△ Leuze electronic

the sensor people

GS 754B CCD-Gabellichtschranken

E 04-2017/01 5011466 echnische Änderungen orbehalten

△ Leuze electronic

© 2017

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany

Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com

info@leuze.de

1	Zu diesem Dokument	3
1.1	Zeichenerklärung	3
2	Sicherheit	4
2.1	Bestimmungsgemäße Verwendung	4
2.2	Vorhersehbare Fehlanwendung	5
2.3	Befähigte Personen	5
2.4	Haftungsausschluss	6
3	Bedien- und Anzeigeelemente	7
4	Gerätebeschreibung	8
4.1	Allgemeines	8
4.2	Optische Daten	8
4.3	LED-Anzeige	9
5	Applikationen	. 10
5.1 5.1.1 5.1.2	Durchmesserermittlung	11
5.2	Kantenmessung und Höhenkontrolle	12
5.3	Breitenmessung	13
6	Gerätekonfiguration	. 14
6.1	Allgemeines	14
6 .2 6.2.1	Terminalprogramm	
6.3 6.3.1	Konfiguration der Mess-, Auswerte- und Ausgabeverfahren über Schnittstelle P Konfigurationstabelle für GS 754B	
6.4 6.4.1	Spezielle Konfigurationen	17
6.4.2 6.4.3 6.4.3.1	Umschaltung der Kantenzuordnung bei 1-Objekt-Messung	19
5.4.3.2	Teach-In am Ende des Messfeldes	19
6.4.3.3 6.4.4	Teach-In am Anfang des Messfeldes	
6.4.5	PIN 2 als Aktivierungseingang	

△ Leuze electronic

6.4.6	PIN 2 als Schaltausgang	21
6.4.6.1	Funktion Standard	
6.4.6.2 6.4.6.3	Funktion Standard invertiert	
6.4.6.4	Funktion Lichtschranke dunkeischaltend	
7	Messbereich und Auflösung	. 23
7.1	Analoge Messwertausgabe (Schnittstelle M12)	23
7.2	Digitale Messwertausgabe (Schnittstelle P und M12)	24
7.2.1	ASCII-Format für die Schnittstellen P und M12	25
7.2.2	Binär-Format für die Schnittstellen P und M12	26
В	Fehlermeldungen (Schnittstellen P und M12)	. 29
9	Service und Support	. 29
10	Technische Daten	-
10.1	Optische Daten	30
10.2	Zeitverhalten	30
10.3	Elektrische Daten	30
10.4	Ausgangsignale	31
10.5	Mechanische Daten	31
10.6	Umgebungsdaten	32
11	Bestellhinweise und Zubehör	33
11.1	Bestellhinweise	
11.2	Zubehör	
11.2.1	Anschlussleitungen	
11.2.2	Konfigurationsleitung	33
40	V anfarmitätaarklärung	24

1 Zu diesem Dokument

Diese Technische Beschreibung enthält Informationen über den bestimmungsgemäßen Einsatz der messenden CCD-Gabellichtschranken GS 754B.

1.1 Zeichenerklärung

Nachfolgend finden Sie die Erklärung der in dieser technischen Beschreibung verwendeten Symbole.

Achtung

Dieses Symbol steht vor Textstellen, die unbedingt zu beachten sind. Nichtbeachtung führt zu Verletzungen von Personen oder zu Sachbeschädigungen.

Hinweis

Dieses Symbol kennzeichnet Textstellen, die wichtige Informationen enthalten.

2 Sicherheit

Der vorliegende Sensor ist unter Beachtung der geltenden Sicherheitsnormen entwickelt, gefertigt und geprüft worden. Er entspricht dem Stand der Technik.

2.1 Bestimmungsgemäße Verwendung

Die CCD-Gabellichtschranken GS 754B dienen in Verbindung mit einer daran angeschlossenen Steuerung oder Auswerteeinheit zur Erkennung und Vermessung kleiner Objekte in industriellen Produktionsprozessen.

Einsatzgebiete

Die CCD-Gabellichtschranke GS 754B ist insbesondere für folgende Einsatzgebiete konzipiert:

- · Durchmesserermittlung
- · Kantenmessung und Höhenkontrolle
- Breitenmessung

VORSICHT

Bestimmungsgemäße Verwendung beachten!

- Setzen Sie das Gerät nur entsprechend der bestimmungsgemäßen Verwendung ein. Der Schutz von Betriebspersonal und Gerät ist nicht gewährleistet, wenn das Gerät nicht entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird. Die Leuze electronic GmbH + Co. KG haftet nicht für Schäden, die durch nicht bestimmungsgemäße Verwendung entstehen.
- Lesen Sie diese Technische Beschreibung vor der Inbetriebnahme des Geräts. Die Kenntnis der Technischen Beschreibung gehört zur bestimmungsgemäßen Verwendung.

HINWEIS

Bestimmungen und Vorschriften einhalten!

Beachten Sie die örtlich geltenden gesetzlichen Bestimmungen und die Vorschriften der Berufsgenossenschaften.

Achtung

Bei UL-Applikationen ist die Benutzung ausschließlich in Class-2-Stromkreisen nach NEC (National Electric Code) zulässig.

2.2 Vorhersehbare Fehlanwendung

Eine andere als die unter "Bestimmungsgemäße Verwendung" festgelegte oder eine darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß.

Unzulässig ist die Verwendung des Gerätes insbesondere in folgenden Fällen:

- in Räumen mit explosiver Atmosphäre
- als eigenständiges Sicherheitsbauteil im Sinn der Maschinenrichtlinie ¹⁾
- · zu medizinischen Zwecken

HINWEIS

Keine Eingriffe und Veränderungen am Gerät!

