

Instrucciones originales de uso

MLD 531

Dispositivos de seguridad multihaz

IMPLEMENTAR Y USAR CON SEGURIDAD

© 2024

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen / Germany

Phone: +49 7021 573-0 Fax: +49 7021 573-199 http://www.leuze.com

info@leuze.de

1	Acerca de este documento 5		
	1.1	Medios de representación utilizados	5
	1.2	Listas de comprobación	5
2	Segu	ıridad	. 6
	2.1	Uso conforme y previsible aplicación errónea	6
		Uso conforme	
	2.1.2	Aplicación errónea previsible	
	2.2	Capacitaciones necesarias	7
	2.3	Responsabilidad de la seguridad	8
	2.4	Exclusión de responsabilidad	8
3	Desc	pripción del equipo	. 9
	3.1	Visión general del equipo	9
	3.2	Sistema de conexión	
	3.3	Elementos de indicación	
	3.3.1	Indicadores de funcionamiento en el transceptor	
	3.3.2	Display de 7 segmentos en el transceptor	
	3.3.3	Lámpara multicolor	. 12
4	Func	iones	14
7	4.1	Bloqueo de inicio/reinicio	
		·	
	4.2	Monitorización de contactores	
	4.3	Salida de señalización	
	4.4	Modo MultiScan	
	4.5	Muting	
	4.5.1	Muting de 2 sensores con control temporizado	
		Muting de 2 sensores con control secuencial (salida)	
		Reinicio de muting	
		Conexión alternativa para segunda señal de muting	
		Modos de funcionamiento de muting	
5	Aplic	aciones	20
	5 .1	Protección de accesos	
	0.1		
6	Mon	taje	22
	6.1	Disposición del transceptor y del espejo deflector	. 22
		Alturas del haz y alcances	. 22
		Cálculo de la distancia de seguridad	
		Cálculo de la distancia de seguridad para campos de protección verticales con acceso por arriba	
		Distancia mínima respecto a las superficies reflectantes	
		· · · · · · · · · · · · · · · · · · ·	
	6.2 6.2.1	Disposición de los sensores de muting	
		Selección de sensores de muting optoelectrónicos.	
		Distancia mínima para sensores de muting optoelectrónicos	
		Disposición de los sensores de muting en el muting de 2 sensores con control temporizado	
		Disposición de los sensores de muting en el muting de 2 sensores con control secuencial	
	6.3	Montaje del sensor de seguridad	. 34
		Puntos de montaje adecuados	
		Soporte giratorio BT-SET-240 (opcional)	
		Soporte de sujeción BT-P40 (opcional)	
	0.5.4	- OUPOILE UNCHIANE UE SUJECIUM D1-20D IV (UPUIUMI)	. บบ

7	Conexión eléctrica	. 37
	7.1 Asignación de conector en el transceptor	37
	7.1.1 Asignación de conector estándar	
	7.1.2 Asignación de conectores de la hembrilla local	
	7.2 Selección de la monitorización de contactores y el bloqueo de inicio/reinicio	
	7.3 Selección de los modos de funcionamiento de muting	
	7.3.1 Modo de funcionamiento 1:	
	7.3.2 Modo de funcionamiento 2:	
	7.3.4 Modo de funcionamiento 4:	
8	Poner en marcha	. 44
•	8.1 Conexión	
	8.2 Alineación del sensor de seguridad	
	8.3 Alineación sin alineador láser integrado	
	8.4 Pulsador de inicio/reinicio	
	8.4.1 Desbloqueo del bloqueo de inicio/reinicio	
	8.4.2 Reinicio de muting	
9	Comprobar	47
•	9.1 Antes de la primera puesta en marcha y después de una modificación	
	9.1.1 Lista de comprobación - antes de la primera puesta en marcha	
	9.2 Periódicamente por parte de personas capacitadas	
	9.3 Periódicamente por parte de operarios	
	9.3.1 Lista de comprobación – Periódicamente por parte de operarios	
10	Cuidados y conservación	. 51
11	Subsanar errores	52
• •	11.1 ¿Qué hacer en caso de error?	
	11.2 Indicadores de funcionamiento de los diodos luminosos	
	11.3 Mensajes de error display de 7 segmentos	
	11.4 Lámpara multicolor	56
12	Eliminación de residuos	. 57
13	Service y soporte	. 58
14	Datos técnicos	
	14.1 Datos generales	
	14.2 Emisión de interferencias	61
	14.3 Medidas, pesos	62
	14.4 Dibujos acotados de los accesorios	63
15	Indicaciones de pedido y accesorios	. 68
	15.1 Denominación de producto del sensor de seguridad	68
	15.2 Variantes de equipo del sensor de seguridad	
	15.3 Accesorios para el sensor de seguridad	
	15.4 Sensores de muting optoelectrónicos	
16	Declaración de conformidad	. 76

