y-Achse so aus, dass für L, M, R der gleiche Wert angezeigt wird.

Statusanzeige

In der zweiten Zeile des Displays wird die ausgewählte Inspection Task (Txx), der Zustand der 4 Schaltausgänge (Qxxxx) bzw. bei PROFIBUS-Geräten Out1 ... Out4 des Eingangsdatenbytes uSensorInfo sowie der aktuelle Sensorstatus (siehe Kapitel 4.2 "Betrieb des Sensors") angezeigt.

T00 Q0000 fRur

euze

Die Anzeige des Sensorstatus im Display hat folgende Bedeutung:

- fRun = Free Running
- Trig = Triggerung
- !Act = Aktivierung (Laser ein/aus)

T12 bedeutet z.B., dass Inspection Task 12 gerade aktiv ist. Wertebereich: T00 bis T15.

Q0100 bedeutet z.B., dass Out1=0, Out2=1, Out3=0 und Out4=0 ist. Wertebereich: Q0000 bis Q1111.

Wird bei PROFIBUS-Geräten nach Power-on kein PROFIBUS erkannt, erscheint statt Q0000 in der Mitte der unteren Zeile no PB.

Für den Sensorstatus gibt es folgende Optionen: fRun bedeutet Free Running, Trig bedeutet getriggert (siehe Kapitel 4.2.3 "Triggerung - Free Running") und !ACK bedeutet, dass der Sensor deaktivert ist (keine Laserlinie, siehe Kapitel 4.2.2 "Aktivierung - Laser ein/aus").

Befehlsmodus

Bei Anschluss des LRS 36 an eine Steuerung kann der LRS 36 von der Steuerung in einen Befehlsmodus (Command Mode) versetzt werden, in dem er Befehle empfängt und ausführt (siehe Kapitel 10.2.9 "Auswertetelegramm"). Im Befehlsmodus ist die Darstellung des OLED-Displays einzeilig.

In der ersten Zeile des Displays erscheint Command Mode.

HINWEIS

Treten während des Betriebs Fehler auf, so werden diese auf dem Display angezeigt. Hinweise ersehen Sie in Kapitel 13.3.

Leuze

7.2 Menübeschreibung

7.2.1 Aufbau/Struktur

Ebene 1	Ebene 2	Ebene 3	Ebene 4	Erklärung / Hinweise	Default
Select Insp. Task				Menüpunkt Taskumschaltung	
Appl. Settings	Ext. Selection Enabled	Ext. Selection		Taskumschaltung über digitale Ein- gänge (extern) Taskumschaltung über digitale Ein- gänge (extern) ist aktiviert	х
		Ext. Selection Disabled		Taskumschaltung über digitale Ein- gänge (extern) ist deaktiviert. ¹⁾	
	Select Insp. Task 00:Task 0			Auswahl des aktiven Inspection Task 2)	
		Select Insp. Task 00:Task 0		Task 0 ist aktiviert.	Х
	4	Select Insp. Task 15:Task 15		Task 15 ist aktiviert.	
	Ext. Selection			Rückkehr in Menüebene 1	
Appl. Settings ³⁾ Device Settings		_		Menüpunkt Applikationseinstellungen	
	Teach Functions Teach Parameters			Teach Funktionen	
		Area Scan Basic Cancel		Teach "Flächentaster"	
			Area Scan Basic Cancel	Teach nicht ausführen	Х
			Area Scan Basic Execute	Teach ausführen ⁴⁾	
		Area Scan adv. Cancel		Teach "Hintergrundausblendung"	
			Area Scan adv. Cancel	Teach nicht ausführen	Х
			Area Scan adv. Execute	Teach ausführen ⁴⁾	
		Track Scan Cancel		Teach "Mehrspurige Vollständigkeits- kontrolle"	
			Track Scan Cancel	Teach nicht ausführen	Х
			Track Scan Execute	Teach ausführen ⁴⁾	
		← Area Scan Basic		Rückkehr in Menüebene 2	
	Teach Parameters Exposure Time			Teach Parameter	
		Sensitivity medium		Teach Parameter "Sensitivity" (zu detektierende Objektoröße)	
			Sensitivity	Einstellung "medium" (Mittel)	х
			Sensitivity	(Hits On = 20; Hits Off = 12) Einstellung "coarse" (Groß)	
			coarse	(Hits On = 40; Hits Off = 24)	
			Sensitivity fine	(Hits On = 10; Hits Off = 6)	
		Offset 020		Teach Parameter "Offset" (Sicherheitsabstand zum Hintergrund)	
			Offset 020	Werteeinstellung für "Offset",	20mm
		Num. of Objects		Teach Parameter "Num. of Objects"	
			Num. of Objects	Werteeinstellung für "Num. of Objects", Wertebereich: 1 9	1
		← Sonsitivity		Rückkehr in Menüebene 2	
	Exposure Time Normal Mode	Sensitivity		Belichtungszeit für Messungen und Teach	
		Exposure Time Normal Mode		Belichtungszeiteinstellung "Normal"	Х
		Exposure Time Bright Objects		Belichtungszeiteinstellung "Helle Objekte"	
		Exposure Time Dark Objects		Belichtungszeiteinstellung "Dunkle	
		Exposure Time Manual Setting		Belichtungszeiteinstellung "Manuell" (benutzerspezifische Einstellung) ⁵⁾	

Tabelle 7.2: Menüstruktur

Leuze

Ebene 1	Ebene 2	Ebene 3	Ebene 4	Erklärung / Hinweise	Default
	Free Running			Trigger-Modus für Messungen	
		Trigger Mode Free Running		Trigger Einstellung "Free Running" (kontinuierliche Messung) Trigger Einstellung "Input Triggered"	Х
		Trigger Mode Input Triggered		(Triggereingangssignal löst Messung aus)	
	÷			Rückkehr in Menüebene 1	
Device Settings Error Handling	Teach Functions			Menüpunkt Geräteeinstellungen	
U	Slave Address			PROFIBUS DP Slave Adresse 6)	
	Ethernet	Slave Adress 126		Einstellung der PROFIBUS DP Slave Adresse	126
	Ethernet			Ethernet Schnittstellenparameter 7)	
	Display	IP Address		ID Adresse des Sensors	
		192.168.060.003			
			IP Address 192.168.060.003	(Default: 192.168.060.003)	Х
		Net Mask Address		Subnetzmaske des Sensors	
		233.233.233.000	Net Mask Address	Einstellung der Subnetzmaske	x
		Std. Cotowow	255.255.255.000	(Default: 255.255.255.000) Standard Gateway für die Ethernet	Λ
		000.000.000.000		Kommunikation	
			Std. Gateway 000.000.000.000	Einstellung der IP Adresse des Stan- dard Gateways (Default:	х
		Port Num. Local		_ 000.000.000.000) Lokaler Port des Sensors für die Ether-	
		09000	Port Num. Local	Finstellung des lokalen Ports	9008
		Port Num. Dest.	09008	Ziel-Port des PC bzw. der Steuerung für	
		05634	Port Num. Dest.	die Ethernet Kommunikation	5634
		F	05634		5054
		IP Address		Rückkehr in Menüebene 2	
	Display On			Display Einstellungen	
		Display		Einstellung "On": immer an mit Maximal-	
		On		Einstellung "Off": aus. wird nach Tasta-	
		Off		turbetätigung wieder eingeschaltet	
		Display Auto		Einstellung "Auto": nach Tastenbetäti- gung ca. 1min volle Helligkeit, danach	х
	Password Check			Passwort-Schutz für Menüzugang	
	Inactive	Password Check			V
		Inactive		Passwort-Schutz deaktiviert	X
		Password Check Activated		(festes Passwort: "165")	
	← Slave Address			Rückkehr in Menüebene 1	
Error Handling				Menüpunkt Fehlerbehandlung	
	Reset to Factory			Zurücksetzen auf Werkseinstellungen	
	Gancer	Reset to Factory		Zurücksetzen nicht ausführen	
		Reset to Factory	_	Zurücksetzen ausführen mit nachfol-	
	←	Execute		gender Sicherheitsabfrage	
	Reset to Factory			Rückkehr in Menüebene 1	
Info ← Menu Exit	Part No.			Menüpunkt Geräteinformationen	
	50115418			Leuze Artikelnummer des Sensors	
	Serial No. 01408004336			Seriennummer des Sensors	
	Ext. Info			Leuze interne Information	
	K000				

Tabelle 7.2: Menüstruktur

Leuze electronic GmbH + Co. KG

Ebene 1	Ebene 2	Ebene 3	Ebene 4	Erklärung / Hinweise	Default
	Software V01.50			Softwareversion des Sensors	
	← Part No			Rückkehr in Menüebene 1	
← Menu Exit Select Insp. Task	Turrito.	J		Menü verlassen und Rückkehr in den Messmodus	

Tabelle 7.2: Menüstruktur

1) Die Inspection Tasks können über das Bedienfeld umgeschaltet werden.

- 2) Die Einstellung des aktiven Inspection Task ist nur wirksam, wenn "Ext. Selection" = "Disabled"
- Die Applikationseinstellungen gelten f
 ür den aktuell ausgew
 ählten Inspection Task. F
 ür jeden Task k
 önnen individuelle Applikationseinstellungen vorgenommen werden.
- Bei einem Teach Error wird die Fehlernummer (siehe Seite 74ff.) angezeigt, die Auskunft über das Ergebnis des erfolgten Teachvorgangs liefert.
- 5) Bei "Manual Settings" wird der über LRSsoft voreingestellte Wert verwendet.
- 6) Dieser Menüpunkt ist nur bei den PROFIBUS Gerätevarianten vorhanden.
- 7) Die hier eingestellten Werte werden nicht sofort übernommen, sondern erst beim nächsten Einschalten des Sensors wirksam.

HINWEIS

Nach 3 Minuten ohne Tastenbetätigung verlässt der LRS 36 den Menümodus und geht in den Erkennungsmodus. Das OLED-Display zeigt wieder die Ausrichthilfe und die Sensorstatusanzeige an.

HINWEIS

Nach Ändern der PROFIBUS Slave-Adresse muss ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen.

7.2.2 Bedienung/Navigation

i

ĭ

In der Menüansicht ist die Darstellung des OLED-Displays zweizeilig. Der jeweils aktive Menüpunkt wird in schwarzer Schrift auf hellblauem Hintergrund dargestellt. Die Tasten ▼ und ↓ haben je nach Betriebssituation unterschiedliche Funktionen. Diese Funktionen werden über die Icons am rechten Rand des Displays – also direkt links neben den Tasten – dargestellt.

Folgende Darstellungen können auftreten:

Menü-Navigation

wählt den nächsten Menüpunkt an (Ethernet)

← geht ins invertiert dargestellte Untermenü (Slave Address)

▼ wählt den nächsten Menüpunkt an (IP Address)

✓ geht zurück in die übergeordnete Menüebene (←). Auf oberster Menüebene kann hier das Menü beendet werden (Menu Exit). Die Anzahl von Strichen am linken Rand zeigt die aktuelle Menüebene.

Werte- oder Auswahlparameter zum Editieren auswählen

IP Address	Ŧ	
192.169.060.003	Ø	

wählt den nächsten Menüpunkt an (Net Mask Addr.)

↔ wählt den Editiermodus für IP Address aus

Werteparameter editieren

IP Address	↓
192.168.060.003	→

✓ dekrementiert den Wert der aktuell ausgewählten Ziffer (1).
 ✓ wählt die nächste Ziffer rechts (9) zum Editieren aus. Nach Durchklicken aller Ziffern mit ✓ erscheint ein Häkchen (☑) unten rechts. Wurde ein unzulässiger Wert eingegeben, erscheint das Symbol ∪ (Neueingabe) und es wird kein Häkchen zur Auswahl angeboten.

▼ verändert den Editiermodus, es erscheint ひ. ↓ speichert den neuen Wert (192.168.001.111).

- Menüpunkt Factory Setting
- Über die Parametriersoftware LRSsoft

Im Folgenden wird beispielhaft die erste erwähnte Methode beschrieben:

⇔ Halten Sie beim Anlegen der Versorgungsspannung die Taste ≺^J gedrückt, um die Parametrierung des LRS 36 auf den Auslieferungszustand zurücksetzen.

Es erscheint die nebenstehende Displayanzeige.

Rücksetzen abbrechen

7.3

Durch Drücken von ▼ erscheint die nebenstehende Anzeige. Wenn Sie jetzt die Taste ↓ drücken, verlassen Sie das Menü, ohne den LRS 36 auf Werkseinstellungen zurückzusetzen.

Rücksetzen ausführen

Durch Drücken der Taste \prec^{J} bei angezeigtem Häkchen (\square) erscheint die nebenstehende Sicherheitsabfrage.

Drücken von ▼ bricht den Resetvorgang ab, reset cancelled erscheint für ca. 2s im Display und danach geht der LRS 36 zurück in den Erkennungsmodus.

Drücken von eq setzt alle Parameter auf die Werkseinstellung zurück. Alle zuvor gemachten Einstellungen gehen unwiederbringlich verloren. Im Display erscheint reset done für ca. 2s und danach geht der LRS 36 zurück in den Normalbetrieb.

Sie können das Zurücksetzen auf Werkseinstellungen ebenfalls über LRSsoft aufrufen.

 \circledast Wählen Sie im Menü Configuration den Eintrag Reset to Factory Settings.

reset done

8 Inbetriebnahme und Parametrierung

8.1 Einschalten

i

i

Nach dem Einschalten der Versorgungsspannung +U_B und der fehlerfreien Geräteinitialisierung leuchtet die grüne LED dauernd: Der LRS 36 befindet sich im Erkennungsmodus.

HINWEIS

Der Lichtschnittsensor hat nach einer Aufwärmzeit von 30 min die für eine optimale Messung erforderliche Betriebstemperatur erreicht.

8.2 Verbindung zum PC herstellen

Der LRS 36 wird über einen PC mit dem Programm LRSsoft parametriert, bevor er in die Prozess-Steuerung eingebunden wird.

Um eine UDP-Kommunikation mit dem PC aufbauen zu können, müssen die IP-Adresse Ihres PCs und die IP-Adresse des LRS 36 im gleichen Adressbereich liegen. Da der LRS 36 über keinen eingebauten DHCP-Client verfügt, müssen Sie die Adresse manuell einstellen. Das geschieht am einfachsten am PC.

HINWEIS

Sollten Sie eine Desktop-Firewall verwenden, stellen Sie bitte sicher, dass der PC über die Ethernet-Schnittstelle per UDP auf den Ports 9008 und 5634 mit dem LRS 36 kommunizieren kann (diese Ports sind ab Werk voreingestellt, können aber auch vom Benutzer verändert worden sein, siehe Kapitel 7.2 "Menübeschreibung"). Außerdem muss die Firewall ICMP-Echo-Nachrichten für den Verbindungstest (Ping) durchlassen.

Wird der PC üblicherweise mit DHCP-Adressvergabe an ein Netzwerk angeschlossen, ist es für den Zugriff auf den LRS 36 am einfachsten, in den TCP/IP-Einstellungen des PCs eine alternative Konfiguration anzulegen und den LRS 36 mit dem PC zu verbinden.

Überprüfen Sie die Netzwerkadresse des LRS 36, indem Sie aus dem Erkennungsmodus des LRS 36 heraus durch einen Tastendruck in das Einstellungsmenü wechseln.

Im Untermenü Ethernet (siehe Kapitel 7.2.1) können Sie die aktuellen Einstellungen des LRS 36 durch mehrmaliges Drücken von ▼ nacheinander ablesen.

♥ Notieren Sie sich die Werte für IP-Address und Net Mask Addr..

Der Wert in Net Mask Addr. gibt an, welche Stellen der IP-Adresse von PC und LRS 36 übereinstimmen müssen, damit sie miteinander kommunizieren können.

Adresse des LRS 36	Netzmaske	Adresse des PC
192.168.060.003	255.255.255.0	192.168.060.xxx
192.168.060.003	255.255.0.0	192.168.xxx.xxx

 Tabelle 8.1:
 Adressvergabe im Ethernet

Anstelle von **xxx** können Sie jetzt Ihrem PC beliebige Zahlen zwischen 000 und 255 zuteilen, aber NICHT DIE GLEICHEN wie beim LRS 36.

Also z. B. 192.168.060.110 (aber nicht 192.168.060.003!). Haben LRS 36 und PC die gleiche IP-Adresse, können sie nicht miteinander kommunizieren.

Einstellen des Standard Gateways

Optional ist die Einstellung der IP Adresse für das Standard Gateway mit dem Untermenüpunkt Std. Gateway möglich (Default: 000.000.000).

HINWEIS

Die IP Adresse des Standard Gateways (Std. Gateway) und der Ziel-Port des PC bzw. der Steuerung (Port Num. Dest.) werden ab Firmware V01.50 und LRSsoft V2.40 in der Sensor-konfiguration abgespeichert.

Einstellen einer alternativen IP-Adresse am PC mit Windows 10

- b Melden Sie sich an Ihrem PC als Administrator an.
- ♦ Klicken Sie auf Start.
- ♦ Klicken Sie auf Einstellungen.
- ⅍ Klicken Sie auf Netzwerk und Internet.
- ♦ Klicken Sie auf Ethernet.
- Unter "Verwandte Einstellungen" klicken Sie auf "Adapteroptionen ändern".
- Klicken Sie mit Rechtsklick auf die Netzwerkverbindung, an der das LxS-Gerät angeschlossen ist.
- ⅍ Klicken Sie auf Eigenschaften.
- Skicken Sie auf "Internetprotokoll, Version 4 (TCP/IPv4)".
- Nicken Sie auf den Button "Eigenschaften".
- Stellen Sie die IP-Adresse des PCs auf den Adressbereich des LRS ein.

Achtung: Nicht dieselbe IP-Adresse wie beim LRS.

- Stellen Sie die Subnetzmaske des PCS auf denselben Wert wie beim LRS ein.
- Schließen Sie den Einstellungsdialog, indem Sie alle Fenster mit OK bestätigen.
- Verbinden Sie die Schnittstelle X2 des LRS direkt mit dem LAN-Port Ihres PCs. Nutzen Sie zur Verbindung ein Kabel KB ET-...-SA-RJ45, siehe Tabelle 15.7.
- Der PC versucht zuerst über die automatische Konfiguration eine Netzwerkverbindung herzustellen. Dies kann einige Sekunden dauern. Danach wird die alternative Konfiguration aktiviert, die Sie soeben eingestellt haben. Jetzt kann der PC mit dem LRS kommunizieren.
- Schweise zur Parametrierung mit LRSsoft finden Sie in Kapitel 9.

8.3 Inbetriebnahme

Zur Inbetriebnahme und Einbindung des Sensors in die Prozess-Steuerung sind folgende Schritte notwendig:

- 1. LRS 36 parametrieren siehe Kapitel 9.
- 2. Prozess-Steuerung programmieren siehe Kapitel 10 oder Kapitel 11. oder
- 3. Schaltein- und -ausgänge entsprechend anschließen siehe Kapitel 6.3.
- Bei Einbindung in Ethernet Prozess-Steuerungen ist die IP-Konfiguration des LRS 36 so anzupassen, dass der LRS 36 mit der Prozess-Steuerung kommunizieren kann.
 Die Werte entsprechend untenstehendem Screenshot sind im LRS 36 ab Werk voreingestellt. Wenn Sie andere Werte einstellen wollen, dann müssen Sie die Werte über das Display des LRS 36 im

📱 Eigenschaften von Ethernet	×
Netzwerk Freigabe	
Verbindung herstellen über:	
Intel(R) Ethemet Connection (4) I219-LM	
Konfigurieren Diese Verbindung verwendet folgende Elemente:	1
QoS-Paketplaner	•
✓ Internetprotokoll, Version 4 (TCP/IPv4)	
INICTOSOL-IVI IIIOIEXOTOTOTORO I DELZWERKADADIEL	
Microsoft-LLDP-Treiber	
Interest interpreter inte	
Microsoft-LLDP-Treiber Microsoft-LLDP-Treiber Intermetprotokoll, Version 6 (TCP/IPv6) Antwort für Verbindungsschicht-Topologieerkennung	
Androsoft-LLDP-Treber Antrosoft-LLDP-Treber Antwort für Verbindungsschicht-Topologieerkennung E/A-Treiber für Verbindungsschicht-Topologieerkennung	
Microsoft-LLDP-Treiber Internetprotokoll, Version 6 (TCP/IPv6) Antwolf für Verbindungsschicht-Topologieerkennung E/A-Treiber für Verbindungsschicht-Topologieerkennurv	
Microsoft-LLDP-Treiber Internetprotokoll, Version 6 (TCP/IPv6) Antwort für Verbindungsschicht-Topologieerkennurg E/A-Treiber für Verbindungsschicht-Topologieerkennur Signatilieren Installieren Egenschaften	•
Artwoot-LLDP-Treiber Artwort für Verbindungsschicht-Topologieerkennung E/A-Treiber für Verbindungsschicht-Topologieerkennung E/A-Treiber für Verbindungsschicht-Topologieerkennur Source Igstallieren. Beschreibung TCP//P, das Standardprotokoll für WAN-Netzwerke, das den Datenaustausch über verschiedene, miteinander verbundene Netzwerke emöglicht.	•

Leuze

igenschaften von Internetprotokoll, V	/ersion 4 (TCP/IPv4) X
Allgemein	
IP-Einstellungen können automatisch zu Netzwerk diese Funktion unterstützt. V Netzwerkadministrator, um die geeigne	igewiesen werden, wenn das /enden Sie sich andernfalls an den ten IP-Einstellungen zu beziehen.
IP-Adresse automatisch beziehen	
Folgende IP-Adresse verwenden:	
IP-Adresse:	192 . 168 . 60 . 23
Subnetzmaske:	255.255.255.0
Standardgateway:	
DNS-Serveradresse automatisch b	eziehen
	menden.
Bevorzugter DNS-Server:	· · ·
Alternativer DNS-Server:	
Einstellungen beim Beenden über	prüfen
	Erweitert
	OK Abbrechen

Leuze

Inbetriebnahme und Parametrierung

i

Menüpunkt Ethernet ändern (siehe "Menübeschreibung" auf Seite 41). Sie können die geänderten Werte testen, indem Sie sie in LRSsoft im Bereich Configuration eintragen und auf den Button Check Connectivity klicken.

P Configuration		Client / PC	
IP Address:	192.168.60.3	Port:	5634
Port	9008		
Subnet Mask:	255.255.255.0		
Accept	Chec	* Connectivity	Use Presets

- 5. LRS 36 an die Prozess-Steuerung anschließen. Dies kann bei allen LRS 36 über die Ethernet-Schnittstelle erfolgen oder je nach Typ über die Schaltausgänge bzw. den PROFIBUS.
- 6. Ggf. Anschlüsse für Aktivierung, Triggerung und Kaskadierung herstellen.