Nehmen Sie keine Eingriffe und Veränderungen am Gerät vor.

Eingriffe und Veränderungen am Gerät sind nicht zulässig.

Das Gerät darf nicht geöffnet werden. Es enthält keine durch den Benutzer einzustellenden oder zu wartenden Teile.

Eine Reparatur darf ausschließlich von Leuze electronic GmbH + Co. KG durchgeführt werden.

2.3 Befähigte Personen

Anschluss, Montage, Inbetriebnahme und Einstellung des Geräts dürfen nur durch befähigte Personen durchgeführt werden.

Voraussetzungen für befähigte Personen:

- · Sie verfügen über eine geeignete technische Ausbildung.
- Sie kennen die Regeln und Vorschriften zu Arbeitsschutz und Arbeitssicherheit.
- · Sie kennen die Technische Beschreibung des Gerätes.
- Sie wurden vom Verantwortlichen in die Montage und Bedienung des Gerätes eingewiesen.

Elektrofachkräfte

Elektrische Arbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Elektrofachkräfte sind aufgrund ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen und Bestimmungen in der Lage, Arbeiten an elektrischen Anlagen auszuführen und mögliche Gefahren selbstständig zu erkennen.

In Deutschland müssen Elektrofachkräfte die Bestimmungen der Unfallverhütungsvorschrift BGV A3 erfüllen (z. B. Elektroinstallateur-Meister). In anderen Ländern gelten entsprechende Vorschriften, die zu beachten sind.

Leuze electronic GS 754B 5

Bei entsprechender Konzeption der Bauteilekombination durch den Maschinenhersteller ist der Einsatz als sicherheitsbezogene Komponente innerhalb einer Sicherheitsfunktion möglich.

2.4 Haftungsausschluss

Die Leuze electronic GmbH + Co. KG haftet nicht in folgenden Fällen:

- Das Gerät wird nicht bestimmungsgemäß verwendet.
- Vernünftigerweise vorhersehbare Fehlanwendungen werden nicht berücksichtigt.
- Montage und elektrischer Anschluss werden nicht sachkundig durchgeführt.
- Veränderungen (z. B. baulich) am Gerät werden vorgenommen.

3 Bedien- und Anzeigeelemente

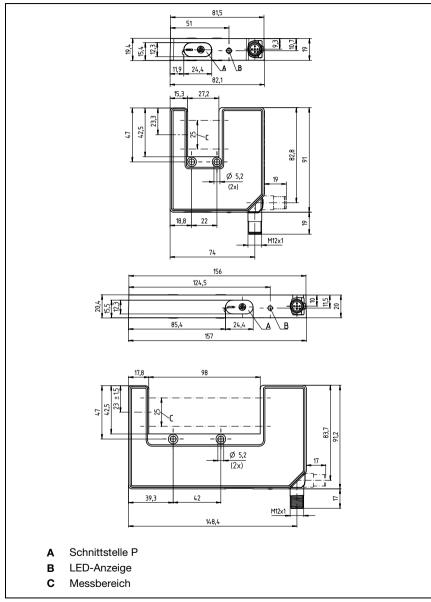


Bild 3.1: Lage der Bedien- und Anzeigeelemente

4 Gerätebeschreibung

4.1 Allgemeines

Die zentrale Einheit des Messgerätes ist ein optischer Sensor, der ein horizontales Lichtband (Bild 3.1) erzeugt. Das Lichtband belichtet eine Zeilenkamera (CCD-Zeile). Diese CCD-Zeile liefert in Abhängigkeit der belichteten Anzahl Pixel ein entsprechendes Ausgangssignal.

Das System ist permanent kalibriert und garantiert jederzeit höchste Genauigkeit und Stabilität.

Jeder Sensor besitzt zwei Schnittstellen (siehe Bild 3.1).

- Schnittstelle P (RS 232): Parametrierschnittstelle zur Konfiguration der Messmodi und zur Visualisierung der Messwerte.
- Schnittstelle M12 (Prozess-Schnittstelle):
 Über diese Schnittstelle werden die Daten zur Steuerung übertragen. In Abhängigkeit
 der verwendeten Gerätevariante werden die Messwerte als analoges Strom-/Span nungssignal oder als digitale, serielle Information (RS 232, RS 422) ausgegeben.

An den Schnittstellen P und M12 stehen in Abhängigkeit der verwendeten Gerätevariante nicht alle Messwerte zur Verfügung:

- Die Analogschnittstelle kann immer nur einen Messwert ausgeben.
- Die Digitalschnittstelle kann beliebig viele Messwerte übertragen.

4.2 Optische Daten

	GS 754B	
	Ausgabemodus 1 5	Ausgabemodus 7 (default)
Messbereich	25 mm	25 mm
Maulweite	27 mm/98 mm	27 mm/98 mm
Maultiefe	42 mm	42 mm
Auflösung	≤ 0,1 mm im gesamten Messbereich	≥ 0,014mm in einer Messebene
Kleinstes Objekt	≥ 0,5 mm	≥ 0,5mm
Lichtquelle	LED Infrarot	LED Infrarot
Wellenlänge	850nm	850 nm

Tabelle 4.1: Optische Daten

4.3 LED-Anzeige

LED	Bedeutung
grün Dauerlicht	Betriebsbereit
grün blinkend	Störung

Tabelle 4.2: LED-Anzeige

5 Applikationen

5.1 Durchmesserermittlung

In Abhängigkeit der verwendeten Schnittstelle können Daten für maximal drei Objekte ausgegeben werden. Daten für mehr als ein Objekt können nur über die Serielle Schnittstelle übertragen werden. Der Analogwert bezieht sich immer auf eine Kanten- bzw. Durchmesserinformation.