1 Acerca de este documento

1.1 Medios de representación utilizados

Tabla 1.1: Símbolos de aviso y palabras señalizadoras

\triangle	Símbolo de peligro para personas
NOTA	Palabra señalizadora de daños materiales Indica peligros que pueden originarse si no se observan las medidas para evitar los peligros.
ATENCIÓN	Palabra señalizadora de lesiones leves Indica peligros que pueden originar lesiones leves si no se observan las medidas para evitar los peligros.
ADVERTENCIA	Palabra señalizadora de lesiones graves Indica peligros que pueden originar lesiones graves o incluso mortales si no se observan las medidas para evitar los peligros.
PELIGRO	Palabra señalizadora de peligro de muerte Indica peligros que pueden originar lesiones graves o incluso mortales de forma inminente si no se observan las medidas para evitar los peligros.

Tabla 1.2: Otros símbolos

Símbolo de sugerencias Los textos con este símbolo le proporcionan información más detallada.	
₽	Símbolo de pasos de actuación Los textos con este símbolo le guían a actuaciones determinadas.

Tabla 1.3: Términos y abreviaturas

AOPD	Equipo de protección optoelectrónico (Active Opto-electronic Protective Device)
EDM	Monitorización de contactores (External Device Monitoring)
MTTF	Tiempo medio hasta la aparición de un fallo peligroso (Mean Time To Failure)
OSSD	Salida de seguridad (Output Signal Switching Device)
SIL	Safety Integrity Level
RES	Bloqueo de inicio/reinicio (ingl.: Start/REStart interlock)
PFH	Probabilidad de un fallo peligroso por hora (Probability of dangerous Failure per Hour)
PL	Nivel de rendimiento (Performance Level)

1.2 Listas de comprobación

Las listas de comprobación (vea capítulo 9) sirven de referencia para el fabricante de la máquina o el instalador del equipamiento. No sustituyen a la comprobación de la máquina o instalación completas antes de la primera puesta en marcha, ni tampoco a sus comprobaciones periódicas por parte de personas con la capacitación necesaria (vea capítulo 2.2). Las listas de comprobación contienen requerimientos de comprobación mínimos. En función de la aplicación, pueden ser necesarias más comprobaciones.

2 Seguridad

Antes de utilizar el sensor de seguridad se debe llevar a cabo una evaluación de riesgos según las normas vigentes (p. ej. EN ISO 12100, EN ISO 13849-1, EN IEC 62061). El resultado de la evaluación de riesgos determina el nivel de seguridad necesario del sensor de seguridad (vea tabla 14.3).

Para el montaje, el funcionamiento y las comprobaciones deben observarse este documento y todas las normas, prescripciones, reglas y directivas nacionales e internacionales pertinentes. Se deben observar, imprimir y entregar a las personas afectadas los documentos relevantes y suministrados.

Antes de trabajar con el sensor de seguridad, lea completamente y observe los documentos que afecten a su actividad.