HINWEIS ZUM ANSCHLUSS MEHRERER LICHTSCHNITTSENSOREN ÜBER ETHERNET

Will man mehrere Sensoren ansprechen, so müssen alle Sensoren sowie die Steuerung unterschiedliche IP-Adressen im gleichen Subnetz erhalten. Bei allen Sensoren müssen unterschiedliche Ports sowohl im Bereich Sensor als auch im Bereich Client/PC konfiguriert sein.

9 Parametriersoftware LRSsoft

9.1 Systemanforderungen

Der verwendete PC sollte folgende Anforderungen erfüllen:

- Windows 7, besser Windows 10
- Ethernetschnittstelle

9.2 Installation

HINWEIS

ĭ

Deinstallieren Sie eine evtl. vorhandene Matlab Runtime, bevor Sie mit der Installation der LXSsoft-Suite beginnen.

Das Installationsprogramm **LXSsoft_Suite_Setup.exe** können Sie sich unter **www.leuze.com** herunterladen. Sie finden dieses beim jeweiligen Produkt im Register Downloads unter Konfigurationssoftware.

HINWEIS

Kopieren Sie die heruntergeladenen Dateien in einen geeigneten Ordner auf Ihrer Festplatte. Dazu sind **Administratorrechte erforderlich**.

Bitte beachten Sie, dass die Standardeinstellung der Textgröße verwendet wird. Die Anzeige ist auf "100 %" einzustellen.

Starten Sie die Installation per Doppelklick auf die Datei LXSsoft_Suite_Setup.exe.

♦ Klicken Sie im ersten Fenster auf Next.

Im nächsten Fenster können Sie wählen, welche Parametriersoftware Sie installieren wollen.

Sie benötigen LPSsoft zur Parametrierung von Lichtschnittsensoren der LPS-Baureihe.

Sie benötigen LRSsoft zur Parametrierung von Lichtschnittsensoren der LRS-Baureihe.

Sie benötigen **LESsoft** zur Parametrierung von Lichtschnittsensoren der **LES**-Baureihe.

Wählen Sie die gewünschten Optionen aus und klicken Sie auf Next und im nächsten Fenster dann auf Install.

Die Installationsroutine startet. Nach einigen Sekunden erscheint das Fenster zur Auswahl der Sprache für die Installation der Matlab Compiler Runtime (MCR). Die MCR dient zur Parametrierung in LRSsoft. Sie existiert nur in Englisch oder Japanisch.

Leuze

Parametriersoftware LRSsoft

Sehalten Sie deshalb im Fenster Choose Setup Language die Auswahl English bei und klicken Sie auf OK.

Parametriersoftware LRSsoft

Je nach Konfiguration Ihres Windows-Systems erscheint noch der untenstehende Dialog (fehlende Komponente VCREDIST_X86).

 $\$ Klicken Sie auf <code>Install</code>.

Es erscheinen zwei weitere Installationsfenster, in denen Sie aber keine Eingabe machen müssen.

stallShield Wizard			
MATLAB(R) Compiler Runtime 7.9 requires that the following requirem your computer prior to installing this application. Click OK to begin insta requirements:	ents be installed on alling these		
Status Requirement Pending VCREDIST_X86			
Install	Cancel		
Installs hield Wizard With a state of the s	me 7.9 requires that the follow ling this application. Click OK	wing requirements be installed on to begin installing these	
	InstallShield Wizard	Preparing to Install MATLAB(R) Compiler Ruth Install-Rickled Witzard, which program setup process. Ple Extracting: MATLAB(R) Con	ne 7.9 Setup is preparing the will guide you through the ease wait.
			Cancel

Nach einiger Zeit (bis zu mehreren Minuten je nach Systemkonfiguration) erscheint dann der Startbildschirm des MCR-Installers.

♦ Klicken Sie auf Next.

Windows Installer		🚰 MATLAB(R) Compiler Runtime 7.9 - InstallShield Wizard		
Installation wird vorbereitet	Abbrechen	MATLAB Compiler Runtime	Welcome to the InstallShield Wizard for MATLAB(R) Compiler Runtime 7.9 The InstallShield(R) Wizard will install MATLAB(R) Compiler Runtime 7.9 on your computer. To continue, dick Next. MatLAB and Simulika we registered trademarks of The MathWorks, Inc. Please see www.mathworks.com/trademarks for a list of other trademarks on one by the MathWorks, inc. Other product or brand names are trademarks or registered tradmarks of their respective owners. WARNING: This program is protected by copyright law and international treates. Copyright 1984-2008, The MathWorks, Inc.	
		📣 The MathWorks		
			<back next=""> Cancel</back>	

Das Fenster zur Eingabe der Benutzerdaten erscheint.

& Geben Sie Ihren Namen und den Firmennamen ein und klicken Sie anschließend auf Next.

MATLAB(R) Compiler Runtime 7.9 - InstallShi Eustomer Information	eld Wizard	
Please enter your information.		
User Name:		
Stefan Weimar		
Organization:		
PRODOC Translations GmbH		
		-

Behalten Sie im Fenster zur Auswahl des Installationspfads (Destination Folder) unbedingt den vorgegebenen Ordner bei.

Der Standard-Pfad ist C:\Programme\MATLAB\MATLAB Compiler Runtime\.

♥ Klicken Sie auf Next und im nächsten Fenster auf Install.

Die Installation startet und es wird ein Statusfenster angezeigt. Das kann erneut einige Minuten dauern. Nach erfolgreicher MCR-Installation erscheint das Fenster InstallShield Wizard Completed. Sklicken Sie auf Finish zum Abschluss der MCR-Installation.

ihield Wizard
e to install to a different folder.
9 to: lifer Runtime\Change
untime 7.9 - InstallShield Wizard
igram
gin installation.
nstallation.
change any of your installation settings, click Back. Click Cancel to
NR/D) Commilar Duntino 7.0 - InstallShield Winard
ing MATLAB(R) Compiler Runtime 7.9
rogram features you selected are being installed.
Please wait while the InstallShield Witzard installs MATLAB(R) Compiler Runtime 7.9. This may take several minutes.
Status:
🖟 MATLAB(R) Compiler Runtime 7.9 - InstallShield Wizard
MATLAB Compiler Runtime
The InstallShield Wizard has successfully installed MATLAB(R) Compiler Runtime 7.9. Click Finish to exit the wizard.
d
< Back Finish Cancel

Jetzt erscheint das Fenster zur Auswahl des Installationspfads für LESsoft/LPSsoft/LRSsoft (sofern vorher von Ihnen ausgewählt).

👘 Setup - LPSsoft			_ 🗆 🗵	1		
Select Destinatio Where should LF	on Location PSsoft be installed?					
Setup w	vill install LPS soft into the fo	lowing folder.	. D			
To continue, clici	k Next. Ir you would like to :	elect a different folder, clici	C BIOWSE.			
Low-roorammev	🖥 Setup - LRSsoft		Browse I			
	Select Destination Where should LRS	Location soft be installed?		@7		
	📁 Setup will	install LRSsoft into the follo	wing folder.			
At least 13,2 ME	To continue, click f	Next. If you would like to sel	ect a different folder, cli	ck Browse.		
	C:\Programme\Le	Realectronic\LBScoft		Rroutea	-0	×
		Select Destination L Where should LESso	ocation oft be installed?			
		📁 Setup will i	nstall LESsoft into the fi	bllowing folder.		
-	At least 14,2 MB	To continue, click Ne	ext. If you would like to	select a different fo	lder, click Browse.	
		C:\Programme\Leu	ze electropic'i ESsoft F Setup - LPSsoft, I	LRSsoft, LESsoft	Browse	
				Con LES Setup I	npleting the LPS soft Setup Wizan nas finished installing LP5soft,	soft, LRSsoft, rd , LRSsoft, LESsoft on your
				comput	er.	
		At least 2,5 MB of I		Click Fi	hish to exit Setup.	
	_					
				-		
						Finish

Behalten Sie den vorgegebenen Ordner bei und klicken Sie auf Next.

Die Installation von LPSsoft startet. Falls Sie auch LRSsoft und LESsoft zum Installieren ausgewählt hatten erscheint nach Abschluss der LPSsoft-Installation das gleiche Fenster erneut zur Eingabe des Installationspfads für LRSsoft und LESsoft.

Behalten Sie auch hier den vorgegebenen Ordner bei und klicken Sie auf Next.

Nach Abschluss der Installation erscheint das obenstehende Fenster.

Die Installationsroutine hat in Ihrem Startmenü eine neue Programmgruppe Leuze electronic mit den installierten Programmen LESsoft/LPSsoft/LPSsoft erzeugt.

Sklicken Sie auf Finish und starten Sie dann das gewünschte Programm über das Startmenü.

9.2.1 Mögliche Fehlermeldung

i

Je nach Einstellung der Bildschirmanzeige kann es zu der Fehlermeldung "Width and Height must be >0" kommen. Ursache ist eine inkompatible Einstellung der Bildschirmanzeige.

HINWEIS

Bei Windows XP beträgt die erforderliche DPI-Einstellung 96 DPI. Bei Windows 7 ist die Anzeige auf "Kleiner - 100% (Standard)" einzustellen.

Die Einstellung kann wie folgt angepasst werden.

Passen Sie die Anzeige für Windows XP an, indem Sie unter Eigenschaften -> Anzeige -> Einstellungen -> Erweitert -> Anzeige -> DPI-Einstellung den Wert "96 DPI" wählen.

Für Windows 7 nehmen Sie die Anpassung der Anzeige über Systemsteuerung -> Anzeige vor, indem Sie die Anzeige auf "Kleiner - 100% (Standard)" einstellen.

Leuze electronic GmbH + Co. KG

ĭ

Je nach Systemkonfiguration kann es jetzt zu nebenstehender Fehlermeldung kommen.

Ursache für die Fehlermeldung ist ein Bug in der MCR-Installationsroutine, der auf manchen Systemen die Umgebungsvariable Pfad nicht korrekt setzt.

Das können Sie aber leicht ohne Neuinstallation der MCR korrigieren.

- Öffnen Sie das Fenster Systemeigenschaften, das Sie in der Systemsteuerung von Windows unter System finden.
- Gehen Sie dort zur Registerkarte Erweitert und klicken Sie auf Umgebungsvariablen.

Das Fenster Umgebungsvariablen öffnet sich.

Scrollen Sie dort im Bereich Systemvariablen nach unten bis Sie den Eintrag Path finden.

 $\ensuremath{^{\textcircled{\sc black}}}$ Klicken Sie Path an und anschließend auf <code>Bearbeiten</code>

Das Fenster Systemvariable bearbeiten öffnet sich.

Dort muss sich im Feld Wert der Variablen ganz am Ende der Eintrag ;C:\Programme\MATLAB\MATLAB Compiler Runtime\v79\runtime\win32 befinden.

- Fehlt dieser Eintrag, dann kopieren Sie den Eintrag aus diesem Dokument und fügen ihn zusammen mit dem vorangestellten Semikolon ein.
- banach klicken Sie auf OK und beenden auch alle weiteren Fenster mit OK.
- Sehren Sie Windows herunter, starten Sie Windows neu und starten Sie dann **LRSsoft** per Doppelklick.

Jetzt erscheint der Startbildschirm von LRSsoft, wie in Kapitel 9.3 beschrieben.

9.2.2 Aktualisierung der Geräteliste

Zum Zeitpunkt des Kaufs eines neuen Sensors entspricht die LPS/LES/LRS Software dem Stand der Technik. Haben Sie die Software von früheren Geräten schon im Einsatz und beziehen nun eine andere Type aus der LxS Serie, so könnte es sein, dass die installierte Software das aktuelle Gerät noch nicht kennt.

Die Software signalisiert dies mit dem folgenden Hinweis:

Sie haben allerdings die Möglichkeit eine Geräteliste zu installieren, um neue Gerätevarianten in die Software zu implementieren. Diese können Sie unter **www.leuze.com** im Downloadbereich ihres Geräts unter "Geräteliste" herunterladen.

Installieren Sie diese und starten Sie die Software neu. Danach wird der bis dato unbekannte Sensor erkannt.

HINWEIS

Sollte die Software nach der Aktualisierung der Geräteliste weiterhin diese oder eine ähnliche Warnung ausgeben, so ist davon auszugehen, dass die vorliegende Software nicht mehr aktuell ist. Eine neue Firmwareversion liegt im Internet bereit. Bitte laden Sie diese herunter, installieren diese und starten Sie das Programm erneut.

ок

Leuze

9.3 Start von LRSsoft/Reiter Communication

⅍ Starten Sie LRSsoft über den entsprechenden Eintrag im Windows-Startmenü.
 Es erscheint folgender Bildschirm:

ALR5soft 1.2c	
File Configuration Recording ?	
Communication Parameters Visualization	
180.0	Ethernet Profibus
	- IP Configuration
260.0	Client / PC
340.0	P Address: 192.160.60.3 Port: 5634
	Subnet Mask: 255.255.0
420.0	Port: S008
Ema	
R 500.0	Accept Check Connectivity Use Presets
580.0	
i i i i i i i i i i i i i i i i i i i	
660.0	1
740.0	
8200 2400 1500 800 00 800 1500 2400 2	
Xinmm	
Sensor status: Ottime Active Inspection Task: Profile Number: Encoder Valu	ie:

Bild 9.1: Startbildschirm LRSsoft

Geben Sie im Bereich IP-Configuration die Einstellungen des LRS 36 ein und klicken Sie auf Accept.

Diese Daten haben Sie bereits in Kapitel 8.2 ermittelt.

Sklicken Sie auf Check Connectivity, um die Verbindung zum LRS 36 zu testen.

Wenn folgende Meldung erscheint, ist die Ethernet-Verbindung zum LRS 36 korrekt konfiguriert: The connection attempt to sensor ... was successful.

Connectivity check to 192.166.60.5:9008	
The connection attempt to sensor with identifier 83288-24 was succe	essful
OK	

Klicken Sie auf den Button Connect to sensor:

Daraufhin stellt **LRSsoft** eine Verbindung her und zeigt das momentan gemessene 2D-Profil an. In der Statuszeile unten links steht jetzt statt einem rot hinterlegten Offline ein grün hinterlegtes Online.

Sensor status: Online Active Inspection Task: O Profile Number: 10633

HINWEIS
In der Statuszeile werden folgende Zusatzinformationen dargestellt:
 Verbindungsstatus des Sensors (Sensor status)
 Nummer der aktiven Inspektionsaufgabe (Active Inspection Task)
Scannummer (Profile Number)
 Encoderwert abhängig von Sensortype (Encoder Value)
angeschlossene Sensortype (Sensor Type)
 Status Analogausgang (Analog output)

HINWEIS

Wenn LRSsoft eine Verbindung zum LRS 36 hergestellt hat, blinkt der Laserstrahl.

PROFIBUS Einstellungen (nur LRS 36/PB)

Bei PROFIBUS Geräten können Sie im Register PROFIBUS die Slave-Adresse und die Baudrate einstellen.

1

Bild 9.2: PROFIBUS Einstellungen

Automatische Erkennung der Baudrate/Automatische Adressvergabe

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate und die automatische Adressvergabe über den PROFIBUS.

Die Adresse des PROFIBUS-Teilnehmers kann automatisch vom Inbetriebnahme-Tool der PROFIBUS-Anlage (ein PROFIBUS-Master der Klasse 2) erfolgen. Dazu muss die Slave-Adresse auf den Wert **126** im Sensor eingestellt sein (Werkseinstellung). Dies erfolgt durch LRSsoft oder über das Display.

Der Inbetriebnahme-Master prüft, ob ein Slave die Adresse **126** hat und weist diesem dann eine Slave-Adresse kleiner 126 zu. Diese Adresse wird im Teilnehmer permanent gespeichert. Die geänderte Adresse kann dann über das Display oder LRSsoft abgefragt (und ggf. auch wieder geändert) werden. Einstellbare Baudraten sind:

- · Automatisch
- 9,6kBaud
- 19,2kBaud
- 45,45kBaud
- 93,75kBaud
- 187,5kBaud
- 500kBaud
- 1,5MBaud6MBaud

3MBaud

ĭ

HINWEIS

Nach Ändern der Slave-Adresse über das Display oder LRSsoft muss ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen. Damit die gemachten Einstellungen wirksam werden, müssen sie in Sensor übertragen werden!

9.4 Parametereinstellungen/Reiter Parameters

♥ Klicken Sie auf den Reiter Parameters, um zu den Parametereinstellungen zu gelangen:

munication Parameters	isuaization			
80.0 r			Standard Encoder	
			Analysis Functions	
50.0			1	
10.0			Edit Analysis Windows	Edit Logical Combinations
			Single Shot Mode	
0.0				Page and Management
0.0			Activate Single Shot Mode	inclucer weakly even.
			Global Parameters	
0.0				
			Enable External Inspection Task Selection	n
		1	Measure Profile Postprocessing	
40.0				
			Apply Median Filter on Measure Profiles	
320.0 240.0 160.0	80.0 0.0 -80.0 -1	60.0 -240.0 -320.0		
	Xinmm			
sk Parameters				
ispection Task Selection	Ciperation Mode	- Ingger Output Mode	Light Exposure	Field of View [amensions in mm]
0:Task 0 🔄	Free Running	Disable	C Bright Objects (S	7µs) Minimum X Value: -300
	C Input Triggered	Clasealing	C Normal (28	1µs) Maximum X Value: 300
Nome:	- Activation		C Hah Construct Sames	Minimum Z Value: 190
Task 0	C Repard Act Sources		Manual Setting	Maximum Z Value: 810
Accept 1	(C Dimensional (Bharman co)		<u> 1</u> 1	164
(2000-10	 Disregiard (Annalys (ki)) 		Exposure Time (us)	Apply Settings

Bild 9.3: Parametereinstellungen LRSsoft

Hier stellen Sie zuerst im Bereich Task Parameters die zum Betrieb des LRS 36 benötigten Werte ein. Anschließend definieren Sie im Bereich Analysis Functions Auswertefenster und deren logische Verknüpfung für Ihre Inspektionsaufgabe. Diese Einstellungen speichern Sie schließlich mit Apply Settings bzw. Transmit to Sensor als Inspection Task ab.

9.4.1 Bereich Task Parameters

i

Inspection Task Selection

Im Bereich Inspection Task Selection können Sie Inspektionsaufgaben auswählen.

HINWEIS

Standardmäßig hat die Umschaltung der Inspektionsaufgabe über den PROFIBUS Master (SPS) Priorität gegenüber LRSsoft. Die **Auswahl** der Inspektionsaufgabe mit LRSsoft ist in diesem Feld nur möglich, wenn unter Global Parameters **kein** Häkchen vor Enable External Inspection Task Selection steht. Ansonsten ist die Auswahl der Inspektionsaufgabe ausschließlich über die Prozessschnittstelle möglich.

Durch das Entfernen des Häkchens in der Checkbox Enable External Inspection Task Selection wird also verhindert, dass über die Prozessschnittstelle die Inspektionsaufgabe umgestellt wird, während eine Parametrierung stattfindet. Nach der Parametrierung mit LRSsoft und vor der Übertragung der Einstellungen an den Sensor ('Transmit to Sensor'), muss die Checkbox Enable External Inspection Taks Selection wieder aktiviert werden. Nur dann lassen sich Inspektionsaufgaben über die Prozessschnittstelle auswählen.

Im oberen Drop-Down-Menü Inspection Task Selection können Sie eine der 16 möglichen Inspektionsaufgaben auswählen. Nach Auswahl der Inspektionsaufgabe werden die zugehörigen Parameter geladen und dargestellt. Diese Parameter können Sie verändern und die veränderten Parameter unter gleichem Namen wieder abspeichern.

Im Feld Name können Sie der oben ausgewählten Inspektionsaufgabe einen aussagekräftigen Namen geben (max. 12 Zeichen), den Sie mit Klick auf Accept abspeichern.

Beim Speichern mit der Schaltfläche Apply Settings wird **die aktuell angezeigte** Inspektionsaufgabe temporär im Sensor gespeichert. Beim Ausschalten gehen die Daten/Einstellungen verloren.

Beim Speichern mit dem Menübefehl Configuration -> Transmit to Sensor werden alle angelegten Inspektionsaufgaben zum Sensor übertragen und dort permanent gespeichert.

HINWEIS

Wurde eine Inspektionsaufgabe verändert, sollte die permanente Speicherung im Sensor mit Configuration -> Transmit to Sensor erfolgen.

Die typische Vorgehensweise zum Anlegen und Abspeichern von Inspektionsaufgaben ist in Kapitel 9.7, "Definition von Inspektionsaufgaben" auf Seite 64 beschrieben.

Operation Mode

ĭ

Unter Operation Mode können Sie mit Free Running einstellen, dass der LRS 36 Messdaten kontinuierlich erfasst und ausgibt (Werkseinstellung). Mit Input Triggered erfasst der LRS 36 Messdaten nur, wenn eine steigende Flanke am Triggereingang anliegt oder der Befehl "Ethernet Trigger" (Kapitel 10.3.4) oder der PROFIBUS Trigger (Kapitel 11.5) verwendet wird. Nähere Informationen dazu finden Sie in Kapitel 4.2.3.

Activation

Unter Activation bewirkt die Einstellung Regard, dass der Laser entsprechend des Pegels am Aktivierungseingang oder über PROFIBUS ein- und ausgeschaltet wird. Nähere Informationen dazu finden Sie in Kapitel 4.2.2.

Bei der Einstellung Disregard bleibt der Laser immer eingeschaltet, unabhängig vom Pegel am Aktivierungseingang oder der PROFIBUS-Aktivierung (Werkseinstellung).

Trigger Output Mode

Unter Trigger Output Mode können Sie mit Cascading den Kaskadierungsausgang aktivieren. Nähere Informationen dazu finden Sie in Kapitel 4.2.4. Bei Einstellung auf Disable wird der Kaskadierungsausgang nicht gesetzt (Werkseinstellung).

Light Exposure

Unter Light Exposure können Sie die Belichtungsdauer des Lasers bei der Messwerterfassung steuern und an die Reflexionseigenschaften der zu erkennenden Objekte anpassen.

Wählen Sie eine Belichtungeinstellung, die eine durchgezogene Linie um die Objektkontur herum anzeigt. Versuchen Sie dann einen möglichst kontinuierlichen Linienverlauf auf ebener Fläche zu erzielen.

Field of View

Unter Field of View können Sie den Erfassungsbereich des LRS 36 einschränken. Das Gleiche geschieht, wenn man den blau eingerahmten Erfassungsbereich an den quadratischen Anfassern mit der Maus anklickt und zieht.

Werkseinstellung für Field of View:

	LRS 36
Min X	-300
Max X	300
Min Y	190
Max Y	810

Durch die Einschränkung auf den notwendigen Erfassungsbereich können Fremdlicht oder unerwünschte Reflexionen ausgeblendet werden.