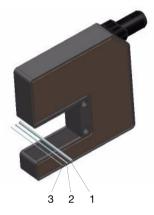


Bild 5.1: Applikationsbeispiel Durchmesserermittlung

5.1.1 ASCII-Darstellung über RS 232 (Schnittstellen P und M12)

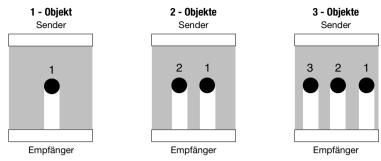


Bild 5.2: Durchmesserermittlung - Erkennung von 1, 2 oder 3 Objekten

Parameter		ASCII-Ausgabedaten über S1 und S2
Q,q	1-Objekt-Erkennung	Middlepos. : xxx Diameter: xxx
W,w	2-Objekt-Erkennung	Middlepos. : xxx Diameter: xxx Middlepos. : xxx Diameter: xxx
E,e	3-Objekt-Erkennung	Middlepos.: xxx Diameter: xxx Middlepos.: xxx Diameter: xxx Middlepos.: xxx Diameter: xxx

Tabelle 5.1: ASCII-Darstellung, Ausgabemodus 1 ... 5

Beispiel für xxx: 123 (12,3mm)

5.1.2 Binärdarstellung über RS 232 (Schnittstellen P und M12)

In diesem Ausgabemodus können auf Grund der schnellen Messwertausgabe nur Daten für 1-Objekt-Messung ausgegeben werden. Die Messwerte sind nicht am Bildschirm darstellbar (siehe Kapitel 7.2.2).

Leuze electronic GS 754B 11

5.2 Kantenmessung und Höhenkontrolle

Bei dieser Messung erwartet der Sensor nur eine Kante innerhalb des Messfeldes. Werden mehr oder weniger Kanten vom System ermittelt, führt dies je nach Konfiguration (siehe Kapitel 6.4) zu einer Fehlermeldung.

Bild 5.3: Kantenmessung und Höhenkontrolle

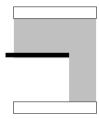


Bild 5.4: Kantenmessung - Erkennung von 1 Kante

Bei dieser Messung sind verschiedene Konfigurationen möglich (siehe Kapitel 6.4). Nachfolgendes gilt nur für Geräte mit Analogschnittstelle:

- 1. Lineare-Kantenmessung über den gesamten Messbereich (s. Punkt 8)
- 2. Teach-Kantenmessung mit 5V-Ausgabe am Teachpunkt

5.3 Breitenmessung

Für die Breitenmessung von Bandmaterial können zwei CCD Gabellichtschranken GS 754B gegenüberliegend eingesetzt werden.

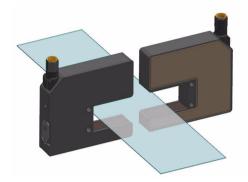


Bild 5.5: Breitenmessung

Jede Gabellichtschranke liefert eine Kantenposition, die bei bekanntem Abstand der Sensoren zueinander in der Steuerung zur Gesamtbreite verrechnet werden kann.

Die zeitliche Synchronisierung der Messdaten wird hierbei über den PIN 2 als Trigger-Eingang sichergestellt. Erzeugt die Steuerung einen Signalwechsel LOW -> HIGH an den Trigger-Eingängen, so starten beide Gabellichtschranken zeitgleich je einen Ausgabezyklus.

6 Gerätekonfiguration

6.1 Allgemeines

Zur Konfiguration der Gabellichtschranke GS 754B benötigen Sie einen PC mit RS 232-Schnittstelle und ein Terminalprogramm mit nachfolgender Einstellung. Verwenden Sie hierzu das entsprechende Kabel KB-ODS 96-1500 (Art.-Nr. 50082007).

6.2 Terminalprogramm

Für die Konfiguration kann jedes Terminal- bzw. Modemprogramm verwendet werden, welches auf die serielle(n) Schnittstelle(n) Ihres PC zugreifen kann.

Unter Microsoft® Windows® 95/98/NT/2000 können Sie z.B. das "Hyperterminal" verwenden.

6.2.1 Grundkonfiguration des Terminalprogramms (Schnittstelle P)

Übertragungsrate	9600Bit/s
Datenbits	8
Parität	keine
Stopp-Bits	1
Protokoll	kein

Tabelle 6.1: Grundkonfiguration des Terminalprogramms (Schnittstelle P)

6.3 Konfiguration der Mess-, Auswerte- und Ausgabeverfahren über Schnittstelle P

Durch Eingabe von ASCII-Zeichen wird die entsprechende Konfiguration aktiviert. Dabei ist Groß- und Kleinschreibung möglich.