Para la puesta en marcha, las verificaciones técnicas y el manejo de sensores de seguridad rigen particularmente las siguientes normas legales nacionales e internacionales:

- Directiva de maquinaria 2006/42/CE
- Directiva sobre baja tensión 2014/35/UE
- Directiva de compatibilidad electromagnética 2014/30/UE
- Directiva de utilización por parte de los trabajadores de equipos de trabajo 2009/104/CE
- OSHA 1910 Subpart O
- · Normas de seguridad
- · Reglamentos de prevención de accidentes y reglas de seguridad
- Reglamento sobre seguridad en el trabajo y ley de protección laboral
- Ley sobre la seguridad de los productos (ProdSG y 9ª ProdSV)

NOTA

Para dar información sobre seguridad técnica también están a disposición las autoridades locales (p. ej.: oficina de inspección industrial, mutua profesional, inspección de trabajo, OSHA).

2.1 Uso conforme y previsible aplicación errónea

⚠ iAVISO!

¡Lesiones graves debido a la máquina en marcha!

- Asegúrese de que el sensor de seguridad se conecta correctamente y que la función de protección del equipo de protección está garantizada.
- Al realizar cualquier modificación, trabajos de mantenimiento y comprobación, asegúrese de que la instalación está parada con seguridad y de que está asegurada para no poder volver a ponerse en funcionamiento.

2.1.1 Uso conforme

- Sólo deberá usarse el sensor de seguridad después de que haya sido seleccionado y montado, conectado, puesto en marcha y comprobado en la máquina por personas con la capacitación necesaria según las respectivas instrucciones válidas, las reglas, normas y prescripciones pertinentes sobre seguridad y protección en el trabajo (vea capítulo 2.2).
- Al seleccionar el sensor de seguridad hay que asegurarse de que sus prestaciones de seguridad técnica sean mayores o iguales que el Performance Level requerido PL, determinado en la evaluación de riesgos.

Los dispositivos de seguridad multihaz de la serie MLD no han sido diseñados para ser empleados con las siguientes condiciones ambientales:

- En entornos con alta humedad del aire, donde se puede producir condensación
- En entornos en los que el producto está en contacto directo con el agua
- En entornos en los que es probable que el cristal frontal del equipo se empañe o hiele

En la siguiente tabla se muestran las características de seguridad técnica de la serie MLD 500.

Tabla 2.1: Variantes y características de seguridad técnica serie MLD 500

Modelo	MLD 500
Tipo según EN IEC 61496-1, -2	Tipo 4
SIL según IEC 61508	SIL 3
SIL máximo según EN IEC 62061	SIL 3
Performance Level (PL) según EN ISO 13849-1:2015	PL e
Categoría según EN ISO 13849-1:2015	Categoría 4
Probabilidad de un fallo peligroso por hora	PFH _d =6,6 x 10 ⁻⁹
MTTF _d	140 años

- El sensor de seguridad sirve para proteger a las personas en los accesos de máquinas e instalaciones.
- El sensor de seguridad detecta las personas sólo cuando entran en la zona de peligro, pero no detecta a aquellas personas que están dentro de la zona de peligro. Por eso es indispensable un bloqueo de inicio/reinicio en la cadena de seguridad.
- No se debe modificar la construcción del sensor de seguridad. Si se modifica el sensor de seguridad ya no estará garantizada su función de protección. Además, en el caso de efectuar alguna modificación en el sensor de seguridad quedarán anulados todos los derechos de reclamación de garantía frente al fabricante del sensor de seguridad.
- El sensor de seguridad debe ser comprobado periódicamente a cargo de personas con la capacitación necesaria (vea capítulo 2.2).
- El sensor de seguridad deberá ser sustituido después de 20 años como máximo. Las reparaciones o el cambio de piezas de desgaste no prolongan la duración de uso.

2.1.2 Aplicación errónea previsible

Un uso distinto al establecido en «Uso conforme» a lo prescrito o que se aleje de ello será considerado como no conforme a lo prescrito.