Apply Settings

Der Button Apply Settings überträgt die Einstellungen der aktuellen Inspektionsaufgabe temporär zum Sensor. Beim Ausschalten gehen die Daten/Einstellungen verloren.

Wurde eine Inspektionsaufgabe verändert, sollte die permanente Speicherung im Sensor mit Configuration -> Transmit to Sensor erfolgen.

9.4.2 Bereich Analysis Functions

Edit Logical Combinations

Nach Klick auf den Button Edit Logical Combinations erscheint folgendes Fenster:

Current Status	Analysis Window	Active	Minimum X	Maximum X	Minimum Z	Maximum Z	Current Hits	Hits On	Hits Off		
•	AW01	~	42 300		200	422		20	10		
•	AW02		200	300	200	300		20	10		
•	AW03		200	300	200	300		20	10		
•	AW04		200	300	200	300		20	10		
•	AW05		200	300	200	300		20	10		
•	AW06		200	300	200	300		20	10		
•	AW07		200	300	200	300		20	10		
•	AW08		200	300	200	300		20	10		
•	AW09		200	300	200	300		20	10		
•	AW10		200	300	200	300		20	10		
•	AW11		200	300	200	300		20	10		
•	AW12		200	300	200	300		20	10		
•	AW13		200	300	200	300		20	10		
•	AW14		200	300	200	300		20	10		
•	AW15		200	300	200	300		20	10		
•	AW16		200	300	200	300		20	10		
				: Analysis V	Vindow Re	tangle)—			_	
			Takes o	ver rectand	ale dimensi	ons to the t	able.				

Bild 9.4: Fenster "Analysis Window Definitions"

ŀ	ł		N	W	/E	I	S		
•		_	_	Ŀ	×		-1	_	

Nach Ändern des Erfassungsbereichs durch Ziehen des schwarzen Rahmens mit der Maus müssen Sie den **Button Accept Analysis Window Rectangle klicken**, damit die Werte übernommen werden.

Klicken Sie irgendwo anders im Fenster Analysis Window Definitions, werden die Werte vor dem Ändern des Erfassungsbereichs per Maus wieder hergestellt.

Leuze

Nach Klick auf das Ankreuzfeld Active in einer der 16 Zeilen AW01 bis AW16 erscheint links in der Darstellung des Erfassungsbereichs ein schwarzer Rahmen mit Anfassern:

Bild 9.5: Definition von Auswertefenstern (AW)

Mit der Maus

Sie können die Größe und Position des Auswertefensters an den Anfassern durch Klicken und Ziehen mit der Maus verändern.

HINWEIS

Wenn Sie Größe und/oder Position mit der Maus an den Anfassern verändern, dann wird die Schrift auf dem Button Accept Analysis Window Rectangle schwarz und Sie müssen den Button anklicken, um die Werte zu übernehmen.

Direkte Eingabe

ĭ

Alternativ können Sie die gewünschten Positionswerte direkt in den Spalten Minimum/Maximum X/Z eingeben.

In der Spalte Current Hits zeigt LRSsoft an, wie viele Objektpunkte im Auswertefenster erkannt werden.

HINWEIS

Die aktuellen Einstellungen zu Erfassungsbereich und Auswertefenstern müssen erst mit Apply Settings zum Sensor übertragen werden. Danach zeigt die Spalte Current Hits Werte an.

In der Spalte Hits On legen Sie fest wie viele Objektpunkte erkannt werden müssen, damit das Auswerteergebnis für das jeweilige AW "1" ist, bzw. in der Spalte Current Status eine grüne LED angezeigt wird.

Die LED bleibt so lange grün, bis die Anzahl der erkannten Objektpunkte kleiner oder gleich dem Wert ist, den Sie in der Spalte Hits Off einstellen.

Mit den Einträgen in Hits On und Hits off können Sie also eine Schalthysterese einstellen, um so bei zulässigen Veränderungen der Objektposition oder anderer physikalischer Größen keine (unerwünschte) Veränderung des Schaltzustands zu erhalten.

In Bild 9.5 wurden insgesamt drei Auswertebereiche definiert. Erkannt werden sollen Objekte gleicher Breite aber unterschiedlicher Höhe, sowie die Position der Objekte im Erfassungsbereich:

- AW01 erkennt, dass mindestens 2 Objekte der vorgegebenen Breite vorhanden sind
- · AW02 erkennt, dass mindestens 1 hohes Objekt vorhanden ist
- · AW03 erkennt, dass rechts ein hohes Objekt vorhanden ist
- · AW04 erkennt, dass links ein niedriges Objekt vorhanden ist

Durch logische Verknüpfung der Auswerteergebnisse dieser 4 AWs kann man im Bereich Analysis Window Combination Tables das Schaltverhalten der Ausgänge Out1 bis Out4 und die PROFIBUS -Prozessdaten einstellen.

Edit Logical Combinations

Nach Klick auf den Button Edit Logical Combinations erscheint folgendes Fenster:

	1313			Louin		ubic			_										22
	οι	Л1				οι	JT2				0013					01	JT4		
Parame	ter	s	ettin		Parameter Setting				Parameter Setting					Parame	ter	S	etting		
Active			7	_	Active	-		5	_	Active		<u> </u>			Active	_	2		
Ana. Dep	oth		1		Ana. Dep	th		1		Ana. Dep	oth	1			Ana. Depth		1		
Negation					Negation					Negation	1				Negation	1			
Result Fu	unc.	lo	ogical		Result Func.		k	ogical		Result Fu	unc.	- le	ogica		Result Fu	unc.	k	ogical	
Sum Hits	On		20		Sum Hits	On		20		Sum Hits	On		20		Sum Hits	On		20	
Sum Hits	Off		10		Sum Hits	Off		10		Sum Hits	Off		10		Sum Hits	Off		10	
OR	0	0	0	0	OR	0	0 0 0			OR	0	0	0	0	OR	0	0	0	0
AW	1 &	8	8.	8	AW	8	8	8	8	AW	1 &	8	8	8	AW	8	8	8	8
AW01	+		_	_	AW01					AW01	-	-			AW01				-
AW02					AW02	+				AW02					AW02				
AW03					AW03					AW03	+				AW03				
AW04					AW04					AW04					AW04	+			
AW05					AW05					AW05					AW05				
AW06					AW06					AW06					AW06				
AW07					AW07					AW07					AW07				
AW08					AW08					AW08					AW08				
AW09					AW09					AW09					AW09				
AW10					AW10					AW10					AW10				
AW11					AW11					AW11					AW11				
AW12					AW12					AW12					AW12				
AW13					AW13					AW13					AW13				
AW14					AW14					AW14					AW14				
AW15					AW15					AW15					AW15				
AW16					AW16					AW16					AW16				

Bild 9.6: Fenster "Analysis Window Combination Tables"

Parameter im Fenster Analy	vsis Window	Combination	Tables:
----------------------------	-------------	-------------	---------

Parameter	Beschreibung	Wertebereich
Out1 - Out4	Schaltausgang 1-4 bzw. bei PROFIBUS: Zustand der Sensorausgänge uSensorInfo (Byte 2)	Grün = Aktiv = 1 / Rot = Inaktiv = 0
Active	Aktivierung des Schaltausgangs	On/Off
Ana. Depth	Auswertetiefe ¹⁾ , d.h. Anzahl der aufeinanderfolgenden Auswertungen mit glei- chem Ergebnis, die für ein Umschalten des Schaltausgangs erforderlich ist	1 255
Negation	Negation des Ergebnisses der Zeile OR	On/Off
Result Func.	Auswahlmenü: "logical" = logische Verknüpfung der Auswerteergebnisse (UND-Verknüpfung der Spalten 1 4 und anschließende ODER-Verknüpfung der Ergebnisse der 4 UND- Verknüpfungen) "sum" = Summenbildung der Objektpunkte der mit "+" gekennzeichneten AWs in der ersten &-Spalte mit anschließender HitsOn/HitsOff Auswertung (Verwendung bei Teach Funktionen). Mit "-" gekennzeichnete AWs und die Einträge der Spalten 2 4 werden bei der Summenbildung nicht berücksichtigt.	'logical' / 'sum'
HitsOn	Teach Parameter Objektgröße (nur bei Result Func. = "sum"). Ist die Summe der Objektpunkte aller mit "+" gekennzeichneten AWs größer gleich dem Wert von HitsOn, wird der Ausgang aktiv.	1 376 (10/20/40 ²⁾)
HitsOff	Teach Parameter Objektgröße (nur bei Result Func. = "sum"). Ist die Summe der Objektpunkte aller mit "+" gekennzeichneten AWs kleiner gleich dem Wert von HitsOff, wird der Ausgang inaktiv.	0 375 (6/12/24 ²⁾)
Zeile OR	Ergebnisse der Spalten &. Diese Ergebnisse werden bei "Result Func." = "logical" ODER-verknüpft und ergeben dann entsprechend der Einstellungen für Active, Anal. Depth und Negation den Zustand des Schaltausgangs	Grün = 1 / Rot = 0
Spalte &	"Result Func." = "logical": Logische UND-Verknüpfung der Ergebnisse der gewählten AWs "Result Func." = "sum": Die Anzahl der Objektpunkte aller mit "+" gekennzeichneten AWs in der ersten &-Spalte wird aufsummiert.	
AW01 - AW16	Angabe ob das Ergebnis des AW bei der &-Verknüpfung bzw. Summenbildung berücksichtigt wird ("+"), ob es negiert berücksichtigt wird ("-") oder ob das Fenster nicht berücksichtigt wird (" ")	'+'/'-'/' '

Tabelle 9.1: Parametereinstellungen zur Ansteuerung der Schaltausgänge

1) Hinweis zu Auswertetiefe:

Durch die Wahl eines großen Wertes für die Auswertetiefe verfügt der LRS 36 über ein sicheres Schaltverhalten, die Ansprechzeit des Sensors erhöht sich entsprechend (Beispiel: Auswertetiefe = 3 -> 3 Triggerungen zur Auswertung erforderlich). Störsignale einzelner Scans werden unterdrückt. Wird eine Auswertetiefe von "1" (Werkeinstellung ab Firmware Version 01.25) gewählt, so erfolgt die Auswertung bei jeder Triggerung.

2) Voreinstellung des Teach Parameters "Sensitivity".

Auswertung bei "Result Func." = "logical"

Im Fenster von Bild 9.7 legen Sie logische Verknüpfungen der Auswerteergebnisse einzelner AWs fest:

Pro Ausgang (Out1 bis Out4) legen Sie zuerst in der ersten &-Spalte fest, welche AWs Sie UND-verknüpfen wollen. Das Ergebnis dieser Verknüpfung wird über der betreffenden Spalte in der Zeile OR als 1 oder 0 angezeigt. Ggf. definieren Sie weitere UND-Verknüpfungen in den weiteren &-Spalten.

Sie können in den 4 Spalten pro Ausgang also bis zu vier unterschiedliche UND-Verknüpfungen einzelner Ausgänge definieren.

Die Ergebnisse dieser 4 Spalten werden automatisch ODER-verknüpft.

D. h. der Ausgang schaltet, wenn eine der 4 UND-Verknüpfungen eine 1 als Ergebnis hat.

Parametriersoftware LRSsoft

Ein Beispiel:

Bild 9.7: Definition von logischen Verknüpfungen mehrerer AWs

Im obigen Beispiel sind die AW-Definitionen von Bild 9.5 gültig.

Das bedeutet dann mit der gezeigten Einstellung für die Schaltausgänge:

- OUT1 ist aktiv (=1)
 - wenn ein Objekt in AW01 vorhanden ist (AW01+) UND wenn kein Objekt in AW02 vorhanden ist (AW02-)
 - ODERwenn ein Objekt in AW03 vorhanden ist (AW03+).
- OUT2 ist nicht aktiv (=0, weil das Häkchen Negation gesetzt ist)
 - wenn kein Objekt in AW01 vorhanden ist (AW01-) UND wenn ein Objekt in AW02 vorhanden ist (AW02+)
 - ODER
 - wenn ein Objekt in AW04 vorhanden ist (AW04+).
- OUT3 ist aktiv (=1)
 - wenn ein Objekt in AW03 vorhanden ist (AW03+) **UND** wenn ein Objekt in AW04 vorhanden ist (AW04+).
- OUT4 ist aktiv (=1)
 - wenn ein Objekt in AW03 vorhanden ist (AW03+) UND wenn kein Objekt in AW04 vorhanden ist (AW04-).

Durch logische Verknüpfungen können also, wie in Bild 9.7 gezeigt, unterschiedliche Erkennungsaufgaben definiert werden.

Das Gut/Schlecht-Ergebnis der logischen Spaltenverknüpfungen wird in Zeile **OR** farblich dargestellt. Im dargestellten Beispiel ist bei **OUT1** die **Spalte 2 grün**, da ein Objekt in AW03 vorhanden ist.

Da die Spalten von OUT1 mit ODER verknüpft sind, ist OUT1 aktiv und wird grün dargestellt.

Die Auswertetiefe **Ana. Depth** ist auf **1** eingestellt. Das bedeutet, dass bei jeder Triggerung eine Auswertung für die Schaltausgänge erfolgt.

Auswertung bei "Result Func." = "sum"

In der Einstellung "Result Func." = "sum" wird die logische Verknüpfung der Auswerteergebnisse einzelner AWs deaktiviert. Statt dessen erfolgt eine Summenbildung aller Objektpunkte der AWs, die **in der ersten &-Spalte** mit "+" gekennzeichnet sind.

HINWEIS

Mit "-" oder " " gekennzeichnete AWs werden in die Summenbildung **nicht** mit einbezogen. Die &-Spalten 2 ... 4 werden ebenfalls bei der Summenbildung **nicht** berücksichtigt.

i

Im Anschluss an die Summenbildung erfolgt die Auswertung der Summe der Objektpunkte anhand der Parameter Sum Hits On und Sum Hits Off zur Steuerung des Schaltausgänge:

- Summe der Objektpunkte größer gleich Sum Hits On -> Ausgang ist aktiv (=1)
- Summe der Objektpunkte kleiner gleich Sum Hits Off -> Ausgang ist inaktiv (=0)

Mit den Einträgen in Sum Hits On und Sum Hits Off können Sie also gleichzeitig eine Schalthysterese einstellen, um keine (unerwünschte) Veränderung des Schaltzustands zu erhalten.

Anwendung findet diese Art der Auswertung bei der Teach-Funktion "Hintergrundausblendung" (siehe "Teach "Hintergrundausblendung" (Area Scan Advanced)" auf Seite 23).

9.4.3 Bereich Single Shot Mode

Im Single Shot Mode führt der Sensor nur jeweils nach Klick auf die Schaltfläche Request Measurement eine einzelne Auswertung durch und stellt das Ergebnis in LRSsoft so lange dar, bis Request Measurement erneut geklickt wird.

9.4.4 Bereich Global Parameters

Unter Global Parameters können Sie mit Enable External Inspection Task Selection einstellen, ob die Auswahl der Inspektionsaufgaben 0-7 über die Eingänge InSel1-InSel3 bzw. über PROFIBUS möglich ist oder nicht.

Über PROFIBUS können die Inspektionsaufgaben 0-15 ausgewählt werden.

HINWEIS

i

Ist das Häkchen vor Enable External Inspection Task Selection gesetzt, ist die Auswahl der Inspektionsaufgabe nur über die Eingänge oder über PROFIBUS möglich. Das Drop-Down-Menü unter Inspection Task Selection hat dann keine Funktion.

9.5 Erkennungsfunktion/Reiter Visualisierung

Klicken Sie auf den Reiter Visualization um sich den zeitlichen Verlauf der Zustände von AWs und Schaltausgängen bzw. der Zustände der Sensorausgänge uSensorInfo (Byte 2) beim PROFIBUS Gerät anzeigen zu lassen:

Bild 9.8: Visualisierung LRSsoft

9.5.1 Gespeicherte Erkennungsdaten auswerten

Um Erkennungsdaten auszuwerten, können Sie, wie in Kapitel 9.6.3 beschrieben, Erkennungsdaten aufzeichnen, speichern und wieder öffnen. Ein gespeicherter Erkennungsdatensatz lässt sich mit LRSsoft über das Menü Recording -> Archive -> Open Record öffnen.

	HINWEIS
1	Nach Öffnen eines Erkennungsdatensatzes sollten Sie die aktuelle Parametereinstellung des LRS übertragen (siehe Kapitel 9.6.2), so dass bei Hits On und Hits Off die aktuellen Sensorparametrierung angezeigt wird.

Leuze

Parametriersoftware LRSsoft

Standardmäßig laufen die Erkennungsdaten im Reiter Visualization kontinuierlich durch. Um diese kontinuierliche Anzeige anzuhalten und einzelne Datensätze untersuchen zu können, müssen Sie auf den Pfeil in der Werkzeugleiste klicken.

Zur Auswertung dienen die Schieberegler im Bereich Replay Control.

Spooling ermöglicht eine schnelle Verschiebung des angezeigten Ausschnitts von 100 Einzelergebnissen über alle Daten des Erkennungsdatensatzes (der durchaus mehrere hundert Einzelergebnisse umfassen kann) hinweg.

Dabei zeigt der Wert in First Status die wievielte Messung bei 0 angezeigt wird und der Wert in Last Status die wievielte Messung bei 100 angezeigt wird.

Mit dem Schieberegler Status Selection stellen Sie ein, welcher der dargestellten Einzeldatensätze im rechten Fensterbereich bei den Einzelergebnissen der AWs und Schaltausgänge bzw. der Zustände der Sensorausgänge uSensorInfo (Byte 2) beim PROFIBUS Gerät angezeigt wird. Die zugehörige Datensatznummer wird unter Profile No. angezeigt. Die Option Show Plane markiert diesen Einzeldatensatz mit einer durchgezogenen schwarzen Linie.

9.6 Menübefehle

9.6.1 Parametereinstellungen speichern/Menü File

Das Menü File dient zum Speichern von Parameterdaten auf dem PC. Damit lassen sich Einstellungen für verschiedene Erkennungsaufgaben im Rahmen der Inbetriebnahme festlegen und auf Datenträger als Parameterdateien abspeichern. Im Betrieb wird der LRS 36 über **Inspection Tasks** umparametriert. Eine auf einem Datenträger gespeicherte Parameterdatei kann man nur mit der Parametriersoftware LRSsoft verwenden!

File	Configuration	Recordir	ng ?		
N	ew		9	ш 🕨	
0	pen		ers	Visualization	
Sa	ave	Strg+S			-
Sa	ave As		···•	<u> </u>	3
Sa	ave As Default				
E	kport	Þ	Pro	ofile View	ŀ
C	ose		AW	/ States View	
3	340.0 <u>F</u>	·· · ·····	Ou	tput States View	ŀ

- New erzeugt eine neue Parameterdatei.
- Open öffnet eine Parameterdatei vom Datenträger.
- Save speichert die geöffnete Parameterdatei mit gleichem Namen.
- Save as speichert die geöffnete Parameterdatei unter anderem Namen.
- Save as default speichert die geöffnete Parametrierung als Grundeinstellung ab, die immer geladen wird, wenn man LRSsoft öffnet

Weiterhin bietet das Menü File die Möglichkeit folgende Ansichten auf Datenträger zu exportieren (mögliche Formate: *.png, *.jpg, *.bmp, *.tif):

- Profile View: die aktuelle Ansicht als 2D-Ansicht
- AW States View: zeitlicher Verlauf des Zustands aller 16 AWs
- Output States View: zeitlicher Verlauf des Zustands der 4 Schaltausgänge bzw. der Zustände der Sensorausgänge uSensorInfo (Byte 2) beim PROFIBUS Gerät

9.6.2 Parametereinstellungen übertragen/Menü Configuration

Das Menü Configuration dient zum Austausch von Parameterdaten mit dem angeschlossenen LRS 36.

- Load from Sensor lädt alle Parametereinstellungen für alle definierten Inspektionsaufgaben aus dem LRS 36 und zeigt sie in der Software an.
- Transmit to Sensor speichert alle Parametereinstellungen aller definierten Inspektionsaufgaben aus der Parametriersoftware permanent im LRS 36.
- Reset to factory settings setzt den LRS 36 auf Werkseinstellungen zurück.

ш 🕨

Open Record

File Configuration Recording

🗂 🛃 🖉 🔍

Communication

New...

Archive 🕨

9.6.3 Erkennungsdaten verwalten/Menü Measure Records

Unter Erkennungsdaten verstehen wir hier die Ergebnisse einzelner Auswertefenster und die Zustände der Schaltausgänge.

Das Menü Recording dient zum Verwalten von Erkennungsdaten auf dem PC im Format *.csv.

- New... erzeugt einen neuen Erkennungsdatensatz. Nach einem Abfragedialog zum Dateinamen erscheint ein Dialog, in den Sie eingeben müssen, wie viele Einzelscans (2D-Profile) in der Datei abgespeichert werden sollen.
- Archive -> Open Record öffnet einen gespeicherten Erkennungsdatensatz.
- Archive -> Close record schließt den geöffneten Erkennungsdatensatz.

9.6.4 Zoom und Pan/Werkzeugleiste

Die Buttons Zoom in / Zoom out und Pan der Werkzeugleiste ermöglichen es, einzelne Bereiche der Ansicht zu vergrößern und so visuell besser auswerten zu können:

Bereich vergrößern:

- 1. Zoom in wählen
- 2. In die Ansicht klicken
- 3. Pan wählen
- 4. Zu untersuchenden Bereich in Bildschirmmitte verschieben
- No oft wiederholen bis gewünschte Ansicht erreicht
- Die Originalgröße kann mit Reset plots to initial settings wiederhergestellt werden.

Bild 9.9: Zoom-Funktion

Nach Aktivieren der Vergrößerungslupe vergrößert jeder Klick in die Ansicht den dargestellten Ausschnitt. Der vergrößerte Ausschnitt kann dann mit aktivierter Hand-Funktion verschoben werden, um den interessierenden Bereich anzuzeigen.

HINWEIS

ĭ

Das Zoomen mittels Klicken und Ziehen, wie es von anderen Programmen her bekannt ist, funktioniert hier nicht.

Vor der weiteren Bedienung der LPSsoft müssen die Werzeugbuttons (Zoom, Pan, ...) deaktiviert werden.