6.3.1 Konfigurationstabelle für GS 754B

ASCII-Befehle	Verfügbar für Interface			
Ausgabemodus	Obje			
	"!" - Durchbrochene Objekte "?" - Homogene Objekte	"%" - teiltransparente, durchscheinende Objekte		
1	Ausgabezyklus ca. 3000 ms	Ausgabezyklus ca. 700 ms	Seriell u. Analog	
2	Ausgabezyklus ca. 1000 ms	Ausgabezyklus ca. 250 ms	Seriell u. Analog	
3	Ausgabezyklus ca. 500 ms	Ausgabezyklus ca. 130 ms	Seriell u. Analog	
4	Ausgabezyklus ca. 250 ms	Ausgabezyklus ca. 70 ms	Seriell u. Analog	
5	Ausgabezyklus ca. 100 ms	Ausgabezyklus ca. 35 ms	Seriell u. Analog	
6	reserviert	reserviert		
7 (default)	Ausgabezyklus ca. 12ms	Ausgabezyklus ca. 3ms	Seriell u. Analog	
Mittelwertbildun	g		1	
M,m	Mittelwertbildung über die parametrierte Ausgabezyklus	Mittelwertbildung über die parametrierte Ausgabezykluszeit		
A,a	Einzelmesswertausgabe (defa	Einzelmesswertausgabe (default)		
Objektanzahl			1	
Q,q	1-Objekt-Messung (default)	Seriell (nur Modus 1-5)		
W,w	2-Objekt-Messung	Seriell (nur Modus 1-5)		
E,e	3-Objekt-Messung	Seriell (nur Modus 1-5)		
Auswerteverfahr	en		1	
=	Durchmessererkennung		Seriell u. Analog	
-	Kantenerkennung (default)		Seriell u. Analog	
Objekttyp	1		<u> </u>	
!	Durchbrochene Objekte	Seriell u. Analog		
?	Homogene Objekte (default)	Seriell u. Analog		
%	teiltransparente, durchschein	Seriell u. Analog		
Reset	1		1	
R,r	Reset bei Konfig. Schaltausgang (7,a,-,o,?) Reset bei Konfig. Teach-Input (7,a,-,t,?)			

Kantenzuor	rdnung für Analogausgang (1-Objektmessung)		
D,d	Objektdurchmesser	Analog	
\$	Kante Mitte	Analog	
(Kante Innen (default)	Analog	
)	Kante Außen	Analog	
Funktion Pl	IN 2		
T,t	Funktion Teach-Input	Analog	
0,0	Funktion Schaltausgang	Seriell u. Analog	
S, s	Funktion Synchronisations- / Trigger-Eingang	Seriell u. Analog	
L, I	Funktion Aktivierungs-Eingang (LED Sender AN) Seriell u. Analog		
Schaltfunk	tion PIN 2 ¹⁾		
<	Funktion Standard (default) (Kapitel 6.4.6)	Seriell u. Analog	
>	Funktion Standard invertiert (Kapitel 6.4.6)	Seriell u. Analog	
*	Funktion Lichtschranke dunkelschaltend (Anwesenheitskontrolle)	Seriell u. Analog	
#	Funktion Lichtschranke hellschaltend (Anwesenheitskontrolle) Seriell u. Ana		
Schaltpege	I PIN 2	·	
P,p	PNP Schaltausgang (default)	Seriell u. Analog	
N,n	NPN Schaltausgang	Seriell u. Analog	
G,g	Push-Pull (Gegentakt) Schaltausgang	Seriell u. Analog	

¹⁾ bezogen auf PNP-Schaltpegel, siehe nachfolgender Hinweis.

Tabelle 6.2: Parametrier-Befehle GS 754B

Durch Eingabe des ASCII-Zeichens "R" wird der Auslieferungszustand wieder hergestellt. "R" hat jedoch keine Auswirkung auf die Konfiguration der Schaltfunktion und des Schaltpegels.

ĭ

Hinweis

Die Beschreibungen der Schaltfunktionen PIN 2 (Kapitel 6.4.3 ff.) beziehen sich immer auf den PNP-Schaltpegel.

Wird der Schaltpegel PIN 2 auf NPN konfiguriert, müssen alle Pegel invertiert werden.

6.4 Spezielle Konfigurationen

6.4.1 Kantenmessung bei durchbrochenen Objekten

Mit dieser Funktion können netzartige Objekte wie z.B. Stoffe erkannt werden.

Dabei wird die erste Kante des Objektes als Messwert ausgegeben. Alle weiteren Kanten werden unterdrückt. In dieser Konfiguration wird keine Überprüfung der Kantenanzahl durchgeführt. Fehlermeldungen werden nicht ausgegeben.

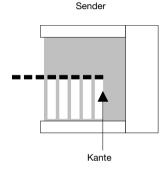


Bild 6.1: Kantenmessung bei durchbrochenen Objekten

Erforderliche ASCII-Befehle:

Objektanzahl			
Q,q	1-Objekt-Messung (default)		
Auswerteverfahren			
-	Kantenerkennung (default)		
Objekttyp			
!	Durchbrochene Objekte		

6.4.2 Umschaltung der Kantenzuordnung bei 1-Objekt-Messung

Über die Analogschnittstelle kann nur eine Kanteninformation ausgegeben werden. Bei der 1-Objektmessung sieht der Sensor zwei Kanten. Aus diesen Kanten können auch Informationen wie Objektdurchmesser und Objektmitte errechnet werden. Diese Kantenzuordnungen können konfiguriert werden.

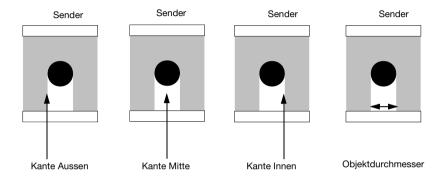


Bild 6.2: Umschaltung der Kantenzuordnung bei 1-Objekt-Messung

ASCII-Befehle für die Umschaltung der Kantenzuordnung:

Kantenzuordnung für Analogausgang (1-Objektmessung)			
D,d	Objektdurchmesser		
\$	Kante Mitte		
(Kante Innen (default)		
)	Kante Außen		

6.4.3 PIN 2 als Teacheingang

Der Anschluss PIN 2 der Geräte mit Analogausgang kann als Warnausgang oder als Teacheingang konfiguriert werden. Wurde PIN 2 als Teacheingang konfiguriert, ist hierüber ein Kantenabgleich auf 5V möglich. Dadurch kann an jeder beliebigen Stelle des Messfeldes der Ausgabewert 5V zugeordnet werden.