El sensor de seguridad **no** es apropiado como equipo de protección para su aplicación en los siguientes casos:

- Peligro por proyección de objetos o salpicaduras de líquidos calientes o peligrosos desde la zona de peligro
- · Aplicaciones en atmósferas explosivas o fácilmente inflamables
- Posibilidad de alcanzar los puntos peligrosos con las manos desde el lugar de montaje del sensor de seguridad
- · Detección de presencia de personas en zonas de peligro

2.2 Capacitaciones necesarias

El sensor de seguridad debe ser diseñado, configurado, montado, conectado, puesto en marcha, mantenido y comprobado en su aplicación únicamente por personas apropiadas para la actividad respectiva. Requisitos generales para las personas apropiadas a tal efecto:

- · Poseen una formación técnica adecuada.
- Conocen las partes relevantes en cada caso de las instrucciones de uso del sensor de seguridad y de las instrucciones de uso de la máquina.

Requisitos mínimos específicos de cada actividad para las personas apropiadas:

Diseño y configuración

Conocimientos técnicos especiales y experiencia en la selección y aplicación de equipos de protección en máquinas, así como en la aplicación de reglas técnicas y de las prescripciones locales vigentes sobre protección y seguridad en el trabajo y sobre tecnología de seguridad.

Montaje

Conocimientos técnicos especiales y experiencia necesarios para la colocación y alineación seguras y correctas del sensor de seguridad en relación con la máquina respectiva.

Instalación eléctrica

Conocimientos técnicos especiales y experiencia necesarios para la conexión eléctrica segura y correcta, así como para la integración segura del sensor de seguridad en el sistema de control relacionado con la seguridad.

Operación y mantenimiento

Conocimientos técnicos especiales y experiencia necesarios para la comprobación periódica y para la limpieza del sensor de seguridad conforme a la instrucción impartida por parte de la persona responsable.

Mantenimiento

Conocimientos técnicos especiales y experiencia en el montaje, la instalación eléctrica, la operación y el mantenimiento del sensor de seguridad de acuerdo con los requisitos arriba mencionados.

Puesta en marcha y comprobación

- Conocimientos técnicos especiales y experiencia acerca de las reglas y prescripciones de protección y seguridad en el trabajo y de tecnología de seguridad que son necesarios para poder evaluar la seguridad de la máquina y la aplicación del sensor de seguridad, incluido el equipamiento técnico de medición requerido para tales fines.
- Además, se trabajará de forma actualizada en el entorno del objeto a comprobar, y los conocimientos de la persona se mantendrán al nivel de los estándares actuales de la técnica mediante formación continuada; «persona capacitada» en el sentido del reglamento alemán sobre seguridad en el trabajo o de otras disposiciones legales nacionales, respectivamente.

2.3 Responsabilidad de la seguridad

El fabricante y el usuario de la máquina deben ocuparse de que la máquina y el sensor de seguridad implementado funcionen debidamente, y de que todas las personas afectadas sean informadas y formadas adecuadamente.

La naturaleza y el contenido de ninguna de las informaciones transmitidas deben poder dar lugar a actuaciones, por parte de los usuarios, que arriesguen la seguridad.

El fabricante de la máquina es responsable de lo siguiente:

- · La construcción segura de la máquina
- La implementación segura del sensor de seguridad, verificada en la primera comprobación por parte de una persona capacitada para tal fin (vea capítulo 2.2 «Capacitaciones necesarias»)
- · La transmisión de toda la información relevante al usuario
- · La observación de todas las normas y directivas para la puesta en marcha segura de la máquina

El usuario de la máquina es responsable de lo siguiente:

- · La instrucción del operario
- El mantenimiento del funcionamiento seguro de la máquina
- · La observación de todas las normas y directivas de protección y seguridad en el trabajo
- Comprobación periódica a cargo de una persona capacitada para tal fin (vea capítulo 2.2 «Capacitaciones necesarias»)

2.4 Exclusión de responsabilidad

Leuze electronic GmbH + Co. KG no se hará responsable en los siguientes casos:

- El sensor de seguridad no es utilizado conforme a lo prescrito.
- No se cumplen las indicaciones de seguridad.
- No se tienen en cuenta las aplicaciones erróneas previsibles.
- El montaje y la conexión eléctrica no son llevados a cabo con la debida pericia.
- No se comprueba el perfecto funcionamiento (vea capítulo 9 «Comprobar»).
- Se efectúan modificaciones (p. ej. constructivas) en el sensor de seguridad.