9.7 Definition von Inspektionsaufgaben

Typisches Vorgehen

1. LRSsoft starten und mit Sensor verbinden: Klicken Sie auf den Button Connect to sensor: [☎ 🛃 🖉 🔍 🥄 🖑

Parametriersoftware LRSsoft

- 2. Parametrierung mit Load from Sensor vom Sensor holen, oder mit Open von Datenträger laden.
- 3. Häkchen vor Enable Selection Inputs entfernen.
- 4. Mit Inspection Task Selection die Inspektionsaufgabe auswählen, die verändert werden soll.
- 5. 2D-Ansicht des Erfassungsbereichs im Reiter Parameters anzeigen und ggf. vergrößern.
- 6. Benötigte (E)AWs mit Maus oder Tastatur im Fenster Analysis Windows Definitions (Schaltfläche Edit Analysis Windows) definieren, dabei die eingestellten (E)AWs jeweils mit Apply Settings bestätigen.
 - Innerhalb eines AWs werden die Bildpunkte des aktuellen 2D-Profils vom LRS 36 ermittelt (Current Hits).
 - Der Anwender parametriert dann für jedes AW eine obere und untere Grenze für die Hits (Hits On/Off) und damit eine Schalthysterese.
 - Nachfolgend ergibt sich ein Status ok oder not ok, was durch eine rote oder grüne Statusanzeige signalisiert wird.

HINWEIS

i

Die Anzahl der Current Hits korrespondiert nicht zwingend mit der Objektgröße, da die Anzahl der Hits abhängig von der Distanz **z** ist. Ein in x-Richtung ausgedehntes Objekt weist bei geringer Distanz zum Sensor (z. B. 300mm) fast doppelt so viele Hits wie bei größerer Distanz (z. B. 600mm) auf. Bei identischer Objektdistanz bleibt die Anzahl der Hits nahezu konstant.

- 7. Schaltinformationen für die Ausgänge Out1 bis Out 4 bzw. PROFIBUS Prozessdaten im Fenster Analysis Window Combination Tables (Schaltfläche Edit Logical Combinations) generieren:
 - Spaltenweise UND-Verknüpfung der Ergebnisse (ggf. invertiert) einzelner AWs
 - ODER-Verknüpfung in der Zeile **OR** von bis zu vier UND-Ergebnissen
 - Ggf. Invertierung des Ergebnisses der ODER-Verknüpfung (Häkchen bei Negation)
 - Eingabe der Auswertetiefe
- 8. Der Inspektionsaufgabe einen Namen zuweisen (Name) und mit Accept bestätigen.
- 9. Inspektionsaufgabe mit Apply Settings temporär übernehmen.
- 10. Ggf. weitere Inspektionsaufgaben mit den Schritten 5.-9. definieren.
- 11. Häkchen Enable Selection Inputs wieder setzen.
- 12. Parametrierung einschließlich aller Inspektionsaufgaben mit Transmit to Sensor permanent in den Sensor übertragen.
- 13. Ggf. Parametrierung mit Save As... auf Datenträger speichern.
- 14. Trennen Sie abschließend die Verbindung mit dem Sensor: Klicken Sie auf den Button Disconnect from sensor:

10 Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)

10.1 Allgemeines

Der LRS 36 kommuniziert mit der Prozess-Steuerung über UDP/IP mit dem in Kapitel 10.2 beschriebenen Protokoll. Das Protokoll arbeitet alternativ in 2 unterschiedlichen Modi:

- Erkennungsmodus
- Befehlsmodus (Command Mode)

Im Erkennungsmodus überträgt der LRS 36 das Auswertetelegramm. Dieses wird im "Free Running" Betrieb kontinuierlich übertragen - im getriggerten Betrieb einmal je Trigger.

Im Befehlsmodus reagiert der LRS 36 auf Befehle von der Steuerung. Die verfügbaren Befehle sind in Kapitel 10.3 beschrieben.

	HINWEIS
•	Sollten Sie eine Firewall verwenden, stellen Sie bitte sicher, dass die Steuerung über die Ethernet-Schnittstelle per UDP auf den Ports 9008 und 5634 mit dem LRS 36 kommunizieren kann (diese Ports sind ab Werk voreingestellt, können aber auch vom Benutzer verändert worden sein, siehe Kapitel 7.2 "Menübeschreibung"). Außerdem muss die Firewall ICMP-Echo-Nachrichten für den Verbindungstest (Ping) durchlassen.

Die Einbindung der PROFIBUS Gerätevariante LRS 36/PB in die Prozess-Steuerung über PROFIBUS ist im Kapitel 11 "Einbindung des LRS 36/PB in den PROFIBUS" auf Seite 79 beschrieben.

10.2 Protokollaufbau Ethernet

	HINWEIS
1	Die Reihenfolge, in der die einzelnen Bytes gespeichert werden, ist je nach Betriebssystem unterschiedlich. Die Befehle in Kapitel 10.3 und die Protokollbeschreibung sind im Format "Big- Endian" dargestellt, d.h. das High-Byte zuerst und das Low-Byte darauffolgend (0x hexadezimal).
	Windows-PCs (und manche Steuerungen wie z.B. die Siemens S7) speichern Daten im Format "Little-Endian", d.h. das Low-Byte zuerst und das High-Byte darauffolgend.
	Wenn in Ihrem Prozessumfeld der LRS 36 auf Befehle der Steuerung nicht reagiert, obwohl die Kommunikation mit LRSsoft einwandfrei funktioniert, dann sollten Sie pr üfen, ob es an der Byte-Order liegt.
	Beispiel: für den Befehl $0x434E$ (Connect to Sensor) muss ein Windows-PC $0x4E$ und $0x43$ senden, damit er vom LRS 36 verstanden wird. In der Transaktionsnummer der Antwort vom LRS 36 steht dann ebenfalls $0x4E43$ (Byte-Folge 0x43, 0x4E).
	Der LRS 36 sendet Daten als "Little-Endian", also erst das Low-Byte und dann das High-Byte.

Die möglichen Werte einzelner Bytes und deren Bedeutung sind weiter unten beschrieben.

Protokollaufbau

Das Protokoll setzt sich zusammen aus dem **Header** (30 Byte) gefolgt von den **Nutzdaten** (0 ... 53 Datenworte à 2 Byte). Das Protokoll wird sowohl im Befehlsmodus beim Senden von Befehlen, und bei den Befehlsquittungen des Sensors, als auch im Erkennungsmodus verwendet.

Header

Partseq. 1 Full zeichen Füll zeichen	Befehis-Nr.	Füllzeichen Paketnr.	0000x0 Füllzeichen	0000x0 Transaktions-Nr	0000x0 Status	Encoder H 0000x0	0000 Encoder L	0000x0 Füllzeichen	Scannr. 0000x0	<u>م</u> ۲ 0x0010	0000 Anzahl Sutzdatenworte
Länge 4 Byte, Werffrz- 0xFFFF 0xFFFF 0xFFFF 0xFFFF Länge 2 Byte, Merfix.	Länge 2 Byte, mögliche Werte: siehe Kapitel 10.3	Länge 2 Byte. Wert fix: 0x0000 Länge 2 Byte. Wertebereich: 0x00000KFFFF	Länge 2 Byte, Wert fix: 0x0000	Länge 2 Byte, Wertebereich: 0x00000xFFFF	Länge 2 Byte, Wertebereich: 0x00000xFEFF	Länge 4 Byte, Wertebereich:	OXFEFF FFFF')	Länge 2 Byte, Wert frx: 0x0000	Länge 2 Byte, Wertebereich: 0x00000xFFFF	Länge 2 Byte, Wert frx: 0x0010	Länge 2 Byte, mögliche Werte: 0x0000 / 0x0001 / 0x0002 / 0x0003 / 0x0178

1) Diese 4 Byte enthalten bei Sensorvarianten mit Encoder-Eingang den Encoder-Wert. Beim LRS 36 ist dieser Wert immer 0x0000 0000.

10.2.1 Befehlsnummer

Die Befehlsnummer spezifiziert den Befehl sowohl von der Steuerung an den Sensor wie auch vom Sensor an die Steuerung (siehe Kapitel 10.3).

Im **Erkennungsmodus** sendet der Sensor immer sein Auswertetelegramm mit der Befehlsnummer 0x5354.

10.2.2 Paketnummer

Die Paketnummer dient zu internen Service-Zwecken des Herstellers.

10.2.3 Transaktionsnummer

Im Erkennungsmodus steht hier 0x0000.

Im **Befehlsmodus** steht bei der Befehlsquittung des Sensors hier die Befehlsnummer des Befehls, auf den geantwortet wird.

10.2.4 Status

Gibt den Zustand des Sensors an. Der Zustand ist wie folgt kodiert:

MSI	3	I	ligh	-Byt	е	LS	SB	MSI	в	I	Low	Byte	e	L	SB	Bedeutung der Bits
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	Sensor nicht über Ethernet verbunden
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	Sensor über Ethernet verbunden
-	-	-	-	-	-	-	-	0	0	0	1	-	-	-	-	Erkennungsmodus
-	-	-	-	-	-	-	-	0	0	1	0	-	-	-	-	Menümodus
-	-	-	-	-	-	-	-	0	1	0	0	-	-	-	-	Befehlsmodus
-	-	-	-	-	-	-	-	1	0	0	0	-	-	-	-	Fehlermodus
-	-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	Sensor über Aktivierungsfunktion deaktiviert
-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	Sensor über Aktivierungsfunktion aktiviert
-	-	-	-	-	-	0		-	-	-	-	-	-	-	-	Keine Warnung
-	-	-	-	-	-	1		-	-	-	-	-	-	-	-	Warnung, Sensor kurzfristig gestört
-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	Messmode Free Running
-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	Messmode getriggert
-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	Kein Konfigurationsspeicher verbunden
-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	Konfigurationsspeicher verbunden
-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	Kein Fehler
-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	Fehler erkannt, Messdaten werden ggf. noch gesendet, danach geht Sensor in den Fehlermodus

Das LSB des High-Bytes steht immer auf 1 solange in LRSsoft der Parameter Activation Input auf Disregard (Always on) gesetzt wurde.

Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)

Steht der Parameter Activation Input auf Regard, dann entspricht der Zustand des Bits dem Zustand des Signals einer Aktivierungsquelle (Eingang, Ethernetaktivierung).

HINWEIS

Unabhängig vom gerade aktiven Modus geht der Sensor bei Tastenbetätigung am Display in den Menümodus und reagiert weder auf Befehle, noch sendet er Messdaten. Der Menümodus wird automatisch nach 3 Minuten beendet, wenn keine Tastenbetätigung erfolgt. Alternativ kann der Benutzer den Menümodus über den Menüpunkt Exit beenden.

10.2.5 Encoder High / Low

Der Encoder-Zähler ist bei Sensorvarianten mit Encoder-Eingang implementiert. Alle anderen Sensoren zeigen fest 0x00000000 an.

Die **4 Bytes** in **Encoder High** und **Encoder Low** geben für Lichtschnittsensoren mit Encoder-Schnittstelle den Encoderzählerstand an. Dabei ist der Maximalwert 0xFFFF FFFF.

10.2.6 Scannummer

Die **2 Bytes** der **Scannummer** geben die Nummer der einzelnen Messungen in zeitlicher Reihenfolge an. Nach jedem gemessenen Profil wird diese Nummer um 1 erhöht. Dabei ist der Maximalwert 0xFFFF. Danach kommt es zu einem Überlauf auf 0x0000. Die zu einer Messung gehörenden Z- und X-Daten werden über die gleiche Scannummer identifiziert.

10.2.7 Typ

Gibt an, wie die Erkennungsdaten zu interpretieren sind. Der Wert ist auf 0x0010 fest voreingestellt.

10.2.8 Anzahl Nutzdatenworte

Die Nutzdaten haben eine variable Länge von 0, 1, 2, 3 oder 53 Datenworten (0, 2, 4, 6 oder 106 Byte). Gibt die Anzahl der übertragenen Nutzdaten an. Der Wert ist im Erkennungsmodus auf 0x0059 fest voreingestellt.

10.2.9 Auswertetelegramm

Im Erkennungsmodus wird beim LRS 36 das Auswertetelegramm mit der Befehlsnummer 0x5354 übertragen. Nach dem Header kommen 53 Nutzdatenworte mit der folgenden Stuktur:

Byte	MSB		High-Byte				LS	LSB		MSB		Low-Byte			LSB		Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2	N1	Nummer der aktuellen Inspektionsaufgabe
3334	AW 16	AW 15	AW 14	AW 13	AW 12	AW 11	AW 10	AW 9	AW 8	AW 7	AW 6	AW 5	AW 4	AW 3	AW 2	AW 1	Ergebnisse der einzelnen Auswertefenster
3536	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 1
3738	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 2
3940	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 3
4142	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 4
4344	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 5
4546	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 6
4748	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 7
4950	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 8
5152	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 9
5354	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 10

Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)

Byte	MSE	3	ł	ligh	-Bvt	е	LS	SB	MSE	3	I	Low	Byte	е	LS	SB	Bedeutung der Bits
5556	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 11
5758	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 12
5960	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 13
6162	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 14
6364	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 15
6566	-	-	-	-	-	-	-	A9	A8	A7	A6	A5	A4	A3	A2	A1	Aktuelle Anzahl Objektpunkte (Current Hits) im Auswertefenster 16
6768	04 C4	O4 C3	04 C2	04 C1	03 C4	O3 C3	03 C2	03 C1	02 C4	O2 C3	02 C2	02 C1	01 C4	01 C3	01 C2	01 C1	Spaltenergebnisse der UND-Verknüpfung für die Ausgänge. Siehe "Bereich Analysis Functions" auf Seite 57. Beispiel: O1/C3 = Ausgang 1, Spalte 3
6970	-	-	-	-	-	-	-	-	-	-	-	-	04	O3	02	01	Schaltzustand der Ausgänge Out1 - Out4. Siehe "Bereich Analysis Functions" auf Seite 57.
7172	-	-	-	-	-	-	-	-	T8	Τ7	Т6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 1
7374	-	-	-	-	-	-	-	-	Т8	Τ7	Т6	Т5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 2
7576	-	-	-	-	-	-	-	-	Т8	Τ7	Т6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 3
7778	-	-	-	-	-	-	-	-	Т8	Τ7	Т6	T5	T4	Т3	T2	T1	Aktueller Stand des Zählers für die Auswertetiefe von Ausgang 4
7980	-	-	-	-	-	-	-	-	-	-	-	-	-	13	12	11	Zustand der drei Eingänge zur Auswahl der Inspek- tionsaufgabe
81136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Die übrigen Nutzdaten dienen zu internen Service- Zwecken des Herstellers.

10.3 Ethernet-Befehle

A

ACHTUNG!

Der Umfang der zur Verfügung stehenden Befehle ist von Firmwareversion zu Firmwareversion gewachsen. Eine **Revision History / Feature list** finden Sie im Anhang in Kapitel 17.2. Die nachfolgend beschriebenen Befehle beziehen sich auf die **aktuelle** Firmwareversion des LRS 36.

HINWEIS

Die Reihenfolge, in der die einzelnen Bytes der Befehle und des Protokolls gesendet werden müssen, um vom LRS 36 verarbeitet zu werden, entspricht der Byte-Reihenfolge "Little-Endian". Die Antwort des LRS 36 entspricht ebenfalls dem Standard "Little-Endian". Siehe dazu den Hinweis in Kapitel 10.2.

Im Erkennungsmodus kann jedoch nur Connect to Sensor, Disconnect to Sensor, Enter Command mode und Ethernet Trigger verarbeitet werden (Quittierung jeweils mit 'Ack'=0x4141). Alle anderen Befehle werden mit 'Not Ack'=0x414E quittiert, es erfolgt keine Verarbeitung des Befehls. Weitere Befehle stehen im Befehlsmodus (Command Mode) zur Verfügung.

10.3.1 Elementare Befehle

Befehlsaufbau (Header/Nutzdaten) siehe Kapitel 10.2.

Mit den Befehlen Connect to Sensor und Disconnect from Sensor wird eine Verbindung zwischen Steuerung und Sensor auf- bzw. abgebaut. Es wird dabei über die zuvor in LRSsoft parametrierten Ports mit dem LRS 36 kommuniziert.

Befe	ehl von Steuerung an LRS 36	Antwort von LRS 36 an Steuerung					
Befehls-Nr.	Bedeutung	Befehls-Nr.	Bedeutung				
0x434E	Connect to Sensor Mit dem Sensor verbinden	0x4141	Verbindung aufgebaut, der Sensor ist dauer- haft verbunden. Über den Sensor-Status (Byte 17 und 18) kann man erkennen, ob der Sensor verbun- den ist.				
		0x414E	Der gesendete Befehl wurde nicht verarbei- tet (möglicher Sensorstatus: Sensor ist schon verbunden oder im Menümodus, detaillierte Info siehe Kapitel 10.2.4 "Sta- tus").				
0x4443	Disconnect from Sensor	0x4141	Verbindung getrennt.				
	Verbindung zum Sensor trennen	0x414E	Der gesendete Befehl wurde nicht verarbei- tet (möglicher Sensorstatus: Sensor war schon getrennt oder im Menümodus, detail- lierte Info siehe Kapitel 10.2.4 "Status").				

Nach Einschalten des Sensors und dem Aufbau einer Verbindung befindet der Sensor sich zuerst im Erkennungsmodus und überträgt kontinuierlich Auswertedaten (Free Running) bzw. wartet auf ein Triggersignal zur Übertragung von Auswertedaten.

Um zwischen Erkennungsmodus und Befehlsmodus umzuschalten stehen die beiden Befehle Enter Command Mode und Exit Command Mode zur Verfügung.

E	Befehl von Steuerung an LRS 36	A	Antwort von LRS 36 an Steuerung				
Befehls-Nr.	Bedeutung	Befehls-Nr.	Bedeutung				
0x3132	Enter Command Mode	0x4141	Sensor im Befehlsmodus				
	Befehlsmodus aktivieren	0x414E	Der gesendete Befehl wurde nicht verarbei- tet (möglicher Sensorstatus: Sensor befindet sich gerade im Menümodus und kann keine Befehle ausführen. Sensor befindet sich bereits im Befehlsmodus) ¹⁾ .				
0x3133	Exit Command Mode	0x4141	Sensor zurück im Erkennungsmodus				
	Befehlsmodus beenden	0x414E	Der gesendete Befehl wurde nicht verarbei- tet, weil der Sensor nicht im Befehlsmodus war.				

1) Detaillierte Info zu möglichen Sensorstati siehe Kapitel 10.2.4 "Status". Ob der Sensor sich im Menümodus befindet kann man durch einen kurzen Blick auf das Display erkennen. Der Menümodus kann über den den Menüpunkt Exit beendet werden.
10.3.2 Befehle im Befehlsmodus

ĭ

HINWEIS

Befehlsaufbau (Header/Nutzdaten) siehe Kapitel 10.2.

Im Befehlsmodus stehen folgende Befehle zur Verfügung:

	Befehl von Steuerung an LRS 36			Antwort von LRS 36 an Steuerung	
Befehls- Nr.	Bedeutung	Anzahl Nutzdaten- worte	Befehls- Nr.	Bedeutung	Anzahl Nutzdaten- worte
0x0001	Set Laser Gate	1	0x4141	Befehl ausgeführt	0
	Laseraktivierung und Deaktivierung (umschalten), <i>siehe Kapitel 10.3.3</i>		0x414E	Befehl wurde nicht ausgeführt.	0
0x004B	Set Actual Inspection Task Nummer der aktuellen Inspektionsauf-	2	0x4141 ¹⁾	Setzen der Inspektionsaufgabe durch- geführt	0
	gabe einstellen, siehe Kapitel 10.3.3		0x414E ²⁾	Der gesendete Befehl wurde nicht ver- arbeitet.	0
0x0049	Get Actual Inspection Task Nummer der aktuellen Inspektionsauf- gabe holen	0	0x004A	Im Nutzdatenbereich wird die Task- nummer übermittelt. (0 = Task0, bis 15 = Task15)	1
0x0053	Set Scan Number	1	0x4141	Scannummer gesetzt	0
	Scannummer einstellen, siehe Kapitel 10.3.3. Sicherstellen identischer Scannum- mern bei mehreren Sensoren, Beschreibung siehe "Set Scan Number" auf Seite 72		0x414E	Der gesendete Befehl wurde nicht ver- arbeitet.	0
0x006D	Set Single Inspection Task Parame-	314	0x4141	Parameter wurde gesetzt	0
	ter Schreibt einzelne Inspektionsaufga- ben-Parameter temporär oder perma- nent in den Sensor.		0x414E	Der gesendete Befehl wurde nicht ver- arbeitet.	0
0x006F	Get Single Inspection Task Parame-	1	0x0070	Parameter wird ausgegeben	920
	ter Liest einzelne Inspektionsaufgaben- Parameter aus.		0x414E	Der gesendete Befehl wurde nicht ver- arbeitet.	0
0x0071	Execute Area Scan Basic Teach Teach "Flächentaster" (Area Scan Basic) ausführen, <i>siehe Kapitel 4.3.6.</i> In den Nutzdaten werden die Teach- Parameter übergeben.	2	0x0072	Im Nutzdatenbereich wird die Fehler- nummer und der berechnete Mittelwert der gefundenen Ebene in 1/10mm aus- gegeben.	2
0x0073	Execute Track Scan Teach Teach "Mehrspurige Vollständigkeits- kontrolle" (Track Scan) ausführen, <i>siehe Kapitel 4.3.6.</i> In den Nutzdaten werden die Teach- Parameter übergeben.	3	0x0074	Im Nutzdatenbereich wird die Fehler- nummer und der berechnete Abstands- wert der Oberseite der Objekte in 1/ 10mm ausgegeben.	2
0x0075	Execute Area Scan Advanced Teach Teach "Hintergrundausblendung" (Area Scan Advanced) ausführen, <i>siehe</i> <i>Kapitel 4.3.6.</i> In den Nutzdaten werden die Teach- Parameter übergeben.	2	0x0076	Im Nutzdatenbereich wird die Fehler- nummer und der größte ermittelte Abstandswert des Hintergrunds in 1/ 10mm ausgegeben.	2

1) 0x4141 = Acknowledge: Ausführung des Befehls wird bestätigt

2) 0x414E = Not Acknowledge oder Error: Befehl wurde nicht ausgeführt

10.3.3 Erläuterung der Nutzdaten im Befehlsmodus (Befehlsparameter)

Set Laser Gate

Beim Sensorsteuerungsbefehl 0x0001 wird an den Sensor ein Wort Nutzdaten übergeben:

Byte	MSI	В	H	ligh	-Byte	е	LS	SВ	MS	3	L	-ow-	Byte	e	LS	SВ	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LF	LF = Laser Flag

ī

LF=0 schaltet den Laser aus, LF=1 schaltet den Laser ein.

Set Actual Inspection Task

Beim Sensorsteuerungsbefehl 0x004B werden an den Sensor zwei Worte Nutzdaten übergeben:

Byte	MS	в	ł	ligh	-Byt	e	L	SB	B MSB Low-Byte				e	LS	SB	Bedeutung der Bits	
3132	-	-	-	-	-	-	-	-	-	-	-	-	N4	N3	N2	N1	Nummer der einzustellenden Inspektionsaufgabe (0 = Task0 15 = Task 15)
3334	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SF	SF = SaveFlag

Ist SF=0 wird die Inspektionsaufgabe nur temporär umgestellt.