6.4.3.1 Teach-In in der Mitte des Messfeldes

Der Messwert wird linearisiert ausgegeben. Dadurch steht das gesamte Messfeld für die Messung zur Verfügung.

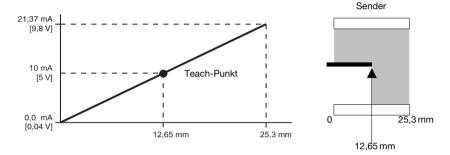


Bild 6.3: Teach-In (Kante in der Mitte des Messfeldes)

6.4.3.2 Teach-In am Ende des Messfeldes

Der Messwert wird linearisiert ausgegeben. Der Messfeldbereich ist eingeschränkt. Am Anfang des Messfeldes findet keine Messwertänderung mehr statt.

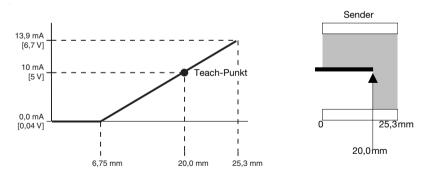
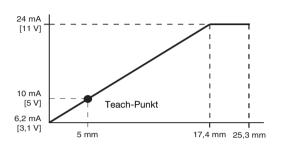



Bild 6.4: Teach-In (Kante am Ende des Messfeldes)

6.4.3.3 Teach-In am Anfang des Messfeldes

Der Messwert wird linearisiert ausgegeben. Der Messfeldbereich ist eingeschränkt. Am Ende des Messfeldes findet keine Messwertänderung mehr statt.

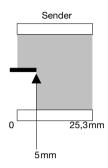


Bild 6.5: Teach-In (Kante am Anfang des Messfeldes)

6.4.4 PIN 2 als Synchronisierungs-/Trigger-Eingang

Wird der PIN 2 als Trigger-Eingang konfiguriert, so verbleibt die CCD-Gabellichtschranke GS 745B inaktiv solange ein LOW-Signal am PIN 2 anliegt.

Wechselt das externe Signal von LOW nach HIGH, so führt die Gabellichtschranke genau eine Messung durch und gibt die konfigurierten Messdaten aus.

Abhängig vom eingestellten Messmodus variiert die Dauer dieser Messung. Innerhalb der eingestellten Zeit wird der Mittelwert der Einzelmessungen gebildet (n • 12ms).

6.4.5 PIN 2 als Aktivierungseingang

Wird der PIN 2 als Aktivierungseingang konfiguriert, so verbleibt die CCD-Gabellichtschranke GS 745B inaktiv solange ein LOW-Signal am PIN 2 anliegt.

Wird am PIN 2 ein HIGH-Signal angelegt, wird die Gabellichtschranke aktiviert und führt wiederholt Messungen durch, solange das HIGH-Signal am PIN 2 verbleibt.

Die Messdaten werden in Abhängigkeit des eingestellten Messmodus an den Schnittstellen ausgegeben.

6.4.6 PIN 2 als Schaltausgang

Bei Konfiguration von PIN 2 als Schaltausgang können diesem Schaltausgang verschiedenen logische Funktionen zugeordnet werden. Man unterscheidet zwischen Standard- und Lichtschrankenfunktion/Anwesenheitskontrolle.

		Schaltausgang Pin 2		
Konfiguration	Funktion	Objekt teilweise im	Objekt komplett im	Objekt nicht im
		Messfeld	Messfeld	Messfeld
<	Standard	high	low	high
>	Standard invertiert	low	high	low
*	Dunkelschaltend	high	high	low
#	Hellschaltend	low	low	high

6.4.6.1 Funktion Standard

Die Anzahl der Objektkanten wird überwacht.

Beispiel Durchmessererkennung:

Der Sensor erwartet in dieser Einstellung zwei Objektkanten. Werden mehr oder weniger Objektkanten gesehen erfolgt eine Fehlermeldung.

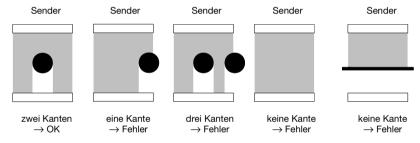


Bild 6.6: Beispiel Durchmessererkennung

Beispiel Kantenerkennung:

Der Sensor erwartet in dieser Einstellung nur eine Objektkante. Werden mehr oder weniger Objektkanten gesehen erfolgt eine Fehlermeldung.

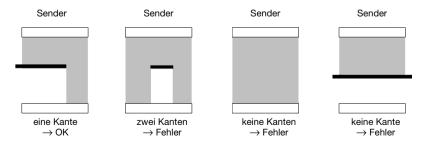


Bild 6.7: Beispiel Kantenerkennung

6.4.6.2 Funktion Standard invertiert

Die Anzahl der Objektkanten wird überwacht und invertiert ausgegeben.

6.4.6.3 Funktion Lichtschranke dunkelschaltend

Bei Konfiguration als Lichtschrankenfunktion werden die Anzahl der Kanten nicht überwacht. Der gesamte Messbereich wird als Einweg-Lichtschranke ausgewertet. Der Schaltausgang arbeitet dunkelschaltend.

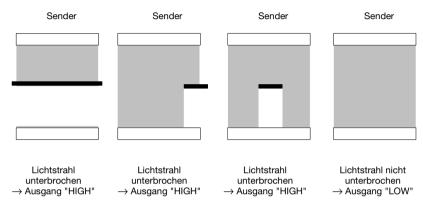


Bild 6.8: Funktion Lichtschranke dunkelschaltend

6.4.6.4 Funktion Lichtschranke hellschaltend

Bei Lichtschrankepegel wird der gesamte Messbereich als Einweg-Lichtschranke ausgewertet. Der Schaltausgang arbeitet hellschaltend.