3 Descripción del equipo

Los sensores de seguridad de la serie MLD 500 son equipos de protección optoelectrónicos activos con dos OSSDs a prueba de errores en cada caso. Estos sensores cumplen las siguientes normas y estándares:

- Performance Level PL e según la EN ISO 13849-1:2015
- Categoría de seguridad 4 según EN ISO 13849-1:2015
- Safety Integrity Level SIL 3 según IEC 61508 y EN IEC 62061
- Tipo 4 según EN IEC 61496-1, EN IEC 61496-2

Los sensores de seguridad de los modelos de equipo MLD 531 están disponibles como sistemas transceptores (de 2 y 3 haces). Como fuentes de luz se utilizan LEDs infrarrojos que están clasificados según EN 62471:2008 en el grupo exento de riesgos. Son equipos de clase de seguridad 3 y están protegidos frente a la sobretensión y la sobrecorriente según IEC 60204-1. Los haces infrarrojos se modulan en paquetes de impulsos conformados especialmente de manera que se distinguen de la luz ambiental (p. ej.: chispas de soldadura, luces de advertencia) y no se vean influidos por ello.

3.1 Visión general del equipo

La siguiente tabla proporciona una visión general sobre las funciones del modelo de equipo MLD 531 de la serie MLD 500.

Tabla 3.1: Funciones de los modelos de equipo MLD 531

	Transceptor
	MLD 531
OSSDs	2
Puesta en marcha/rearranque automático	
RES	•
EDM	● a)
Salida de señalización	•
Indicador LED	•
Display de 7 segmentos	•
Muting integrado	•

a) EDM seleccionable

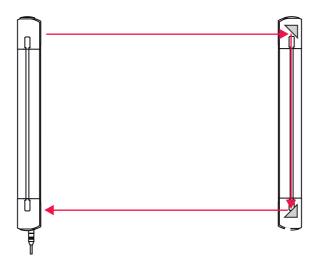
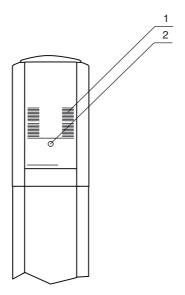


Fig. 3.1: Sistema transceptor

El sistema transceptor está compuesto de un transceptor activo (emisor/receptor) y un espejo deflector pasivo (ninguna conexión eléctrica, desvía los haces de luz 2 x 90°).

3.2 Sistema de conexión


Los transceptores de los modelos de equipo MLD 531 disponen de un conector M12 de 8 polos y una hembrilla M12 de 5 polos.

3.3 Elementos de indicación

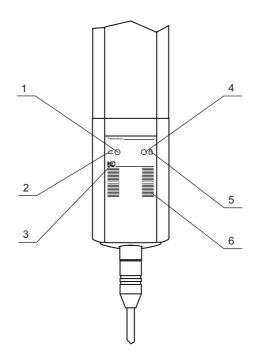
Los elementos de indicación de los sensores de seguridad le facilitan la puesta en marcha y el análisis de errores.

3.3.1 Indicadores de funcionamiento en el transceptor

En cada eje del emisor hay un LED verde que indica el funcionamiento.

- 1 Marca de haz
- 2 LED

Fig. 3.2: LED verde en cada eje luminoso del emisor para indicar el funcionamiento


Tabla 3.2: Significado del diodo luminoso

LED	Descripción
Verde	Haz emitido activo
Off	Error (haz emitido inactivo)

En el receptor hay un diodo luminoso (LED1, rojo o verde). Los equipos del modelo MLD 531 tienen los siguientes elementos de indicación adicionales:

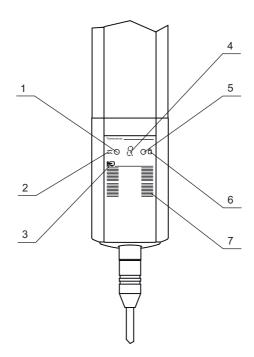
- · LED2 (amarillo)
- Display de 7 segmentos
- · Lámpara de muting (opcional)