Ist SF=1 wird die neu eingestellte Inspektionsaufgabe auch nach einem Neustart des LRS 36 beibehalten.

Get Actual Inspection Task

Auf den Sensorsteuerungsbefehl 0x0049 antwortet der LRS 36 mit 0x004A und einem Wort Nutzdaten:

Byte	MSI	В	ŀ	ligh	-Byte	e	LS	SB	MSE	3	I	Low	Byte	e	LS	SB	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	1	-	-	N4	N3	N2	N1	Nummer der eingestellten Inspektionsaufgabe (0 = Task0 15 = Task 15)

Set Scan Number

Beim Sensorsteuerungsbefehl 0x0053 wird an den Sensor ein Wort Nutzdaten übergeben:

Byte	MS	В	H	ligh	-Byt	е	LS	SВ	MSI	В	L	-ow-	Byte	9	LS	SB	Bedeutung der Bits
3132	S1 6	S1 5	S1 4	S1 3	S1 2	S1 1	S1 0	S9	S8	S7	S6	S5	S4	S3	S2	S1	Neu einzustellende Scannummer

Der Sensorsteuerungsbefehl Set Scan Number ermöglicht es bei mehreren Sensoren, die kaskadiert betrieben werden, eine einheitliche Scannummer für das Übertragungsprotokoll einzustellen. Eine Beschreibung des kaskadierten Betriebs finden Sie in Kapitel 4.2.4.

 Setzen Sie den Master (Sensor 1) in den Befehlsmodus. Die kontinuierliche Messung wird dadurch gestoppt. Im Befehlsmodus ist der Kaskadierungsausgang nicht aktiv! Setzen Sie eine beliebige Scannummer mit dem Befehl 0x0053 für den Master. Setzen Sie nacheinander alle Slaves (Sensor 2, 3,) in den Befehlsmodus und stellen Sie für jeden einzelnen Slave die gleiche Scannummer ein, die Sie zuvor unter 2. beim Master gesetzt haben. Setzen Sie die Slaves zurück in den Messmodus. 		HIN	IWEIS
5 Setzen Sie den Master in den Messmodus	•	1. 2. 3. 4.	Setzen Sie den Master (Sensor 1) in den Befehlsmodus. Die kontinuierliche Messung wird dadurch gestoppt. Im Befehlsmodus ist der Kaskadierungsausgang nicht aktiv! Setzen Sie eine beliebige Scannummer mit dem Befehl 0x0053 für den Master. Setzen Sie nacheinander alle Slaves (Sensor 2, 3,) in den Befehlsmodus und stellen Sie für jeden einzelnen Slave die gleiche Scannummer ein, die Sie zuvor unter 2. beim Master gesetzt haben. Setzen Sie die Slaves zurück in den Messmodus. Setzen Sie den Master in den Messmodus.

Set Single Inspection Task Parameter

Mit dem Sensorsteuerungsbefehl 0x006D können einzelne Parameter der aktiven Inspektionsaufgabe geändert werden. Folgende Parameter lassen sich verändern:

- · Name einer Inspektionsaufgabe (Name),
- Betriebsart (Operation Mode: Free Running oder Input Triggered),
- Freischalten der Aktivierung (Activation Input: Regard oder Disregard),
- · Freischalten des Kaskadierausgangs (Cascading Output: Enable oder Disable),
- · Belichtungsdauer des Lasers (Light Exposure),
- · Erfassungsbereich des LPS (Field of View).

Byte	MSE	3	F	ligh	-Byte	e	LS	SВ	MS	ISB Low-Byte		9	LSB		Bedeutung der Bits	
3132															SF	SF = SaveFlag
3334																Parameter ID für Parameterauswahl
3558																Parameterwert[e] abhängig von Parameter ID

Parameter und Einstellungen:

Ist SF=0, wird der Parameter nur temporär umgestellt.

Ist SF=1, wird der Parameter auch nach einem Neustart des LRS 36 beibehalten.

Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)

Parameter ID	Bedeutung Parameter	gültige Parameterwerte	Datentyp von Parame- ter	Anzahl Parameter- werte
0x0BB9	Name der aktiven Inspektionsauf- gabe	Maximale Länge: 12 ASCII Zeichen, jedes Zeichen wird als 16 Bit Wort gespeichert	CHAR	12
0x0BBA	Betriebsart	0=Operation Mode: Free Running; 1=Operation Mode Input Triggered	UINT8	1
0x0BBB	Freischalten der Aktivierung	0=Activation Input: Disregard; 1=Activation Input: Regard	UINT8	1
0x0BBC	Freischalten des Kaskadieraus- gangs	0=Cascading Output: Disable; 1=Cascading Output: Enable	UINT8	1
0x0BBD	Belichtungsdauer des Lasers	0 = Normal (ca. 261µs) 1 = Bright Objects (ca. 97µs) 2 = Dark Objects (ca. 655µs) 3 = Normal to Bright Objects (ca. 328µs) 4 = Manual Setting (Einstellung der Belich- tungszeit erfolgt über den Parameter ID 0x0BBE)	UINT8	1
0x0BBE	Manuelle Einstellung der Belich- tungsdauer	Zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: 97313109 (Einheit Belichtungszeit in 1/10µs). Die Belichtungsdauer wird im Sensor stufen- weise eingestellt. Die tatsächliche Belich- tungsdauer kann geringfügig vom übertragenen Parameterwert abweichen. Die eingestellte Belichtungsdauer läßt sich mit dem Befehl "Get Single Inspection Task Parameter"(0x006F) in Verbindung mit der Paramer-ID 0x0BBD abfragen.	UINT16	1
0x0BBF	Erfassungsbereich X-Koordinaten	2 vorzeichenbehaftete X-Werte für Field of View, Wert 1: Minimum X Value, Wert 2: Maximum X Value, zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: - 30003000 (Einheit in 1/10mm)	SINT16	2
0x0BC0	Erfassungsbereich Z-Koordinaten	2 nicht vorzeichenbehaftete Z-Werte für Field of View, Wert 1: Minimum Z Value, Wert 2: Maximum Z Value (Einheit in mm), zulässiger Wertebereich LRS 36/6, LRS 36/6.10, LRS 36/PB: 19008100 (Einheit in 1/10mm)	UINT16	2

Antwort vom Sensor:

Befehlsnummer	Bedeutung	Anzahl Nutzdatenworte
0x4141	"Ack", der Befehl wurde erfolgreich ausgeführt.	0
0x414E	"Not Ack", der Befehl wurde nicht ausgeführt	0

Get Single Inspection Task Parameter

Mit dem Sensorsteuerungsbefehl 0x006F können einzelne Parameter der aktiven Inspektionsaufgabe ausgegeben werden. Folgende Parameter lassen sich abfragen:

- · Name der aktiven Inspektionsaufgabe (Name),
- Nummer der aktiven Inspektionsaufgabe (Number)
- Betriebsart (Operation Mode: Free Running oder Input Triggered),
- · Einstellung der Aktivierung (Activation Input: Regard oder Disregard),
- · Einstellung des Kaskadierausgangs (Cascading Output: Enable oder Disable),
- Belichtungsdauer des Lasers (Light Exposure),
- Erfassungsbereich des LRS 36 (Field of View).

Byte	MSB	High	-Byt	е	LS	в	MS	3	L	_ow-	Byte	e	L	SB	Bedeutung der Bits
3132															Parameter ID welche abgefragt werden kann

Parameter und Einstellungen:

Parameter ID	Bedeutung Parameter
0x0BB8	Nummer der aktiven Inspektionsaufgabe
0x0BB9	Name einer Inspektionsaufgabe
0x0BBA	Betriebsart
0x0BBB	Freischalten der Aktivierung
0x0BBC	Freischalten des Kaskadierausgangs
0x0BBD	Belichtungsdauer des Lasers
0x0BBE	Manuelle Einstellung der Belichtungsdauer
0x0BBF	Erfassungsbereich X-Koordinaten
0x0BC0	Erfassungsbereich Z-Koordinaten

Antwort vom Sensor:

.

Der Sensor antwortet mit 0x0070 und gibt 9 ... 20 Nutzdatenworte zurück.

Byte	MSI	в	ŀ	ligh	-Byt	е	LS	SВ	MS	в	L	Low	-Byte	e	LS	SВ	Bedeutung der Bits
3132																	Parameter ID für Parameterauswahl
3334																	Datentyp: 1 = UINT8; 2 = UINT16, 5 = SINT16, 7 = CHAR
3536																	Anzahl Parameterwerte (Byte 47ff)
3738																	Untere Grenze Parameterwert (HighWord)
3940																	Untere Grenze Parameterwert (LowWord)
4142																	Obere Grenze Parameterwert (HighWord)
4344																	Obere Grenze Parameterwert (LowWord)
4546																	ohne Bedeutung
4770																	Parameterwert(e) der abgefragten Parameter ID

Execute Area Scan Basic Teach

Mit dem Sensorsteuerungsbefehl 0x0071 wird der Teach "Flächentaster" (Area Scan Basic) ausgeführt, siehe Kapitel 4.3.6.

Beim Sensorsteuerungsbefehl 0x0071 werden an den Sensor 2 Nutzdatenworte übergeben:

Byte	MSB	High-Byte	LSB	MSB	Low-Byte	LSB	Bedeutung der Bits
3132							Parameter Sicherheitsabstand (Offset) in mm, Wertebereich: 1 599
3334							Parameter Objektgröße (Sensitivity): 1 = Klein (fine) 2 = Mittel (medium) 3 = Groß (coarse)

Antwort vom Sensor:

Der Sensor antwortet mit 0x0072 und gibt 2 Nutzdatenworte zurück.

Byte	MS	в	ŀ	ligh	-Byt	е	LS	SВ	MSI	в	I	Low	Byt	е	L	SB	Bedeutung der Bits
3132																	Fehlernummer
3334																	Berechneter Mittelwert der gefundenen Ebene in 1/10 mm

Fehlernummer:

Fehlernummer	Bedeutung
0x0000	kein Fehler
0x0001	Es konnte nicht getriggert werden
0x0002	Grenzen der errechneten AWs befinden sich nicht im Erkennungsbereich
0x0003	Es sind Objektpunkte im errechneten AW enthalten
0x0004	Fehler beim Speichern der neu errechneten Parameterwerte
0x0005	Der Prozessor hat auf Kommandos nicht reagiert
0x0006	Keine gültigen Z-Profildaten
0x0007	Kein Maximum mit mindestens 5 Punkten gefunden (unebene Objekte oder Objekte nicht im Erkennungsbereich)

Execute Track Scan Teach

Mit dem Sensorsteuerungsbefehl 0x0073 wird der Teach "Mehrspurige Vollständigkeitskontrolle" (Track Scan) ausgeführt, siehe Kapitel 4.3.6.

Beim Sensorsteuerungsbefehl 0x0073 werden an den Sensor 3 Nutzdatenworte übergeben:

Byte	MSE	3	н	ligh-	Byt	е	LS	в	MSE	3	L	Low-Byte			LSB	Bedeutung der Bits
3132															Parameter Sicherheitsabstand (Offset) in mm, Wertebereich: 1 599	
3334																Parameter Objektgröße (Sensitivity) 1 = Klein (fine) 2 = Mittel (medium) 3 = Groß (coarse)
3536																Parameter Anzahl Objekte (Num. of Objects) Wertebereich: 1 9

Antwort vom Sensor:

Der Sensor antwortet mit 0x0074 und gibt 2 Nutzdatenworte zurück.

Byte	MSE	3	н	igh-	Byte	e	LS	SВ	MS	в	L	_ow	Byte	е	LS	SB	Bedeutung der Bits
3132																	Fehlernummer
3334																	Berechneter Abstandswert der Oberseite der Objekte in 1/10 mm

Fehlernummer:

Fehlernummer	Bedeutung
0x0000	kein Fehler
0x0001	Es konnte nicht getriggert werden
0x0002	Grenzen der errechneten AWs befinden sich nicht im Erkennungsbereich
0x0003	Es sind Objektpunkte im errechneten AW enthalten
0x0004	Fehler beim Speichern der neu errechneten Parameterwerte
0x0005	Der Prozessor hat auf Kommandos nicht reagiert
0x0006	Keine gültigen Z-Profildaten
0x0007	Kein Maximum mit mindestens 5 Punkten gefunden (unebene Objekte oder Objekte nicht im Erkennungsbereich)

Execute Area Scan Advanced Teach

Mit dem Sensorsteuerungsbefehl 0x0075 wird der Teach "Hintergrundausblendung" (Area Scan Advanced) ausgeführt, siehe Kapitel 4.3.6.

Beim Sensorsteuerungsbefehl 0x0075 werden an den Sensor 2 Nutzdatenworte übergeben:

Byte	MSB	;	High	-Byte	е	LS	в	MSE	3	I	Low	-Byte	9	LS	SB	Bedeutung der Bits
3132																Parameter Sicherheitsabstand (Offset) in mm, Wertebereich: 1 599
3334																Parameter Objektgröße (Sensitivity) 1 = Klein (fine) 2 = Mittel (medium) 3 = Groß (coarse)

Antwort vom Sensor:

ı.

Der Sensor antwortet mit 0x0076 und gibt 2 Nutzdatenworte zurück.

Byte	MSE	3	н	ligh-	Byte	e	LS	в	MSE	в	I	Low	Byte	e	LS	SВ	Bedeutung der Bits
3132																	Fehlernummer
3334																	Größter ermittelter Abstandswert des Hinter- grunds in 1/10 mm

Fehlernummer:

Fehlernummer	Bedeutung
0x0000	kein Fehler
0x0001	Es konnte nicht getriggert werden
0x0002	Grenzen der errechneten AWs befinden sich nicht im Erkennungsbereich
0x0003	Es sind Objektpunkte im errechneten AW enthalten
0x0004	Fehler beim Speichern der neu errechneten Parameterwerte

Fehlernummer	Bedeutung
0x0005	Der Prozessor hat auf Kommandos nicht reagiert
0x0006	Keine gültigen Z-Profildaten
0x0007	Kein Maximum mit mindestens 5 Punkten gefunden (unebene Objekte oder Objekte nicht im Erkennungsbereich)

10.3.4 Befehle im Erkennungsmodus

HINWEIS

ĭ

Befehlsaufbau (Header/Nutzdaten) siehe Kapitel 10.2.

Im Erkennungsmodus stehen folgende Befehle zur Verfügung:

	Befehl von Steuerung an LRS 36		Antwort von LRS 36 an Steuerung						
Befehls- Nr.	Bedeutung	Anzahl Nutzdaten- worte	Befehls- Nr.	Bedeutung	Anzahl Nutzdaten- worte				
0x4554	Ethernet Trigger Mit dem Ethernet Trigger Befehl wird im Erkennungsmodus eine Einzelmes-	0	0x5354	Es wird mit dem Auswertetelegramm geantwortet (Status und Schaltinforma- tionen), siehe Kapitel 10.2.9	1 Paket à 53				
	sung ausgelöst, ähnlich der Triggerung über den Triggereingang. Voraussetzung ist, dass der LRS 36 mit LRSsoft unter Operation Mode auf Input Triggered parametriert ist. Es muss eine Verbindung zum Sensor bestehen, bevor der Befehl Ethernet Trigger benutzt werden kann.		0x414E	Der gesendete Befehl wurde nicht ver- arbeitet.	0				
0x4541	Ethernet Activation Mit dem Ethernet Activation Befehl wird der <i>Erkennungsbetrieb</i> entsprechend dem Nutzdatenwort ein- und ausge- schaltet. Voraussetzung ist, dass der LRS mit LRSsoft unter Activation Input Mode auf Regard parametriert ist. Es muss eine Verbindung zum Sensor	1	0x5354	Im aktivierten Zustand, im FreeRun- Modus oder im getriggerten Modus (wenn getriggert wird) wird mit dem Auswertetelegramm geantwortet (Sta- tus und Schaltinformationen), siehe Kapitel 10.2.9. Im deaktivierten Zustand wird auf den Befehl nicht geantwortet.	1 Paket à 53				
	bestehen, bevor der Befehl benutzt werden kann.		Ux414E	Der gesendete Betehl wurde nicht ver- arbeitet.	U				

10.3.5 Erläuterung der Nutzdaten im Erkennungsmodus (Befehlsparameter)

Ethernet Activation

Beim Sensorsteuerungsbefehl 0x4541 wird an den Sensor ein Wort Nutzdaten übergeben:

Byte	MSI	в	ŀ	ligh	-Byt	е	LS	SB	MSI	в	I	_ow-	Byte	e	LS	SВ	Bedeutung der Bits
3132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EA	EA = Ethernet Activation Flag

EA=0 schaltet den Erkennungsbetrieb aus, **EA=1** schaltet den Erkennungsbetrieb ein.

10.4 Arbeiten mit dem Protokoll (Ethernet)

HINWEIS

Die Darstellung erfolgt in hexadezimaler Darstellung (0x...). Die Werte werden im "Little-Endian"-Format übertragen. Siehe dazu den Hinweis in Kapitel 10.2.

10.5 Betrieb mit LxS_Lib.dll

Die LxS_Lib.dll ist eine .NET 2.0 kompatible Sammlung an Funktionen, die die Einbindung aller Leuze Lichtschnittsensoren (LPS, LRS und LES) in PC-Umgebungen wesentlich vereinfacht. Die LxS_Lib.dll kann in einer Vielzahl von Programmiersprachen verwendet werden, wie z.B. C#, Visual Basic, usw. Die Einbindung in MatLab ist ebenfalls möglich.

Es lassen sich mehrere Lichtschnittsensoren über Ethernet mit der DLL steuern.

Die LxS_Lib.dll unterstützt unter anderem folgende Funktionen:

- Aufbau/Trennen der Sensorverbindung
- · Auswertung des Sensorstatus
- Triggerung, Aktivierung über Ethernet
- Aktivierung von einzelnen Inspektionsaufgaben
- Laden und Speichern aller angelegten Inspektionsaufgaben
- · Aktivierung von Inspektionsaufgaben
- Parameteränderungen der aktiven Inspektionsaufgabe

Weiterhin ermöglicht die LxS_Lib.dll die Auswertung der spezifischen Nutzdaten von LPS, LES oder LRS. Beim LRS und LES stehen alle Sensorinformationen und Zwischenergebnisse zur Verfügung, so dass wesentlich komplexere Auswertungen in der Prozesssteuerung realisiert werden können.

Zugriff

Sie können die Bibliothek von unserer Webseite www.leuze.com herunterladen.

Tippen Sie im Suchfeld der Webseite Ihre Gerätetype ein und gehen Sie in den Download-Bereich des Geräts. Hier finden Sie die zip-Datei "Beispielprojekt DLL C#". Diese enthält die Bibliothek "LxS_Lib.dll".

Einbindung des LRS 36 in die Prozess-Steuerung (Ethernet)

10.6 Betrieb mit Native C++ DLL

Die Native C++ DLL wurde speziell zur Einbindung in C++ Programmierungen erstellt. Sie umfasst im Wesentlichen die Funktionen der LxS-Lib:

- Aufbau/Trennen der Sensorverbindung
- Auswertung des Sensorstatus
- Triggerung, Aktivierung über Ethernet
- · Aktivierung von einzelnen Inspektionsaufgaben
- · Aktivierung von Inspektionsaufgaben
- Parameteränderungen der aktiven Inspektionsaufgabe

Lediglich das Laden / Speichern aller angelegten Inspektionsaufgaben ist nicht möglich und muss über die mitgelieferte LxSsoft durchgeführt werden.

Zugriff

Sie können die Bibliothek von unserer Webseite www.leuze.com herunterladen.

Tippen Sie im Suchfeld der Webseite Ihre Gerätetype ein und gehen Sie in den Download-Bereich des Geräts. Hier finden Sie die zip-Datei "Beispielprojekt Native DLL C++".

10.7 Weitergehende Unterstützung bei der Sensoreinbindung

Weitere Tools (z. B. MatLab-Beispiel, Funktionsbausteine S7, Protokoll-Klartext-Decodierung, UDP-Terminal) stehen zur Verfügung. Bitte kontaktieren Sie hierzu Ihr Leuze Vertriebs- oder Servicebüro.

11 Einbindung des LRS 36/PB in den PROFIBUS

11.1 Allgemeines

Der LRS 36/PB ist als PROFIBUS DP/DPV1 kompatibler Slave konzipiert. Die Ein/Ausgangsfunktionalität des Sensors ist durch die zugehörige GSD-Datei definiert. Die Baudrate der zu übertragenden Daten beträgt unter Produktionsbedingungen max. 6MBit/s.

Für den Betrieb ist die GSD-Datei entsprechend anzupassen.

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate

Eigenschaften LRS 36/PB

- Ethernet und PROFIBUS können im Erkennungsmodus als vollwertige Schnittstellen gleichzeitig genutzt werden
- Befindet sich der Sensor im Menümodus, so ist der PROFIBUS aktiv. Anfragen von der Steuerung werden nicht verarbeitet und die Prozessdaten sind eingefroren (erkennbar an der konstanten Scannummer).
- Befindet sich der Sensor im Befehlsmodus, so ist der PROFIBUS aktiv. Anfragen von der Steuerung werden nicht verarbeitet und die Prozessdaten sind eingefroren (erkennbar an der konstanten Scannummer).
- Wird der Sensor mit LRSsoft und PROFIBUS gleichzeitig betrieben, so ist der PROFIBUS aktiv. Anfragen von der Steuerung werden verzögert verarbeitet und die Prozessdaten werden auch verzögert aktualisiert (erkennbar an sich langsam erhöhenden Scannummern). Die Aktualisierung erfolgt alle 200ms.
- Die Eingangssignale über Ethernet, PROFIBUS und Signalleitungen sind gleichberechtigt. Das zuerst anliegende Signal wird ausgeführt.
- Die Parametrierung des Sensors erfolgt über die Parametriersoftware LRSsoft.

Gegenüber der Gerätevariante LRS 36/6 mit Schaltausgängen besitzt die PROFIBUS-Variante folgende zusätzliche Funktionen:

- Ausgabe des Status von 16 Auswertefenstern
- Ausgabe der Treffer (Current Hits) in bis zu 16 Auswertefenstern
- Ergebnis logischer Verknüpfungen
- Übertragung von Scannummer und Sensorstatus
- Auswahl von bis zu 16 Inspektionsaufgaben
- Aktivierung und Triggerung per PROFIBUS

Die Beschränkung auf die Anwahl von maximal 8 Inspektionsaufgaben über die Schalteingänge des LRS 36/6, besteht beim LRS 36/PB nicht. Es lassen sich von der Steuerung bis zu 16 verschiedene Inspektionsaufgaben aktivieren

11.2 PROFIBUS Adressvergabe

Im folgenden werden die verschiedenen Möglichkeiten zur Einstellung der Slave-Adresse beschrieben. Die automatische Adressvergabe über den PROFIBUS (Slave-Adresse **126**) ist voreingestellt.