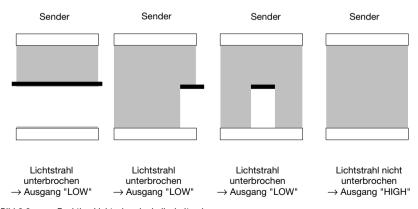


Bild 6.9: Funktion Lichtschranke hellschaltend

7 Messbereich und Auflösung

Der Erfassungsbereich der Gabellichtschranke GS 754B beträgt max. 28.6mm (2048 • 14 µm).

Der maximale Messbereich beträgt 25.3mm.

Die Messwerte der seriellen und analogen Schnittstelle sind linearisiert.

Der Sensor stellt die Messwerte in Abhängigkeit des Ausgabemodus mit folgender Auflösung zur Verfügung:

Auflösung:

	Ausgabemodus 1 5	Ausgabemodus 7 (default)
Serielle Schnittstelle	0,1 mm (ASCII)	0,014mm (Binär)
Analoge Schnittstelle	0,1 mm (Strom/Spannung)	0,014mm (Strom/Spannung)

7.1 Analoge Messwertausgabe (Schnittstelle M12)

Die analogen Strom- bzw. Spannungswerte sind nur an der Schnittstelle M12 verfügbar. In Abhängigkeit der verwendeten Type und Konfiguration unterscheiden sich die ausgegebenen Datenformate. Im Ausgabemodus 1...5 und im Ausgabemodus 7 wird die Messauflösung bzw. die Auflösung wie folgt verändert.

	Ausgabemodus 1 5	Ausgabemodus 7 (default)
Analog Strom	0,063 mA / 0,1 mm	11,72μA / 14μm
Analog Spannung	0,0316 V / 0,1 mm	5,37mV / 14μm

Tabelle 7.1: Datenformate für analoge Schnittstelle M12

Ausgabemodus 1 ... 5:

Im Ausgabemodus 1 ... 5 werden die Messwerte normiert. Diese Messwerte werden über den internen Microcontroller auf die Standardschnittstelle 4 ... 20mA (2 ... 10V) angepasst. Dadurch ergibt sich für Ausgabemodus 1 ... 5 ein Messfeld von 25,3mm (1807 * 14 µm).

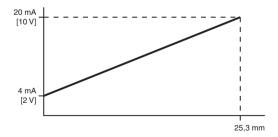


Bild 7.1: Linearität im Ausgabemodus 1 ... 5

Ausgabemodus 7 (default):

Im Ausgabemodus 7 werden die Messwerte nicht normiert. Jeder Messwert wird direkt ausgegeben. Dadurch ergibt sich für Ausgabemodus 7 ein Messfeld von 25,3mm (1807 * 14μm) mit einem Ausgangsstrom von 0 ... 21,37mA (0,04 ... 9,8V).

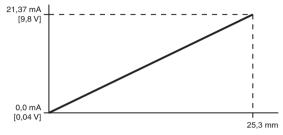


Bild 7.2: Linearität im Ausgabemodus 7

7.2 Digitale Messwertausgabe (Schnittstelle P und M12)

Die Messwertausgabe ist von der verwendeten Sensortype und von der durchgeführten Konfiguration abhängig.

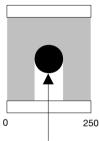
Es steht eine Vielzahl von unterschiedlichen Ausgabemodi zur Verfügung.

Prinzipiell werden zwei Ausgabevarianten unterschieden:

- Ausgabemodus 1, 2, 3, 4, 5:
 Die Messwertausgabe erfolgt mit 0,3Hz, 1Hz, 2Hz, 4Hz oder 10Hz. Die Messwerte werden vom Sensor linearisiert und in mm-Werte umgerechnet. Eine Umrechnung der Pixeldaten ist nicht mehr notwendig. Der Sensor überträgt die Messwerte an beiden Schnittstellen P und M12. Die digitalen Informationen werden in diesem Fall im ASCII-Format übertragen und sind über das Monitorprogramm lesbar. Die Auflösung beträgt 0,1 mm.
- Ausgabemodus 7:
 Die Messwertausgabe erfolgt mit 80Hz. Der Sensor überträgt die Messwerte an beiden Schnittstellen P und M12. Die digitalen Informationen werden in diesem Fall im Binär-Format übertragen und sind über das Monitorprogramm nicht mehr lesbar. Die Auflösung beträgt 0,014mm.

Auf den folgenden Seiten werden die unterschiedlichen Ausgabe-Formate anhand von Beispielen erklärt.

7.2.1 ASCII-Format für die Schnittstellen P und M12


Nur im Ausgabemodus 1, 2, 3, 4, 5 werden lesbare ASCII-Daten über die Digitalschnittstellen ausgegeben. Die Auflösung beträgt $0,1\,\mathrm{mm}$

ASCII-Befehle		Messwertausgabe im ASCII-Format
=, q, 5	Durchmessererkennung	Middlepos. : xxx Diameter: xxx
-, q, 5	Kantenerkennung	Edge-Pos. : xxx

Tabelle 7.2: ASCII-Format für die Schnittstellen P und M12

Beispiel Durchmessererkennung:

Middle-Pos. = 125

Bild 7.3: Bsp. Durchmessererkennung (ASCII-Format)

Middle-Pos.: 125 (entspricht 12,5mm)
Diameter: 020 (entspricht 2,0mm)

Die Mitte des Objektes befindet sich an CCD-Position 12,5mm.

Der Objektdurchmesser beträgt 2,0mm.

Beispiel Kantenerkennung:

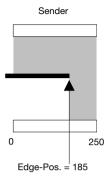


Bild 7.4: Bsp. Kantenerkennung (ASCII-Format)

Edgepos.: 185 (entspricht 18,5 mm)

Die Kante des Objektes befindet sich an CCD-Position 18,5 mm.

7.2.2 Binär-Format für die Schnittstellen P und M12

Nur im Ausgabemodus 7 werden Binär-Daten über die Digitalschnittstellen ausgegeben. Diese Binär-Daten können nicht über das Terminalprogramm angezeigt werden. Die Auflösung beträgt 0.014mm.

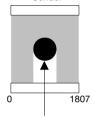

ASCII-Befehle	
=, q, 7	Durchmessererkennung
-, q, 7	Kantenerkennung

Tabelle 7.3: Binär-Format für die Schnittstellen P und M12

Beispiel Durchmessererkennung:

	Messwertausgabe im Binär-Format									
	Daten Byte-Kennung									
D_5	D_4	D_3	D_2	D_1	D _o	P ₁	P ₀			
M	Middle-Pos. (low byte) 0 0						Byte 0			
M	Middle-Pos.			byte)		0	1	Byte 1		
Di	Diameter		(low	(low byte)		1	0	Byte 2		
Di	ameter		(high	byte)		1	1	Byte 3		

Middle-Pos. = 893

Bild 7.5: Bsp. Durchmessererkennung (Binär-Format)

Die Mitte des Objektes befindet sich bei CCD-Pixel 893.

Der Objektdurchmesser beträgt 143 Pixel.

	Messwertausgabe im Binär-Format								
		Da	ten			Byte-K	ennung		
D_5	D_4	D_3	D_2	D_1	D_0	P ₁	P ₀		
1	1	1	1	0	1	0	0	Byte 0	001101111101
0	0	1	1	0	1	0	1	Byte 1	Wert: 893
									$(893 \times 0.014 \text{mm} = 12.5 \text{mm})$
0	0	1	1	1	1	1	0	Byte 2	000010001111
0	0	0	0	1	0	1	1	Byte 3	Wert: 143
									$(143 \times 0.014 \text{mm} = 2.0 \text{mm})$

Beispiel Kantenerkennung:

	Messwertausgabe im Binär-Format									
Daten						Byte-K	ennung			
D ₅	D_4	D_3	D_2	D ₁	D _o	P ₁	P ₀			
Ec	Edge-Pos. (low byte)						0	Byte 0		
Ec	Edge-Pos. (high byte)				0	1	Byte 1			

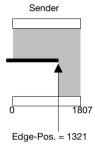


Bild 7.6: Bsp. Kantenerkennung (Binär-Format)

Die Kante des Objektes befindet sich bei CCD-Pixel 1321.

	Messwertausgabe im Binär-Format								
	Daten Byte-Kennung								
D_5	D_4	D_3	D_2	D_1	D_0	P ₁	P ₀		
1	0	1	0	0	1	0	0	Byte 0	010100101001
0	1	0	1	0	0	0	1	Byte 1	Wert: 1321
									$(1321 \times 0.014 \text{mm} = 18.5 \text{mm})$

8 Fehlermeldungen (Schnittstellen P und M12)

In Abhängigkeit der konfigurierten Mess-, Auswerte- und Ausgabevarianten werden verschiedene Fehler unterschieden. Die Ausgabe erfolgt an beiden Schnittstellen P und M12.

		Weniger Kanten als parametriert	Mehr Kanten als parametriert	Voll abgedunkelter Strahlengang		
Serielle	Modus 1 5	000	555	999		
Ausgabe Modus 7		0	2047	0		
Analog	Modus 1 5	3,5 mA	00 1	20. 4		
Strom	Modus 7	0 mA	>20 mA	>20 mA		
Analog	Modus 1 5	1,75V	. 101/	. 101/		
Spannung	Modus 7	0V	>10V	>10V		

9 Service und Support

Rufnummer für 24-Stunden-Bereitschaftsservice: +49 (0) 7021 573-0

Service-Hotline: +49 (0) 7021 573-217

Montag bis Donnerstag 8.00 bis 17.00 Uhr (UTC+1)

Freitag von 8.00 bis 16.00 Uhr (UTC+1)

E-Mail: service.erkennen@leuze.de

Rücksendeadresse für Reparaturen:

Servicecenter Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen Germany

10 Technische Daten

10.1 Optische Daten

Maulweite GS 754B/...-27...: 27mm

GS 754B/...-98...: 98mm

Maultiefe 42 mm Messbereich 25 mm

Auflösung 1) a: 0,1 mm (Mode 1 ... 5)

b: 0,014mm (Mode 7, default))

 $\begin{array}{lll} \mbox{Reproduzierbarkeit} & \pm \, 0,03\,\mbox{mm} \\ \mbox{Linearität} & \pm \, 0,36\,\mbox{mm} \\ \mbox{Minimaler Objektdurchmesser} & 0,5\,\mbox{mm} \\ \mbox{Objektposition} & \mbox{beliebig}^{\,\,2)} \end{array}$

Lichtquelle LED (Wechsellicht)

Wellenlänge 850nm

1) Systemauflösung, d. h. kleinster praktischer Wert für die letzte Stelle der Anzeige

Objekte < 1mm sollten vor dem Empfänger abgetastet werden.
 Fremdlichtquellen dürfen nicht von vorne in den Empfänger strahlen.