Automatische Adressvergabe

Der LRS 36/PB unterstützt die automatische Erkennung der Baudrate und die automatische Adressvergabe über den PROFIBUS.

Die Adresse des PROFIBUS-Teilnehmers kann automatisch vom Inbetriebnahme-Tool der PROFIBUS-Anlage (ein PROFIBUS-Master der Klasse 2) erfolgen. Dazu muss die Slave-Adresse auf den Wert **126** im Sensor eingestellt sein (Werkseinstellung).

Der Inbetriebnahme-Master prüft, ob ein Slave die Adresse **126** hat und weist diesem dann eine Knotenadresse kleiner **126** zu. Diese Adresse wird im Teilnehmer permanent gespeichert. Die geänderte Adresse kann dann über das Display oder LRSsoft abgefragt (und ggf. auch wieder geändert) werden.

Adressvergabe mit LRSsoft

Über LRSsoft kann die PROFIBUS Slave-Adresse eingestellt werden können. Diese Einstellung kann dann zusammen mit den anderen Sensoreinstellungen auf dem PC gespeichert werden.

euze

Bild 11.1: PROFIBUS Adressvergabe mit LRSsoft

Adressvergabe mit Folientastatur und Display

Die Einstellung der Adresse mit der Tastatur und Display ermöglichte es, den Sensor im Feld ohne weitere Hilfsmittel in eine PROFIBUS-Anlage einzubringen. Siehe "Slave Address" auf Seite 42. Ebenfalls kann die eingestellte Adresse vom Anwender ohne weitere Hilfsmittel abgefragt werden.

HINWEIS

Nach dem Ändern der PROFIBUS Slave-Adresse über LRSsoft oder per Display/Tastatur muss ĭ ein Power-on-Reset durchgeführt werden, um die Adresse endgültig zu übernehmen.

11.3 Allgemeine Infos zur GSD-Datei

Wird der LRS 36 in einem PROFIBUS-Netzwerk betrieben, kann die Parametrierung ausschließlich über die Parmetriersoftware LRSsoft erfolgen. Die Funktionalität der Eingänge/Ausgänge des Lichtschnittsensors zur Steuerung wird über Module definiert. Mit einem anwenderspezifischen Projektierungs-Tool werden bei der SPS-Programmerstellung die jeweils benötigten Module eingebunden und entsprechend der Messapplikation parametriert.

Beim Betrieb des Lichtschnittsensors am PROFIBUS ist die Funktionalität der Eingänge/Ausgänge mit Default-Werten belegt. Werden diese Parameter vom Anwender nicht geändert, so arbeitet das Gerät mit denen von Leuze ausgelieferten Default-Einstellungen. Die Default-Einstellungen des Gerätes entnehmen Sie bitte den nachfolgenden Modulbeschreibungen.

HINWEIS

ĭ

Ĭ

Ť

A

Es muss mindestens ein Modul aus der GSD-Datei im Projektierungstool der Steuerung aktiviert werden, üblicherweise die Module M1 oder M2.

HINWEIS

Teilweise stellen Steuerungen ein sogenanntes "Universalmodul" zur Verfügung. Dieses Modul darf für den LRS 36/PB nicht aktiviert werden.

∧ WARNUNG!

Das Gerät stellt eine PROFIBUS- und eine Ethernet-Schnittstelle zur Verfügung. Beide Schnittstellen können parallel betrieben werden.

HINWEIS

An einem am PROFIBUS betriebenen LRS 36/PB können zu Testzwecken Parameter über das Display geändert werden. Zu diesem Zeitpunkt ist eine Objekterkennung an PROFIBUS nicht möglich.

HINWEIS

Alle in dieser Dokumentation beschriebenen Eingangs- und Ausgangsmodule sind aus der Sicht der Steuerung beschrieben: Beschriebene Eingänge (E) sind Eingänge der Steuerung.

Beschriebene Ausgänge (A) sind Ausgänge der Steuerung.

Beschriebene Parameter (P) sind Parameter der GSD-Datei in der Steuerung.

HINWEIS

Die aktuelle Version der GSD-Datei LEUZE401.GSD für den LRS 36/PB finden Sie auf der Leuze Website www.leuze.com.

11.4 Übersicht der GSD Module

Der LRS 36/PB hat einen Modul-Slot. Mit der Auswahl des entsprechenden Moduls aus der GSD werden die zu übertragenden Prozessdaten des LRS 36/PB eingestellt. Es stehen mehrere Module zur Auswahl. Beginnend mit dem einfachsten Eingangsmodul **M1**, kommen bei nachfolgenden Modulen jeweils neue Eingänge hinzu. Alle verfügbaren Ausgangsdaten sind schon in Modul **M1** enthalten. Die Module mit höheren Nummern enthalten jeweils die Module mit niedrigeren Nummern (Beispiel: **M2** enthält **M1** und die Erweiterungen von **M2**).

HINWEIS

i

1

Mit steigender Modulnummer nehmen auch die zu übertragenden Nutzdaten-Bytes zu. Die maximale Erkennungsrate von 100Hz kann nur bis Modul **M3** gewährleistet werden.

Es sollten daher nur Module ausgewählt werden, die die tatsächlich benötigten Daten enthalten, d. h. es sollte eine möglichst kleine Modulnummer ausgewählt werden.

HINWEIS

Alle in dieser Dokumentation beschriebenen Eingangs- und Ausgangsmodule sind **aus der** Sicht der Steuerung beschrieben: Beschriebene Eingänge (E) sind Eingänge der Steuerung.

Beschriebene Ausgänge (A) sind Ausgänge der Steuerung.

Beschriebene Parameter (P) sind Parameter der GSD-Datei in der Steuerung.

Ausgangsdaten (aus Sicht der Steuerung)

Posi-	Name				Bits in	n Byte				Werte-	Bedeutung
tion (Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich	
0	uTrigger	Trig_7	Trig_6	Trig_5	Trig_4	Trig_3	Trig_2	Trig_1	Trig_0	0 255	Triggerung per PROFIBUS (bei Änderung)
1	uActivation	-	-	-	-	-	-	-	Act_O n	0 1	Aktivierung (=1) oder Deaktivie- rung (=0) des Sensors
2	ulnspTask		-	-	-	IT_b3	IT_b2	IT_b1	IT_b0	0 15	Inspection Task vom PROFI- BUS Master und Save-Flag (B7)

Tabelle 11.1: PROFIBUS - Übersicht der Ausgangsdaten (aus Sicht der Steuerung)

Eingangsdaten (aus Sicht der Steuerung)

GSD-	Posi-	Name				Bits in	n Byte				Werte-	Bedeutung
Modul	tion (Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich	
M1 4 Byte	0	wScan- Num (Hig- hByte)	SN_b15	SN_b14	SN_b13	SN_b12	SN_b11	SN_b10	SN_b9	SN_b8	0 255	Scannummer (Highbyte)
	1	wScan- Num (Low- Byte)	SN_b7	SN_b6	SN_b5	SN_b4	SN_b3	SN_b2	SN_b1	SN_b0	0 255	Scannummer (Lowbyte)
	2	uSenso- rInfo	Out4	Out3	Out2	Out1	IT_b3	IT_b2	IT_b1	IT_b0	0 255	SensorInfo (Nr. Insp. Task, Ausgänge)
	3	uSensorS- tate	ErrM	Cmd	Menu	Meas	ErrF	WarnF	activ	connect	0 255	Status des Sensors
M2 6 Byte	4	wResul- tAWs (Hig- hByte)	AW16	AW15	AW14	AW13	AW12	AW11	AW10	AW9	0 255	Zustand der AWs (Hig- hbyte)
	5	wResul- tAWs (Low- Byte)	AW8	AW7	AW6	AW5	AW4	AW3	AW2	AW1	0 255	Zustand der AWs (Low- byte)

Tabelle 11.2: PROFIBUS - Übersicht der Eingangsdaten (aus Sicht der Steuerung)

Einbindung des LRS 36/PB in den PROFIBUS

Leuze

GSD-	Posi-	Name				Bits ir	n Byte				Werte-	Bedeutung
Modul	tion (Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich	
M3 16 Byte	6	wActObjPt- sAW1 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	7	wActObjPt- sAW1 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 1
	8	wActObjPt- sAW2 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	9	wActObjPt- sAW2 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 2
	10	wActObjPt- sAW3 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	11	wActObjPt- sAW3 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 3
	12	wActObjPt- sAW4 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	13	wActObjPt- sAW4 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 4
	14	wActObjPt- sAW5 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	15	wActObjPt- sAW5 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 5
M4 24 Byte	16	wActObjPt- sAW6 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	17	wActObjPt- sAW6 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 6
	18	wActObjPt- sAW7 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	19	wActObjPt- sAW7 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 7
	20	wActObjPt- sAW8 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	21	wActObjPt- sAW8 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 8
	22	wActObjPt- sAW9 (Hig- hByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	23	wActObjPt- sAW9 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 9

Einbindung des LRS 36/PB in den PROFIBUS

Leuze

GSD-	Posi-	Name	Bits im Byte									Bedeutung
Modul	tion (Bytes)		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	bereich	
M5 38 Byte	24	wActObjPt- sAW10 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	25	wActObjPt- sAW10 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 10
	26	wActObjPt- sAW11 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	27	wActObjPt- sAW11 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 11
	28	wActObjPt- sAW12 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	29	wActObjPt- sAW12 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 12
	30	wActObjPt- sAW13 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	31	wActObjPt- sAW13 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 13
	32	wActObjPt- sAW14 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	33	wActObjPt- sAW14 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 14
	34	wActObjPt- sAW15 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	35	wActObjPt- sAW15 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 15
	36	wActObjPt- sAW16 (HighByte)	-	-	-	-	-	-	-	OP_b8	0 1	Aktuelle Anzahl Objektpunkte
	37	wActObjPt- sAW16 (LowByte)	OP_b7	OP_b6	OP_b5	OP_b4	OP_b3	OP_b2	OP_b1	OP_b0	0 255	(Current Hits) im Auswerte- fenster 16

Tabelle 11.2: PROFIBUS - Übersicht der Eingangsdaten (aus Sicht der Steuerung)

11.5 Beschreibung der Ausgangsdaten

PROFIBUS-Trigger

Damit je PROFIBUS-Zyklus eine Messung getriggert werden kann, reagiert der PROFIBUS-Trigger des LRS auf eine Änderung des Masterausgangs-Bytes **uTrigger**. Die Steuerung muss lediglich den Triggerwert inkrementieren, um eine neue Messung auszulösen.

Die maximale Triggerfrequenz liegt bei 100 Hz. Erfolgt die Triggerung während einer Messung, so wird das Triggersignal, ebenso wie in der Betriebsart **Free Running** (Anzeige am Display: fRun), ignoriert.

Activation - Aktivierung des Sensors

Die Aktivierung kann im Erkennungsmodus alternativ über den Aktivierungseingang **InAct** (Pin 2 an X1) oder den Masterausgang **uActivation** = 1 eingeschaltet werden.

HINWEIS

Bei der Parameter-Einstellung **Disregard** in LRSsoft ist der Sensor immer aktiviert, der Eingang **InAct** und die Aktivierung über PROFIBUS werden ignoriert.

Inspection Tasks - Anwahl der Inspektionsaufgabe

Mit dem Masterausgang **ulnspTask** (Bits IT_b3 ... IT_b0 in Ausgangsdaten-Byte 2) können die Inspektionsaufgaben 0 ... 15 angewählt werden. Die Umschaltung erfolgt im zyklischen IO-Betrieb und dauert

i

ca. 70ms. Während der Umschaltung werden die PROFIBUS IO-Daten eingefroren und die interne Rekonfiguration findet statt, erkennbar an der Scannummer, die nicht erhöht wird.

Nach erfolgtem Wechsel der Inspektionsaufgabe werden die PROFIBUS IO-Daten des Sensors wieder aktualisiert. Der Wert **uSensorInfo** in den Eingangsdaten zeigt dann die im Sensor eingestellte Inspektionsaufgabe an und die Scannummer erhöht sich wieder mit jeder neuen Messung.

\Lambda WARNUNG!

Bei der Parametrierung des LRS 36 mit LRSsoft via Ethernet sollte der Globale Parameter **Enable External Inspection Task Selection** abgeschaltet sein, damit die Inspektionsaufgabe nicht versehentlich während der Parametrierung durch die Steuerung umgeschaltet wird.

Nach der Parametrierung muss die Checkbox für diesen Parameter dann wieder aktiviert werden, bevor die Parametrierung zum Sensor per **Transmit Configuration To Sensor** übertragen wird.

Anderenfalls lassen sich über PROFIBUS keine Inspektionsaufgaben mehr anwählen!

11.6 Beschreibung der Eingangsdaten

Es stehen mehrere Module zur Auswahl. Beginnend mit dem einfachsten Eingangsmodul **M1**, kommen bei nachfolgenden Modulen jeweils neue Eingänge hinzu. Alle verfügbaren Ausgangsdaten sind schon in Modul **M1** enthalten. Die Module mit höheren Nummern enthalten jeweils die Module mit niedrigeren Nummern (Beispiel: **M2** enthält **M1** und die Erweiterungen von **M2**).

11.6.1 Modul M1

Das Modul **M1** stellt die minimal erforderlichen PROFIBUS-Daten bereit.

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

Scannummer

Die Scannummer wird als PROFIBUS Master-Input bereitgestellt. Es handelt sich dabei um einen 16-Bit Wert (Bytes **wScanNum**, HighByte und LowByte).

Bei jeder Messung wird die Scannummer um 1 erhöht. Im **FreeRunning** Mode erhöht sich die Scannummer auch bei nicht explizit aktiviertem Sensor. Im getriggerten Mode wird die Scannummer mit jedem (erfolgreichen) Trigger erhöht.

Wird die Inspektionsaufgabe gewechselt, werden die PROFIBUS IO-Daten des Sensors eingefroren und die Scannummer ändert sich nicht.

HINWEIS

Es wird empfohlen, die Scannummer in der Applikation zu überwachen, um festzustellen, ob es sich auch tatsächlich um neue Daten handelt.

Sensorinfo

Das Byte **uSensorInfo** beinhaltet im High-Nibble (Bit 7 ... 4) die Zustände der internen (virtuellen) Schaltausgänge des Sensors **Out4** ... **Out1** und im Low-Nibble (Bit 3 ... 0) die im Sensor eingestellte Inspektionsaufgabe **IT_b3** ... **IT_b0**.

Bit	Bezeichnung	Bedeutung
7	Out4	Zustand des (virtuellen) Schaltausgangs 4: 0 = inaktiv, 1 = aktiv
6	Out3	Zustand des (virtuellen) Schaltausgangs 3: 0 = inaktiv, 1 = aktiv
5	Out2	Zustand des (virtuellen) Schaltausgangs 2: 0 = inaktiv, 1 = aktiv
4	Out1	Zustand des (virtuellen) Schaltausgangs 1: 0 = inaktiv, 1 = aktiv
3	IT_b3	
2	IT_b2	Nummer der eltrigt eingestellten Inspeltienseufgebe Mertebereich 0. 15
1	IT_b1	Nummer der aktuel eingestellten inspektionsaulgabe. Wertebereich 0 15
0	IT_b0	

Tabelle 11.3: Eingangsdaten-Byte uSensorInfo

Sensorstatus

Im Sensorstatus-Byte uSensorState sind folgende Informationen enthalten:

Bit	Bezeichnung	Bedeutung
7	ErrM	Fehlermodus, Sensor dauerhaft gestört
6	Cmd	Befehlsmodus: Der Sensor befindet sich im Befehlsmodus. Die Anfragen von der Steuerung wer- den nicht verarbeitet und die Messdaten sind eingefroren (erkennbar an der konstanten Scannum- mer).
5	Menu	Menümodus: Der Sensor wird per Display/Tastatur vom User bedient. Die Anfragen von der Steu- erung werden nicht verarbeitet und die Messdaten sind eingefroren (erkennbar an der konstanten Scannummer).
4	Meas	Erkennungsmodus: Der Sensor befindet sich im Erkennungsmodus. Dies ist der normale Betriebszustand, bei dem die maximale Erkennungsrate erreicht wird.
3	ErrF	Fehler, Sensor dauerhaft gestört.
2	WarnF	Warnung, Sensor kurzfristig gestört.
1	activ	Sensor aktiviert.
0	connect	Sensor über Ethernet verbunden.

Tabelle 11.4: Eingangsdaten-Byte uSensorState

11.6.2 Modul M2

ĭ

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

HINWEIS

Das Modul **M2** enthält die Eingangsdaten von Modul **M1**. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

Auswerteergebnisse der Auswertefenster

Die binären Auswerteergebnisse der 16 Auswertefenster (Analysis Windows) AW1 … AW16 (siehe Kapitel 9.4.2 "Bereich Analysis Functions") werden als PROFIBUS Master-Input bereitgestellt. Es handelt sich dabei um einen 16-Bit Wert (Bytes wResultAWs HighByte und wResultAWs LowByte).

Byte	Bit	Bezeichnung	Bedeutung
	7	AW16	Auswerteergebnis von Auswertefenster 16: 1 = On; 0 = Off
s	6	AW15	Auswerteergebnis von Auswertefenster 15: 1 = On; 0 = Off
te)	5	AW14	Auswerteergebnis von Auswertefenster 14: 1 = On; 0 = Off
-By	4	AW13	Auswerteergebnis von Auswertefenster 13: 1 = On; 0 = Off
gh.	3	AW12	Auswerteergebnis von Auswertefenster 12: 1 = On; 0 = Off
(Hi	2	AW11	Auswerteergebnis von Auswertefenster 11: 1 = On; 0 = Off
5	1	AW10	Auswerteergebnis von Auswertefenster 10: 1 = On; 0 = Off
	0	AW9	Auswerteergebnis von Auswertefenster 9: 1 = On; 0 = Off
	7	AW8	Auswerteergebnis von Auswertefenster 8: 1 = On; 0 = Off
s	6	AW7	Auswerteergebnis von Auswertefenster 7: 1 = On; 0 = Off
te)	5	AW6	Auswerteergebnis von Auswertefenster 6: 1 = On; 0 = Off
By	4	AW5	Auswerteergebnis von Auswertefenster 5: 1 = On; 0 = Off
-WC	3	AW4	Auswerteergebnis von Auswertefenster 4: 1 = On; 0 = Off
Ϋ́, Ϋ́,	2	AW3	Auswerteergebnis von Auswertefenster 3: 1 = On; 0 = Off
5	1	AW2	Auswerteergebnis von Auswertefenster 2: 1 = On; 0 = Off
	0	AW1	Auswerteergebnis von Auswertefenster 1: 1 = On; 0 = Off

Tabelle 11.5: Eingangsdaten-Bytes wResultAWs (High- und Low-Byte)

Die SPS erhält so direkten Zugriff auf die Auswerteergebnisse aller AWs und kann diese in eigene logische Verknüpfungen einbeziehen.

HINWEIS

Die Beschränkungen bei den logischen Verknüpfungen im LRS 36/6 auf 4 Schaltausgänge können so umgangen werden und die Steuerung kann sich selber weitere Schaltausgänge über eigene logische Verknüpfungen definieren.

11.6.3 Modul M3

Ĭ

Die maximale Erkennungsrate von 100Hz ist bei Einstellung dieses Moduls gewährleistet.

HINWEIS

Das Modul **M3** enthält die Eingangsdaten von Modul **M2**. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

Einbindung des LRS 36/PB in den PROFIBUS

Anzahl Objektpunkte (Current Hits) im Auswertefenster 1

Dieser 16-Bit Wert (Bytes wActObjPtsAW1, HighByte und LowByte) gibt die Anzahl der erkannten Objektpunkte (Current Hits) im Auswertefenster 1 (AW1) an. Die SPS kann damit eine eigene Auswertung innerhalb des Auswertefensters machen, ohne die im Sensor parametrierten Ein- und Ausschaltschwellen (HitsOn/HitsOff) zu berücksichtigen (siehe Kapitel 9.4.2 "Bereich Analysis Functions").

Anzahl Objektpunkte (Current Hits) im Auswertefenster 2

5

Anzahl Objektpunkte (Current Hits) im Auswertefenster 5

Beschreibung siehe "Anzahl Objektpunkte (Current Hits) im Auswertefenster 1".

•

HINWEIS

Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster lässt sich bei konstanter Distanz eine gualitative Bestimmung der Objektgröße/Ausdehnung in x-Richtung realisieren.

11.6.4 Modul M4

Ĭ

Mit der Einstellung dieses Moduls sinkt die maximale Erkennungsrate auf weniger als 100Hz, je nach Buslast.

Anzahl Objektpunkte (Current Hits) im Auswertefenster 6

2 Ξ.

•

Anzahl Objektpunkte (Current Hits) im Auswertefenster 9

Beschreibung siehe Anzahl Objektpunkte (Current Hits) im Auswertefenster 1 in Kapitel 11.6.3.

•

Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster lässt sich bei konstanter Distanz eine qualitative Bestimmung der Objektgröße/Ausdehnung in x-Richtung realisieren.

11.6.5 Modul M5

Mit der Einstellung dieses Moduls sinkt die maximale Erkennungsrate auf weniger als 100Hz, je nach Buslast.

ĭ

Das Modul M5 enthält die Eingangsdaten von Modul M4. In diesem Abschnitt sind lediglich die zusätzlichen Eingangsdaten beschrieben.

Anzahl Objektpunkte (Current Hits) im Auswertefenster 10

2 : :

Anzahl Objektpunkte (Current Hits) im Auswertefenster 16

Beschreibung siehe Anzahl Objektpunkte (Current Hits) im Auswertefenster 1 in Kapitel 11.6.3.

HINWEIS

Durch Auswertung der Anzahl der Objektpunkte (Current Hits) in einem Auswertefenster lässt sich bei konstanter Distanz eine qualitative Bestimmung der Objektgröße/Ausdehnung in x-Richtung realisieren.

12 Pflegen, Instand halten und Entsorgen

12.1 Allgemeine Wartungshinweise

Der Lichtschnittsensor bedarf im Normalfall keiner Wartung durch den Betreiber.

Reinigen

Bei Staubbeschlag reinigen Sie den LRS 36 mit einem weichen Tuch und bei Bedarf mit Reinigungsmittel (handelsüblicher Glasreiniger).

12.2 Reparatur, Instandhaltung

Reparaturen an den Geräten dürfen nur durch den Hersteller erfolgen.

Wenden Sie sich f
ür Reparaturen an Ihr Leuze Vertriebs- oder Serviceb
üro. Die Adressen entnehmen Sie bitte der Umschlaginnen-/r
ückseite.