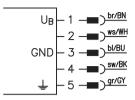
10.2 Zeitverhalten

Ansprechzeit min. 12ms
Ausgabezyklus 0,012 ... 3,00s
Bereitschaftsverzögerung ≤ 300ms

10.3 Elektrische Daten

Betriebsspannung U_B ¹⁾ mit RS 232/RS 422: 10 ... 30VDC

(inkl. Restwelligkeit)


mit Analogausgang: 18 ... 30VDC

(inkl. Restwelligkeit)

Restwelligkeit \leq 15 % von U_B Leerlaufstrom \leq 60mA

 Funktionskleinspannung mit sicherer Trennung oder Schutzkleinspannung (VDE 0100/T 410), Bei UL-Applikationen: nur für die Benutzung in "Class 2"-Stromkreisen nach NEC

Elektrischer Anschluss

Funktionserde muss verdrahtet werden.

Gerätevariante	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5
RS 232	1030VDC	1/0	GND	TxD	FE - Funktionserde
RS 422	1030VDC	Tx-	GND	Tx+	FE - Funktionserde
Analog Spannung	1830VDC	I/O	GND	Analog	FE - Funktionserde
Analog Strom	1830VDC	I/O	GND	Analog	FE - Funktionserde

10.4 Ausgangsignale

Pegel aktiv/inaktiv ≥ 8V/≤ 2V oder unbeschaltet

Aktivierung-/Sperrverzögerung \leq 1 ms Eingangswiderstand ca. $6k\Omega$

Schaltausgangsstrom Pin 2: max. 100 mA

Analogausgang Strom (0)4 ... 20mA (abhängig vom Ausgabemodus),

 $R_{I} \leq 500 \Omega$

Analogausgang Spannung (0)2 ... 10V (abhängig vom Ausgabemodus),

 $R_L \ge 2 k\Omega$

Serielle Schnittstelle RS 232/RS 422
Teacheingang Pin 2 umschaltbar
Schaltausgang Pin 2 umschaltbar

10.5 Mechanische Daten

Gehäuse Zink Druckguss

Gewicht GS 754B/...-27...: 270g GS 754B/...-98...: 290g

Optikabdeckung Kunststoff 1)

Anschlussart M12-Rundsteckverbindung, Metall, 5-polig

 Zur Reinigung der Optikabdeckungen nur faserfreien Lappen verwenden. Spitze und harte Gegenstände zerstören die Optik.

10.6 Umgebungsdaten

Umgebungstemperatur (Betrieb/Lager) -20°C ... +50°C/-30°C ... +60°C

Schutzbeschaltung ¹⁾ 1, 2, 3 VDE-Schutzklasse III Schutzart IP 67

Lichtquelle Freie Gruppe (nach EN 62471)

Gültiges Normenwerk IEC 60947-5-2

Zulassungen UL 508, C22.2 No.14-13 ^{2) 3)}

- 1) 1=Transientenschutz, 2=Verpolschutz, 3=Kurzschluss-Schutz für alle Ausgänge
- 2) Funktionskleinspannung mit sicherer Trennung oder Schutzkleinspannung (VDE 0100/T 410), Bei UL-Applikationen: nur für die Benutzung in "Class 2"-Stromkreisen nach NEC
- These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.2A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

11 Bestellhinweise und Zubehör

11.1 Bestellhinweise

Auswahltabelle Bestellbezeichnung	24-27-S12 15807	754B/D3-27-S12 -Nr. 50115806	754B/V4-27-S12 -Nr. 50115809	754B/C4-27-S12 -Nr. 50115803	754B/D24-98-S12 -Nr. 50119710	3-98-S12 19711	882	4-98-S12 19712	
Ausstattung ♥	GS 754B/D 2 ArtNr. 501	GS 754B/D : ArtNr. 501	GS 754B/V 4 ArtNr. 501	GS 754B/C ArtNr. 501	GS 754B/D ; ArtNr. 501	GS 754B/D3-98-S12 ArtNr. 50119711	GS 754B/V4 - ArtNr. 5011	GS 754B/C ArtNr. 501	
Maulweite	27 mm	•	•	•	•				
	98 mm					•	•	•	•
Ausgangsvariante	RS 232	•				•			
	RS 422		•				•		
	Analog Spannung			•				•	
	Analog Strom				•				•
Pin 2 Konfigurierbar	1/0	•		•	•	•		•	•

11.2 Zubehör

11.2.1 Anschlussleitungen

ArtNr.	Typenbezeichnung	Beschreibung
50114692	KB DN/CAN-2000 BA	Anschlussleitung, M12-Buchse axial, 5-polig, A-kodiert; Länge 2000 mm; offenes Leitungsende; PUR; geschirmt
50114696	KB DN/CAN-5000 BA	Anschlussleitung, M12-Buchse axial, 5-polig, A-kodiert; Länge 5000 mm; offenes Leitungsende; PUR; geschirmt
50114699	KB DN/CAN-10000 BA	Anschlussleitung, M12-Buchse axial, 5-polig, A-kodiert; Länge 10000 mm; offenes Leitungsende; PUR; geschirmt

11.2.2 Konfigurationsleitung

ArtNr.	Typenbezeichnung	Beschreibung
50082007	KB-0DS 96-1500	Verbindungsleitung, Sub-D-Buchse, 9-polig; Länge 1500 mm;
		Konfigurationsstecker GS 754B

12 Konformitätserklärung

Die messenden CCD-Gabellichtschranken GS 754B wurden unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

ĭ

Hinweis

Eine entsprechende Konformitätserklärung kann beim Hersteller angefordert werden.

Der Hersteller der GS 754B CCD-Gabellichtschranken, die Leuze electronic GmbH + Co. KG in D-73277 Owen, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