HINWEIS

Bitte versehen Sie Lichtschnittsensoren, die zu Reparaturzwecken an Leuze electronic zurückgeschickt werden, mit einer möglichst genauen Fehlerbeschreibung.

12.3 Abbauen, Verpacken, Entsorgen

Wiederverpacken

Für eine spätere Wiederverwendung ist das Gerät geschützt zu verpacken.

ĭ

HINWEIS

Elektronikschrott ist Sondermüll! Beachten Sie die örtlich geltenden Vorschriften zu dessen Entsorgung.

13 Diagnose und Fehlerbehebung

13.1 Allgemeine Fehlerursachen

Fehler	mögliche Fehlerursache	Maßnahmen
Steuerung empfängt keine	Ethernet-Verbindung	Verbindung mit LRSsoft prüfen.
Messdaten	unterbrochen	Siehe "Inbetriebnahme" auf Seite 46.
	Steuerung nicht mit dem	Befehl "To sensor" verwenden.
	Sensor verbunden	
Objektkonturen nicht	Abschattung	Siehe "Abschattung" auf Seite 12.
erkannt	Verschmutzung der	Optikabdeckungen reinigen,
	Optikabdeckungen	siehe "Reinigen" auf Seite 87.
	Fremdlicht	Fremdlicht vermeiden, Sensor abschirmen, siehe "Wahl des Montageor-
		tes" auf Seite 30.
		Erfassungsbereich mit LPSsoft einschränken, siehe "Field of View" auf
		Seite 57.
	Reflexionen	Reflexionen vermeiden.
		Erfassungsbereich mit LPSsoft einschränken, siehe "Field of View" auf
		Seite 57.
	Unpassende Belichtungs-	Belichtungsdauer an die Reflexionseigenschaften der zu erkennenden
	einstellung	Objekte anpassen. Siehe "Light Exposure" auf Seite 57.
	Objekt nicht im Messbe-	Visuelle Beurteilung mit LRSsoft,
	reich	Arbeitsabstand/Position des Sensors zum Objekt verringern. Siehe
		"Bereich Task Parameters" auf Seite 56.
	Erfassungsbereich zu klein	Erfassungsbereich mit LRSsoft parametrieren.
	gewählt	Siehe "Field of View" auf Seite 57.
	Falscher Inspection Task	Inspection Task mit LRSsoft umstellen oder Ethernet Befehl "Set Actual
	ausgewählt	Inspetion Task" anwenden. Siehe "Set Actual Inspection Task" auf
		Seite 72.
Sensor reagiert nicht auf	Sensor im Mess-/Menümo-	Menüansicht auf OLED-Diplay verlassen.
Befehle	dus	Sensor mit Steuerung verbinden. Ggf. Sensor in Befehlsmodus versetzen.
	Sensor nicht verbunden	Einstellungen der Ethernet Schnittstelle überprüfen. Sensor mit Steuerung
	Sensor nicht aktiviert	Sensor uber PIN 2 auf X1 oder uber PROFIBUS aktivieren.
		Aktivierungseingang ausschalten. Siehe "Activation" auf Seite 56.
Keine Laserlinie	Sensor nicht aktiviert	Sensor uber PIN 2 auf X1 oder uber PROFIBUS aktivieren.
	Laser wurde im Befehlsmo-	
	dus mit dem Befehl "Set	Siehe "Set Laser Gate" auf Seite 71.
	Laser Gate" deaktiviert	
	Sensor im Triggermodus	Einzelmessung durch Ethernet Trigger oder über PIN 5 auf X1 oder über
		PROFIBUS aktivieren.
Sensor reagiert nicht auf	Sensor im Betehlsmodus	Betenismodus verlassen über Beteni "Exit Command Mode"
Irigger	i riggerung zu schnell	I riggerate verkurzen. Der kurzestmogliche Abstand zwischen zwei aufei-
		nanderroigenden Triggersignalen betragt 10ms. Siene "Triggerung -
Concertient eich über Alt:	Activation Innut stable suf	Free Kunning auf Selfe 16.
Sensor lasst sich über Akti-	Activation input stent auf	IVIII LROSOIT den Aktivierungseingang auf "Regard" parametrieren. Siehe
deaktivieren	Disregaro	Activation au Selle 50.

Tabelle 13.1: Allgemeine Fehlerursachen

13.2 Schnittstellenfehler

Fehler	mögliche Fehlerursache	Maßnahmen
Keine Verbindung	Verdrahtungsfehler	Ethernet-Leitung prüfen.
Gelbe LED leuchtet nicht		
Keine Verbindung	DHCP im Netzwerk akti-	Alternative IP-Adresse zuweisen, siehe "Verbindung zum PC herstellen"
Gelbe LED leuchtet	viert, keine feste oder alter-	auf Seite 45.
	native Netzwerkadresse	
	zugewiesen.	
	Falsche IP-Adresse/Sub-	IP-Adresse/Subnetzmaske kontrollieren, IP-Adresse von LRS 36 und
	netzmaske am LRS 36 ein-	Steuerung müssen unterschiedlich sein, Subnetzmaske jedoch gleich,
	gestellt.	siehe Tabelle 8.1 "Adressvergabe im Ethernet" auf Seite 45.
	Falsche Port-Zuweisung	Mit Ping-Befehl prüfen, ob der Sensor antwortet. Wenn ja, Port-Zuweisung
	an LRS 36 / Steuerung	an LRS 36 und Steuerung prüfen. Die eingestellten Ports müssen über-
		einstimmen.
	Firewall blockiert Ports	Firewall vorübergehend ausschalten und Verbindungstest wiederholen.

Tabelle 13.2: Schnittstellenfehler

13.3 Fehlermeldungen im Display (ab Firmware V01.40)

Im Display kann maximal 1 Fehler angezeigt werden. Bei einem Fehler, wird in der ersten Displayzeile eine Fehlermeldung und in der zweiten Displayzeile hierzu eine Klartextnachricht angezeigt. Bei einem Teach-Fehler wird die Fehlernummer angezeigt.

Fehler	mögliche Fehlerursache	Maßnahmen
Error: 001xx, 005xx, 006xx	EMV-Störung	Verkabelung überprüfen, Sensor schirmen.
Error: 00302, 00309,	Umgebungsstemperatur	Einbauraum mit geringerer Temperatur wählen.
00402, 00403	zu hoch	
Error: 01000	Versorgungsspannung	Versorgungsspannung überprüfen.
	beim Einschalten zu hoch	
Error: 01001	Versorgungsspannung	Versorgungsspannung überprüfen.
	beim Einschalten zu niedrig	
Output Overload	Kurzschluss an Ausgang,	Verkabelung überprüfen, Sensor schirmen.
	EMV-Störung	
Teach Error: 001 007	Fehlernummer 1 7,	Je nach Teach Typ (siehe "LRS Teach-Algorithmen" auf Seite 21) korrekte
	siehe Seite 74ff.	Bedingungen herstellen und Teach wiederholen.

Tabelle 13.3: Fehlermeldungen im Display

	HINWEIS										
A	Treten abweichende Servicebüro.	Fehlermeldung	auf,	wenden	Sie	sich	an	lhr	Leuze	Vertriebs-	oder

Bitte trennen Sie den Sensor von der Versorgungsspannung und beseitigen Sie die Fehlerursache.
 Tritt an einem Ausgang ein Kurzschluss auf, so erfolgt folgende Anzeige.

Reset -> Enter

♦ Bitte beseitigen Sie die Fehlerursache.

	HINWEIS
1	Durch Quittierung des Fehlers mit der "Enter"-Taste der Folientastatur wird ein Software Reset des Sensors durchgeführt. Während dieser Zeit ist der Sensor nicht bereit – sichtbar an:- X1- Pin4: Out Ready (Betriebsbereit) und Ethernet Protokoll: "Status".
	Der Sensor startet automatisch und ist nachfolgend wieder betriebsbereit. Eine Ethernet-Verbin- dung muss wieder neu aufgebaut werden.

	HINWEIS
9	bitte handeln Sie nach Kapitel 14 im Servicefall.
U	✤ Kreuzen Sie bitte in der Spalte "Maßnahmen" die Punkte an, die Sie bereits überprüft haben.
U	Kreuzen Sie bitte in der Spalte "Maßnahmen" die Punkte an, die Sie bereits überprür Diese Information braucht unser Serviceteam bei Kontaktaufnahme, siehe Kapitel 1

14 Service und Support

Rufnummer für 24-Stunden-Bereitschaftsservice: +49 7021 573-0

Service-Hotline:

+49 7021 573-123

E-Mail:

techsupport.de@leuze.com

Webseite:

www.leuze.com

14.1 Was tun im Servicefall?

Halten Sie für den Kontakt mit unserem Service bitte folgende Informationen bereit:

- Gerätetyp
- Seriennummer
- Firmware Version
- Parametriersoftware Version
- Anzeige auf Gerätedisplay
- Datei LRSsoft.log (Befindet sich im Installationsverzeichnis von LRSsoft)
- Parameterdatei *.lrs
- gespeicherte Messdaten *.csv
- Ggf. Screenshots und Bilder

Weiterhin benötigen wir folgende Kontaktdaten:

- Firma
- Ansprechpartner/Abteilung
- E-Mail-Adresse
- Telefonnummer
- Adresse

15 Technische Daten

15.1 Allgemeine technische Daten

Optische Daten	
Erfassungsbereich 1)	200 800mm (Richtung z)
Lichtquelle	Laser
Laserklasse	2M nach IEC 60825-1:2014 / EN 60825-1:2014+A11:2021
Wellenlänge	658nm (sichtbares Rotlicht)
Max. Ausgangsleistung (peak(8,7mW ²)
Pulsdauer	< 3ms
Laserlinie	600 x 3mm bei 800mm
Objekterkennung	
Mindestobjektgröße in Richtung x 3)	2 3mm
Mindestobjektgröße in Richtung z 2)	2 6mm
Zeitverhalten	
Ansprechzeit	³ 10 ms (parametrierbar)
Bereitschaftsverzögerung	ca. 1.5s
Elektrische Daten	
Botriobsspappung LIB 4)	18 20\/DC (inkl. Postwalligkoit)
	f 15% von LIB
	£ 200 mA
Ethernet-Schnittstelle	
Schaltausgänge	1 (Betriebsbereit) / 100mA / Pusb-Pull auf X1 ⁵)
Conditatogange	1 (Kaskadierung) / 100mA / Push-Pull auf X1 4)
	4 / 100mA / Push-Pull auf X3 4) ⁶⁾ (nur LRS 36/6 und LRS 36/6 10)
Fingänge	1 (Trigger) auf X1
	1 (Aktivierung) auf X1
	3 (Auswahl Inspektionsaufgabe) auf X3 ⁷⁾
	(nur LRS 36/6 und LRS 36/6.10)
Signalspannung high/low	³ (UB-2V)/£ 2V
PROFIBUS (nur LRS 36/PB)	
Schnittstellentyp	1xRS 485 auf X4 (nur LRS 36/PB)
Protokolle	PROFIBUS DP/DPV1 Slave
Baudrate	9.6kBaud 6stMBaud
Anzeigen	
LED grün Dauerlicht	hetriehshereit
	keine Spannung
I FD gelb Dauerlicht	Ethernetverbindung vorhanden
blinkend	Ethernet-Datenübertragung aktiv
aus	keine Ethernetverbindung vorhanden
Mechanische Daten	
	Aluminiumrahmen mit Kunstetoffdeckel
Optikabdeckupg	Glas oder Kunststoff (siehe Kanitel 16 1)
Gewicht	620 g
Anschlussart	M12-Rundsteckverbindung
Ilmaohunasdaton	
(Betrieb/Lager)	
Schutzbeschaltung 8)	1 2 3
VDF-Schutzklasse	III. Schutzkleinspannung
Schutzart	IP 67
Gültiges Normenwerk	IEC/EN 60947-5-2 LIL 508
e aligee i formorite	,,,,,,,,

1) Remissionsgrad 6% ... 90%, gesamter Erfassungsbereich, bei 20°C nach 30min. Aufwärmzeit, mittlerer Bereich UB

 Max. zugängliche Strahlung entsprechend Messbedingung 3 Lasernorm IEC 60825-1. (Messblende mit Durchmesser 7 mm in 100 mm Abstand von der virtuellen Quelle)

3) Minimalwert, abhängig von Messabstand und Objekt, Erprobung unter Applikationsbedingungen erforderlich

- 4) Bei UL-Applikationen: nur für die Benutzung in "Class 2"-Stromkreisen nach NEC
- 5) Die Push-Pull (Gegentakt) Schaltausgänge dürfen nicht parallel geschaltet werden
- 6) Anzahl Erkennungsfelder: bis zu 16 mit logischer Verknüpfungsmöglichkeit
- 7) Anzahl Inspektionsaufgaben: bis zu 16 (davon 8 über Eingänge aktivierbar)
- 8) 1=Transientenschutz, 2=Verpolschutz, 3=Kurzschluss-Schutz für alle Ausgänge, externe Schutzbeschaltung für induktive Lasten erforderlich

15.2 Typischer Erfassungsbereich

- A Erfassungsbereich
- X Linienlänge

15.3 Maßzeichnung

- F
- G X4: Buchse M12x1, 5-polig, B-kodiert
- FE-Schraube Н
- OLED-Display und Folientastatur J
- Κ Gewinde M4, 4,5 tief
- Aufnahme für Befestigungssystem BT 56 / BT 59 L
- Nullpunkt und Orientierung des Koordinatensystems für die Erfassungsdaten Μ
- Bohrung 4mm in Senderachse Ν

Bild 15.2: Maßzeichnung LRS 36

16 Typenübersicht und Zubehör

16.1 Typenübersicht

16.1.1 LPS

Typenbezeichnung	Beschreibung	Artikelnummer
LPS 36/EN	Linienprofilsensor zur Profilgenerierung, Messbereich 200 800 mm,	50111324
	Linienlänge 600mm mit Ethernetschnittstelle, Inkrementalgeberanschluss	
LPS 36	Linienprofilsensor zur Profilgenerierung, Messbereich 200 800 mm,	50111325
	Linienlänge 600mm mit Ethernetschnittstelle	
LPS 36.10	Linienprofilsensor zur Profilgenerierung, Messbereich 200 800mm,	
	Linienlänge 600mm mit Ethernetschnittstelle, Kunststoffscheibe	
LPS 36 HI/EN	Linienprofilsensor zur Profilgenerierung, Messbereich 200 600mm, 5	
	Linienlänge 140mm mit Ethernetschnittstelle, Inkrementalgeberanschluss	
LPS 36 HI/EN.10	Linienprofilsensor zur Profilgenerierung, Messbereich 200 600mm,	50137351
	Linienlänge 140mm mit Ethernetschnittstelle, Inkrementalgeberanschluss,	
	Kunststoffscheibe	

Tabelle 16.1: Typenübersicht LPS

16.1.2 LRS

Typenbezeichnung	Beschreibung	Artikelnummer
LRS 36/6	Linienprofilsensor zur Produkterkennung (auch mehrspurig), Erfassungsbe-	50111330
	reich 200 800mm, Linienlänge 600mm, Ethernetschnittstelle,	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe	
LRS 36/6.10	Linienprofilsensor zur Produkterkennung (auch mehrspurig), Erfassungsbe-	50115418
	reich 200 800mm, Linienlänge 600mm, Ethernetschnittstelle,	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe,	
	Ausführung mit Kunststoffscheibe	
LRS 36/PB	Linienprofilsensor zur Produkterkennung (auch mehrspurig),	50111332
	Erfassungsbereich 200 800mm, Linienlänge 600mm, Ethernetschnitt-	
	stelle, PROFIBUS DP	
LRS 36/PB.10	Linienprofilsensor zur Produkterkennung (auch mehrspurig),	
	Erfassungsbereich 200800mm, Linienlänge 600mm, Ethernetschnitt-	
	stelle, PROFIBUS DP, Ausführung mit Kunststoffscheibe	

Tabelle 16.2: Typenübersicht LRS

16.1.3 LES

Typenbezeichnung	Beschreibung	Artikelnummer
LES 36/PB	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch	50111327
	mehrspurig), Erfassungsbereich 200 800 mm, Linienlänge 600 mm, Ether-	
	netschnittstelle, PROFIBUS DP	
LES 36HI/PB	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch	50111331
	mehrspurig), Erfassungsbereich 200 600mm, Linienlänge 140mm, Ether-	
	netschnittstelle, PROFIBUS DP	
LES 36/VC6	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch	50111333
	mehrspurig), Erfassungsbereich 200 800mm, Linienlänge 600mm, Ether-	
	netschnittstelle, Analoger Strom- oder Spannungsausgang,	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe	
LES 36HI/VC6 Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch		50111329
	mehrspurig), Erfassungsbereich 200 600mm, Linienlänge 140mm, Ether-	
	netschnittstelle, Analoger Strom- oder Spannungsausgang	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe	
LES 36HI/VC6.10	Linienprofilsensor zur Kantenerkennung und Objektvermessung (auch	50136678
	mehrspurig), Erfassungsbereich 200 600mm, Linienlänge 140mm, Ether-	
	netschnittstelle, Analoger Strom- oder Spannungsausgang	
	4 Schaltausgänge für Erfassungsinformationen,	
	3 Schalteingänge zur Auswahl der Inspektionsaufgabe,	
	Kunststoffscheibe	

Tabelle 16.3: Typenübersicht LES

16.2.1 Befestigung

Befestigungsteile

Typenbezeichnung	Beschreibung	Artikelnummer
BT 56	Befestigungsteil mit Schwalbenschwanz für Rundstange	500 27375
BT 59	Befestigungsteil mit Schwalbenschwanz für ITEM-Profil	50111224

Tabelle 16.4: Befestigungsteile für den LRS 36

16.2.2 Zubehör vorkonfektionierte Leitungen zur Spannungsversorgung X1

Kontaktbelegung X1-Anschlussleitung

X1-Anschlussleitung (8-pol. Buchse, A-kodiert)				
X1	Pin	Name	Aderfarbe	
InAct	1	VIN	WS	
	2	InAct	br	
	3	GND	gn	
OutCas	4	OutReady	ge	
M12-Buchse	5	InTrig	gr	
	6	OutCas	rs	
	7	Nicht verbinden!	bl	
	8	Nicht verbinden!	rt	

Tabelle 16.5: Leitungsbelegung KD S-M12-8A-P1-...

Bestellbezeichnungen der Leitungen zur Spannungsversorgung

Typenbezeichnung	eichnung Beschreibung		
M12-Buchse für X1, ax	ialer Leitungsabgang, offenes Leitungsende		
KD S-M12-8A-P1-020	Leitungslänge 2m	50135127	
KD S-M12-8A-P1-050	Leitungslänge 5m	50135128	
KD S-M12-8A-P1-100	Leitungslänge 10m	50135129	
KD S-M12-8A-P1-150	Leitungslänge 15m	50135130	
KD S-M12-8A-P1-250	Leitungslänge 25m	50135131	
KD S-M12-8A-P1-500	Leitungslänge 50m	50135132	

Tabelle 16.6: X1-Leitungen für den LRS 36

Leuze

16.2.3 Zubehör für die Ethernet-Schnittstelle X2

Vorkonfektionierte Leitungen mit M12-Stecker/offenem Leitungsende

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, offenes Leitungsende)				
X2	Name	Pin (M12)	Aderfarbe	
Rx+	Tx+	1	ge	
$Tx - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} Tx +$	Rx+	2	ws	
SH 4	Tx-	3	or	
Rx-	Rx-	4	bl	
(D-kodiert)	SH	Schirmung (Gewinde)	-	

Tabelle 16.7: Leitungsbelegung KS ET-M12-4A-P7-...

Typenbezeichnung	Beschreibung	Artikel- nummer	
M12-Stecker für X2, axialer Leitungsabgang, offenes Leitungsende			
KS ET-M12-4A-P7-020	Leitungslänge 2m	50135073	
KS ET-M12-4A-P7-050	Leitungslänge 5m	50135074	
KS ET-M12-4A-P7-100	Leitungslänge 10m	50135075	
KS ET-M12-4A-P7-150	Leitungslänge 15m		
KS ET-M12-4A-P7-300	Leitungslänge 30m		

Tabelle 16.8: Ethernet-Anschlussleitungen M12-Stecker/offenes Leitungsende

Vorkonfektionierte Leitungen mit M12-Stecker/RJ-45-Stecker

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, M12 auf RJ-45)					
X2	Name	Pin (M12)	Aderfarbe	Pin (RJ-45)	
Rx+	Tx+	1	ge	1	
$Tx - 3 \begin{pmatrix} \circ \\ \circ \\ \circ \end{pmatrix} + Tx +$	Rx+	2	ws	3	
SH 4	Tx-	3	or	2	
$\frac{1}{Rx}$	Rx-	4	bl	6	
M12-Stecker (D-kodiert)	SH	Schirmung (Gewinde)	-		

Tabelle 16.9: Leitungsbelegung KSS ET-M12-4A-RJ45-A-P7-...

Typenbezeichnung	Beschreibung	Artikel- nummer
M12-Stecker für X2 auf RJ-45 St	lecker	
KSS ET-M12-4A-RJ45-A-P7-020	Leitungslänge 2m	50135080
KSS ET-M12-4A-RJ45-A-P7-050	Leitungslänge 5m	50135081
KSS ET-M12-4A-RJ45-A-P7-100	Leitungslänge 10m	50135082
KSS ET-M12-4A-RJ45-A-P7-150	Leitungslänge 15m	50135083
KSS ET-M12-4A-RJ45-A-P7-300	Leitungslänge 30m	50135084

 Tabelle 16.10:
 Ethernet-Anschlussleitungen M12-Stecker/RJ-45

M12-Ethernet-Anschlussleitungen (4 pol. Stecker, D-kodiert, beidseitig)					
X2	Name	Pin (M12)	Aderfarbe	Pin (M12)	
Rx+	Tx+	1	ge	1	
$Tx - \left(3 \begin{pmatrix} \circ & \circ \\ \circ & \circ \end{pmatrix} \right) Tx +$	Rx+	2	ws	2	
SH 4	Tx-	3	or	3	
Rx-	Rx-	4	bl	4	
(D-kodiert)	SH	Schirmung (Gewinde)	-	Schirmung (Gewinde)	

Tabelle 16.11: Leitungsbelegung KSS ET-M12-4A-M12-4A-P7-...

Typenbezeichnung	Beschreibung	Artikel- nummer
M12-Stecker + M12 Stecker für X	K2	
KSS ET-M12-4A-M12-4A-P7-020	Leitungslänge 2m	50137077
KSS ET-M12-4A-M12-4A-P7-050	Leitungslänge 5m	50137078
KSS ET-M12-4A-M12-4A-P7-100	Leitungslänge 10m	50137079
KSS ET-M12-4A-M12-4A-P7-150	Leitungslänge 15m	50137080
KSS ET-M12-4A-M12-4A-P7-300	Leitungslänge 30m	50137081

Tabelle 16.12: Ethernet-Anschlussleitungen M12-Stecker/M12-Stecker

Steckverbinder

Typenbezeichnung	Beschreibung	Artikel- nummer
D-ET1	RJ45 Stecker zum selbstkonfektionieren	50108991
KDS ET M12 / RJ 45 W - 4P	Umsetzer von M12 D-kodiert auf RJ 45 Buchse	50109832

Tabelle 16.13: Steckverbinder für den LRS 36

16.2.4 Zubehör vorkonfektionierte Leitungen für X3 (nur LRS 36/6)

Kontaktbelegung X3-Anschlussleitungen

X3 (8-pol. Stecker, A-kodiert)				
X3	Pin	Name	Aderfarbe	
Out3 GND 2 In Sel 1	1	Out4	WS	
Out2 4 0 0 0 1 Out4	2	Out3	br	
	3	GND	gn	
InSel3	4	Out2	ge	
M12-Stecker (A-kodiert)	5	Out1	gr	
	6	InSel3	rs	
	7	InSel2	bl	
	8	InSel1	rt	

Tabelle 16.14: Leitungsbelegung KS S-M12-8A-P1-...

Leuze

Bestellbezeichnungen der Anschlussleitungen für X3

Typenbezeichnung	Beschreibung	Artikel- nummer	
M12-Stecker für X3, axialer Leitungsabgang, offenes Leitungsende, geschirmt			
KS S-M12-8A-P1-020	Leitungslänge 2m	50135138	
KS S-M12-8A-P1-050	Leitungslänge 5m	50135139	
KS S-M12-8A-P1-100	Leitungslänge 10m	50135140	
KS S-M12-8A-P1-150	Leitungslänge 15m	50135141	
KS S-M12-8A-P1-300	Leitungslänge 30m	50135142	

Tabelle 16.15: X3-Leitungen für den LRS 36/6

16.2.5 Anschlusszubehör / vorkonfektionierte Leitungen für X4 (nur LRS 36/PB)

Kontaktbelegung X4-Anschlussleitungen

X4 (5-pol. Stecker, B-kodiert)				
X4	Pin	Name	Bemerkung	
A	1	N.C.	_	
N.C. $3 \begin{pmatrix} 2 \\ 0 \\ 5 \\ 0 \end{pmatrix} 1$ N.C.	2	А	Empfangs-/Sendedaten RxD/TxD-N, grün	
N.C. 4 B	3	N.C.	_	
M 12-Stecker (B-kodiert)	4	В	Empfangs-/Sendedaten RxD/TxD-P, rot	
X4	5	N.C.	_	
$VP \begin{pmatrix} A \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Gewinde	FE	Funktionserde (Gehäuse)	
M12-Buchse (B-kodiert)				
(D-Kodiert)				

Tabelle 16.16: Anschlussbelegung X4

- 1 Leiter mit Isolierung rot
- 2 Leiter mit Isolierung grün
- 3 Beilauf-Litze
- 4 Faser-Vlies

Bestellbezeichnungen des Anschlusszubehörs für X4

Typenbezeichnung	Beschreibung	Artikel- nummer	
Terminierungsstecker zur Busterminierung PROFIBUS			
TS 02-4-SA	M12 Terminierungswiderstand für PROFIBUS	50038539	
PROFIBUS T-Stück			
KDS BUS OUT M12-T-5P	M12 T-Stück für BUS OUT	50109834	

Tabelle 16.17: PROFIBUS Anschlusszubehör für den LRS 36.../PB

Bestellbezeichnungen der PROFIBUS Anschlussleitungen für X4

Typenbezeichnung	Beschreibung	Artikel- nummer
KD PB-M12-4A-P3-020	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 2m	50135242
KD PB-M12-4A-P3-050	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 5m	50135243
KD PB-M12-4A-P3-100	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 10m	50135244
KD PB-M12-4A-P3-150	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 15m	50135245
KD PB-M12-4A-P3-300	M12-Buchse für BUS IN, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 30m	50135246
KS PB-M12-4A-P3-020	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 2m	50135247
KS PB-M12-4A-P3-050	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 5m	50135248
KS PB-M12-4A-P3-100	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 10m	50135249
KS PB-M12-4A-P3-150	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 15m	50135250
KS PB-M12-4A-P3-300	M12-Stecker für BUS OUT, axialer Leitungsabgang, offenes Leitungsende, Leitungslänge 30m	50135251
KDS PB-M12-4A-M12-4A-P3-020	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 2m	50135253
KDS PB-M12-4A-M12-4A-P3-050	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 5m	50135254
KDS PB-M12-4A-M12-4A-P3-100	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 10m	50135255
KDS PB-M12-4A-M12-4A-P3-150	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 15m	50135256
KDS PB-M12-4A-M12-4A-P3-300	M12-Stecker + M12 Buchse für PROFIBUS, axiale Leitungsabgänge, Leitungslänge 30m	50135257

16.2.6 Parametriersoftware

	HINWEIS
1	Die aktuelle Version der Parametriersoftware finden Sie auf der Leuze Webseite www.leuze.com. Geben Sie dazu ihre Artikelnummer in der Suche ein. Sie finden die Software im Register Downloads ihres Gerätes.

16.2.7 Konfigurationsspeicher

Typenbezeichnung	Beschreibung	Artikel- nummer
K-DS M12A-8P-0,75m-LxS36-CP	Konfigurationsspeicher für Lichtschnittstensoren LxS 36	50125541

Tabelle 16.19: Konfigurationsspeicher für LxS 36

Der Konfigurationsspeicher für die Lichtschnittstensoren LxS 36 wird mit dem Anschluss X1 verbunden und verlängert die vorhandene Anschlussleitung zur Spannungsversorgung (siehe Kapitel 16.2.2). Der Konfigurationsspeicher sichert die konfigurierten Inspektionsaufgaben, sowie die Einstellung allgemeiner Parameter wie Betriebsmodus, Aktivierung, Kaskadierung, Erfassungsbereich (FoV) etc. aus dem angeschlossenen Sensor und überträgt diese nach einem Austausch in das neue Gerät.

17 Anhang

17.1 Glossar

Aktivierungseingang	Eingang zum Ein-/Ausschalten des Laserstrahls. Keine exakte zeitliche Zuordnung zwischen dem Anlegen/Wegnehmen des Signals und dem Ein-/ Ausschaltzeitpunkt.
Ausrichthilfe	Visualisierung der Z-Koordinaten auf dem Display: Die Messwerte am linken Rand, in der Mitte und am rechten Rand der in X-Achse verlaufenden Laser- linie werden angezeigt. Dient dazu, die Lichtaustrittsfläche des Lasers paral- lel zum Förderband auszurichten.
Auswertefenster (Analysis Window - AW)	Rechteckiger Bereich des LRS 36, in dem Objekte erkannt werden. Ein Objekt wird nur erkannt, wenn die Anzahl der Objekt-Messpunkte (current hits) größer gleich der definierten Mindestanzahl von Messpunkten (Hits On) ist.
Auswertefenster (Analysis Window = AW)	Rechteckiger Bereich, in dem die Anzahl der Objektpunkte im AW ausge- wertet wird. Das Ergebnis des AWs ist wahr (=1), wenn die Anzahl der Objektpunkte (Current Hits) ≥ der Hits On ist. Das Ergebnis ist falsch (=0), wenn die Anzahl der Objektpunkte (Current Hits) ≤ der Hits Off ist. Liegt die Anzahl der Objektpunkte (Current Hits) zwischen Hits On/OFF bleibt des Ergebnis des AWs unverändert.
Auswertetiefe (Analysis Depth)	Die Auswertetiefe bestimmt, nach wie vielen identischen Ergebnissen eine Änderung der Schaltausgangsinformation erfolgt. Durch die Auswertetiefe wird die erreichbare Ansprechzeit wie auch die Schaltsicherheit erhöht, z.B. erhöht sich die Standard-Ansprechzeit von 10ms auf 100ms bei einer Auswertetiefe von 10. Die Auswertetiefe kann für jeden Ausgang gesondert (abweichend) einge- stellt werden
Belichtung	Zeitdauer für die das vom zu detektierenden Objekt reflektierte Licht auf den CMOS-Empfänger trifft.
Datei	Über die Bedienoberfläche am PC oder in der Steuerung abspeicherbarer oder aufrufbarer Aufgabensatz.
Display	Anzeige-/Bedienfeld direkt am Sensor.
Erfassungsbereich (Field of view - FoV)	Der Erfassungsbereich wird per Parametriersoftware definiert. Ohne Ände- rung des vordefinierten Bereichs verläuft dieser trapezförmig entsprechend den Angaben zum maximalen Erfassungsbereich. Wird zur Lösung der Applikationsaufgabe nicht der maximale Erfassungsbe- reich benötigt, so empfiehlt es sich diesen Bereich auf ein Minimum zu redu- zieren.
Inspektionsaufgabe (In- spection Task)	Die Zusammenfassung aller Einstellungen, welche zur Lösung einer Appli- kation benötigt werden. Der LRS 36 erlaubt das Arbeiten mit bis zu 16 ein- zelnen Inspektionsaufgaben, die jeweils bis zu 16 voneinander unabhängig parametrierbare und sich beliebig überlappende AWs enthalten können. Das bedeutet, dass jede Inspection Task eine komplette Sensorparametrierung beinhaltet: Bis zu 16 AW mit den zugehörigen Parametern, die Zuordnung der AW-Stati zu den Schaltausgängen, sowie Parameter wie Betriebsmo- dus, Aktivierungseingang, Kaskadierung, Erfassungsbereich (FoV) u.a. (siehe Kapitel 9.4 "Parametereinstellungen/Reiter Parameters").

Inspektionsaufgabe (Inspection task)	In der Parametriersoftware werden alle Einstellungen für die Applikation vor- genommen und in bis zu 16 Inspektionaufgaben (Inspection Tasks) abge- speichert. Durch Umschaltung der Inspektionsaufgabe lassen sich leicht Anpassungen für verschiedene Aufgabenstellungen vornehmen.
IP-Adresse	Adresse im Netzwerk
Kaskadierung	Getriggerte Reihenschaltung mehrerer Sensoren. Ein Mastersensor über- nimmt die Ansteuerung (Synchronisation) von bis zu 9 Slaves.
Kombinationstabelle (AW combination table)	Kombinationstabelle für die Auswertefenster Bearbeitungsfenster in der Parametriersoftware LRSsoft, in dem die Aktivie- rung und Invertierung des Ausgangs, die Eingabe der Auswertetiefe und vor allem auch die Zuordnung der AW-Stati zu den binären Schaltausgängen OUT 1 bis Out 4 erfolgt. Hierbei ist pro Schaltausgang die logische UND- Verkünpfung mehrerer AW-Stati zu einem Zwischenergebnis und zusätzli- che ODER-Verknüpfung von bis zu 4 Zwischenergebnissen möglich.
Messzeit	Zeit zwischen zwei einzelnen Messungen.
Objekt	Vom Sensor zu detektierendes Medium.
Objektpunkte (Hit Points)	Anzahl der Bildpunkte eines Objekts, die sich im Auswertefenster (AW) befinden.
Offline	LRSsoft wird ohne Sensor betrieben
Online	LRSsoft wird mit Sensor betrieben
Profil Profildaten	Distanz- und Positionsverlauf einer oder mehrerer Messungen, Koordinaten des jeweiligen X/Z-Wertes beim Durchlaufen des Laserstrahls auf der X-Achse.
2D-Ansicht	Grafische Darstellung der X/Z-Koordinatenwerte eines Objektes im Erfas- sungsbereich.
Trigger	Auslösen eines oder mehrerer Messvorgänge mit exakter zeitlicher Zuord- nung.
UDP	Standardisiertes verbindungsloses Ethernet-Protokoll, Schicht 4.

17.2 Revision History / Feature list

17.2.1 Firmware

Firmware	Funktionsumfang	Bedeutung	erforderliche Parametriersoftware
ab V01.10	mehrere Inspection Tasks beim LPS 36	bis zu 16 verschiedene Parametrierungen im Sen- sor speicherbar und per Befehl umschaltbar	LxSsoft V1.20 (LPSsoft V1.20, LRSsoft V1.04)

Tabelle 17.1: Revision History - Firmware

Firmware	Funktionsumfang	Bedeutung	erforderliche Parametriersoftware	
ab V01.20	optimiertes Encoder-Inter- face	LPS 36/EN: auch einkanalige Encoder werden unterstützt, Enco- deroptionen, neue Werks- einstellungen	LxSsoft V1.20 (LPSsoft V1.20, LRSsoft V1.10)	
	Deaktivierung Datenaus- gabe X-Koordinaten	LPS 36: Reduktion der Daten- menge (sinnvoll bei SPS- Auswertung)		
	Verlängerung der Übertra- gungspause zwischen den Z- und X-Datenpaketen	LPS 36: Verbessertes Einlesen von Datenpakten (sinnvoll bei SPS-Auswertung)		
	Ethernet Trigger	Reduktion der Daten- menge (sinnvoll bei SPS- Auswertung), Reduktion des Verkabelungsauf- wands		
ab V01.25	Unterstützung von PROFIBUS	zusätzliche Gerätevariante LRS 36/PB mit PROFIBUS	LxSsoft V1.30 (LPSsoft V1.30, LRSsoft V1.20)	
	Ethernet-Sensoraktivie- rung	Aktivierung nun über Ethernet möglich. Reduk- tion des Verkabelungsauf- wands		
	Werkseinstellung Auswer- tetiefe 1 bei LRS 36	LRS 36: Mit dieser Einstel- lung lässt sich die maxi- male Erkennungsrate erreichen.	-	
ab V01.30	Unterstützung von LES 36	zusätzliche Gerätevarian- ten LES 36/PB mit PROFI- BUS und LES 36/VC mit Analogausgang	LxSsoft V1.40 (LPSsoft V1.33, LESsoft V1.10, LRSsoft V1.20)	
ab V01.40	Unterstützung von LPS 36HI/EN	zusätzliche Geratevariante LPS 36HI/EN	LXSsoft V2.00 (LPSsoft V2.00, LESsoft V1.10,	
	Neuer Befehl "Ethernet Activation"	Einschalten von Laser über Ethernet-Befehl	LRSsoft V1.20)	
	Neue Befehle "Get/Set Sin- gle Inspection Task Para- meter"	Parameteranpassung über Ethernet-Befehle ohne LPSsoft		
	Anzeige von Fehlernum- mern auf Display	schnelle Erkennung der Fehlerursache		
	Erweiterung der maxima- len Leitungslängen	maximale Leitungslänge 50m		
ab V01.41	Erweiterung der Bedien- möglichkeit am Sensor	Auswahl der Inspection Tasks über das Bedienfeld am Sensor	LXSsoft V2.30 (LPSsoft V2.20, LESsoft V2.30, LRSsoft V2.20)	

Tabelle 17.1: Revision History - Firmware

Firmware	Funktionsumfang	Bedeutung	erforderliche Parametriersoftware
	Unterstützung von LES 36/ VC6, LES 36HI/VC6	zusätzliche Geratevarian- ten LES 36/VC6, LES 36HI/VC6	
	Relative Fensterpositionie- rung von LES		
ab V01.50	Implementierung von Teach Funktionen beim LRS 36	 3 Teach Fuktionen: "Flächentaster" "Hintergrundausblendung "Mehrspurige Vollständigkeitskontrolle" Parametrierung und Ausführung über Menü und Ethernet. 	LRSsoft V2.40
	Ethernet Standard Gate- way, Ziel-Portnummer	IP Adresse für Standard Gateway und Ziel-Port- nummer einstellbar	
	Neue Menüstruktur	Übersichtlichere Strukturie- rung des Bedienmenüs	
ab V01.60	Neues weißes Display	Änderung der Display- farbe von blau in weiß	

Tabelle 17.1: Revision History - Firmware

17.2.2 Parametriersoftware

Version	Funktionsumfang	Bedeutung
LxSsoft V1.20 (LPSsoft V1.20, LRSsoft V1.04)	Installer für LPSsoft und LRSsoft	einfache Installation, "Accept"-Button bei LRSsoft
LPSsoft V1.30, LRSsoft V1.10	Triggerbetrieb wird von auch bei laufender Parameteriersoftware unterstützt	LRS 36, LPS 36: optimierte Diagnose im Trigger- betrieb
	Anzeige Encoder-Zählerstand	LRS 36/EN: Visualisierung Encoder
	Neu: Encoder Parameters	LRS 36/EN: Parmetrierung Encoder Inter- face: ein-/mehrkanalige Encoder, Überlaufwerte, Drehrichtungs- umkehr
LxSsoft V1.30 (LPSsoft V1.30, LRSsoft V1.20)	Unterstützung der zusätzlichen Gerätevariante LRS 36/PB mit PROFIBUS	Parametrierung von PROFIBUS Einstellungen und LRS 36/PB
LxSsoft V1.40 (LPSsoft V1.33, LESsoft V1.10, LRSsoft V1.20)	Unterstützung der zusätzlichen Gerätevarianten LES 36/PB mit PROFIBUS und LES 36/VC mit Analogausgang	Parametrierung von LES 36 Gerätevarianten

Tabelle 17.2: Revision History - Parametriersoftware

Version	Funktionsumfang	Bedeutung
LxSsoft V1.41 (LPSsoft V1.33, LESsoft V1.10, LRSsoft V1.20)	Installer für Windows 7	Software läuft unter 32 und 64Bit Version von Windows 7
LXSsoft V2.00 (LPSsoft V2.00, LESsoft V1.10, LRSsoft V1.20)	Unterstützung der zusätzlichen Gerätevariante LPS 36Hi/EN	Parametrierung von LPS 36Hi/ EN
LXSsoft V2.30 (LPSsoft V2.20, LESsoft V2.30, LRSsoft V2.20)	Import Inspection Task	Einstellungen einzelner Inspec- tion Tasks können aus einem gespeicherten LRS 36 Projekt importiert werden
LXSsoft V2.31 (LPSsoft V2.31, LESsoft V2.31, LRSsoft V2.31)	Dokumentationen aktualisiert	
LRSsoft V2.40	Auswertefunktion Summenbil- dung aller Objektpunkte selek- tierter AWs	Die neuen Teach Funktion erfor- derten Erweiterungen bei der logischen Auswertung von Aus- wertefenstern.
LXSsoft V2.40 (LPSsoft V2.40, LESsoft V2.40, LRSsoft V2.40)	Konfiguration und Abspeichern der IP Adresse des Standard Gateways und der Ziel- Port- nummer	Die IP Adresse des Standard Gateways und die Ziel-Portnum- mer kann nun konfiguriert und mit im Parametersatz gesichert werden.
LXSsoft V2.52 (LPSsoft V2.52, LESsoft V2.52, LRSsoft V2.52)	Unterstützung neuer Gerätevari- anten	
LXSsoft V2.60 (LPSsoft V2.60, LESsoft V2.60, LRSsoft V2.60)	Updatefähige Geräteliste, Unter- stützung neuer Gerätevarianten	Die Geräteliste kann mittels Update aktualisiert werden, ohne dass eine neue Softwareversion installiert werden muss (siehe Kapitel 9.2.2)

Tabelle 17.2: Revision History - Parametriersoftware

Index

Numerics 2D-Profildaten	11	L Laserabschattur
A		Leistungsmerkn
Abschattung	12	Leitungen für de
Aktivierung	16	Leitungen zur S
Aktivierungseingang	15, 36, 56	Line Profile Sen
Anschlussbelegung X1	36	
Anschlussbelegung X2	37	M
Anschlussbelegung X3	37, 38	Mechanische Da
Anschlussbelegung X4	98	Menü Nevigetie
Anzeigen Aufwärmzeit	91	Menüstruktur
Auslieferungszustand	43	Messbereich
Ausrichthilfe	31.39	Messdaten aus
Ausrichtung	30	Mindestobjektgr
_		Modul
B	00	Montageort
Betenismodus	66	0
Befestigungshut	28	
Belichtungeinstellung	95 57	
Belichtungsdauer	57	Oplische Dalen
Blendung	15	Р
		Pflegen, Instanc
C		Port 9008
CAT 5 Leitung	37	PROFIBUS
E		Adressverga
– Elektrische Daten	91	Ausgange
Elektrischer Anschluss	32	Findände
Empfängerabschattung	12	Eingange
Empfangsoptik	11	GSD-Datei
Encoderzählerstand	68	Messfrequer
Entsorgen	87	Messrate
Entsorgung von Verpackungsmaterial	27	Modul
Erfassungsbereich	57	Parameter
Erkennungsmodus	00 27	Slave
Ethernet-Schnittstelle	96	P
Ethernet-Verbindung	54	Reinigen
Ellomot vorbindung	01	Reparatur
F		-
Fehlerbehebung	88	S
Fehlergrenzen	91	Schirmung
Feniermeldung	52	Schnittstellenau
Ferlierursachen	00 66	Service unu Sup
Thewan	00	Steckerbelegun
G		Steckverbinder
gegenseitige Beeinflussung	17	Stromversorgun
GSD-Datei	79, 80	Systemanforder
1		Systemvariable
Inbetriebnahme	15, 46	Ŧ
Instandhaltung	87	I Torminiorung
IP-Adresse	45	Triangulationsp
ITEM-Profil	29	Triggereingang
K		Triggerzeitpunkt
n Kaskadierungsausgang	36 56	Typenschild
Koordinatensystem	30, 30	Typenübersicht
	00	

L Laserabschattung Leistungsmerkmale Leitungen für den Encoderanschluss Leitungen für den PROFIBUS Anschluss Leitungen zur Spannungsversorgung Line Profile Sensor	12 14 97 98 95 15
M Mechanische Daten Mechanischer Aufbau Menü-Navigation Menüstruktur Messbereich Messdaten auswerten Mindestobjektgröße Modul Montageort	91 15 43 41 92 62 13 80 30
O OLED-Display Optische Daten	39 91
P Pflegen, Instand halten und Entsorgen Port 9008 PROFIBUS Adressvergabe Ausgänge Ausgangsdaten Eingänge Eingangsdaten GSD-Datei Messfrequenz Messrate Modul Parameter Slave	87 45 79 80 81 80 81 79, 80 85 86 80, 84 80 79
R Reinigen Reparatur	31, 87 87
S Schirmung Schnittstellenausführung Service und Support Stangenbefestigung Steckerbelegung Steckverbinder Stromversorgung Systemanforderungen Systemvariable	33, 37 32 90 29 32 97 36 48 53
T Terminierung Triangulationsprinzip Triggereingang Triggerzeitpunkt Typenschild	99 11 36, 56 16 27

94
Index

U UDP Umgebungsdaten Umgebungsvariable	45 91 53
W Werkseinstellung	44
Z Zeitverhalten	91