- LED1 1
- 2 Símbolo OSSD
- 3 4 Símbolo de interfaz
- LED2
- 5 Símbolo RES
- Marca de haz

Fig. 3.3: Indicadores de funcionamiento en el receptor

Tabla 3.3: Significado del LED1

LED1	Significado
Rojo	OSSD desactivada
Verde	OSSD activada
Rojo con parpadeo lento (aprox. 1 Hz)	Error externo
Rojo con parpadeo rápido (aprox. 10 Hz)	Error interno
Verde con parpadeo lento (aprox. 1 Hz)	OSSD activada, señal débil


Tabla 3.4: Significación de los indicadores de LED2

LED2	Significado
Amarillo	Bloqueo de inicio/reinicio bloqueado (rearranque vía reinicio)

3.3.2 Display de 7 segmentos en el transceptor

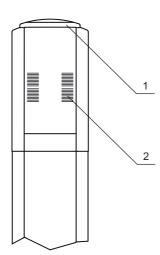
El display de 7 segmentos indica el número del modo de funcionamiento (1 hasta 4) y sirve para el diagnóstico detallado de los errores (vea capítulo 11). Para identificar el error primero se indica la letra correspondiente y luego el código numérico del error, y luego se van repitiendo alternativamente. Tras 10 s se efectúa un autoreset, quedando descartado un rearranque no autorizado.

- 1 LED1
- 2 Símbolo OSSD
- 3 Símbolo de interfaz
- 4 Display de 7 segmentos
- 5 LED2
- 6 Símbolo RES
- 7 Marca de haz

Fig. 3.4: Display de 7 segmentos en el transceptor

Tabla 3.5: Significado del display de 7 segmentos

Indicación	Significado
14	Modo de funcionamiento elegido durante el funcionamiento normal
F	Error del equipo, error interno
E	Perturbación, error externo (vea capítulo 11)
U	Usage Event, p. ej. U52: limitación temporal de muting expirada (vea capítulo 11)
80.	Error al cargar (vea capítulo 11)


3.3.3 Lámpara multicolor

La lámpara multicolor indica el estado de las OSSDs (vea tabla 11.1). Además, en el muting se muestra mediante una luz blanca constante que el muting se ha iniciado correctamente y que la función de protección está inhibida. Un error de muting se muestra por medio de una luz intermitente (vea tabla 11.1).

Tabla 3.6: Lámpara multicolor

Color	Significado
Verde	OSSD activada
Rojo	OSSD desactivada
Amarillo/rojo alterno	Rearme manual bloqueado
Blanco	Muting

- Lámpara de muting Marca de haz
- 2

Fig. 3.5: Lámpara de muting en el transceptor

4 Funciones

Tabla 4.1: Visión general de las funciones de seguridad

Función	Descripción
Función de parada	referida a la seguridad; iniciada por el equipo de protección
RES (bloqueo de inicio/reinicio)	evita un rearme automático; fuerza una confirmación manual
EDM (monitorización de contactores)	supervisa los contactos NC de contactores o relés conectados en serie
Muting	anulación selectiva conforme a lo prescrito de la función de protección
Prueba de función periódica	referida a la seguridad; iniciada y comprobada, p. ej., por un dispositivo de supervisión de seguridad externo

Tabla 4.2: Funciones del modelo MLD 531

Función	MLD 531
OSSDs	2
Puesta en marcha/rearranque automático	
RES	•
EDM	•
EDM, seleccionable	•
Salida de señalización	•
Indicador LED	•
Display de 7 segmentos	•
Muting de 2 sensores con control temporizado	• a)
Muting de 2 sensores con control secuencial	•
Muting de 4 sensores con control temporizado	
Alineador láser (opcional con sistemas emisor-receptor)	
Modos de trabajo parametrizables	•
Prueba externa	

a) tiempo de filtrado (tiempo de mantenimiento del muting con interrupción temporal de la señal de muting): en caso de que falte una señal de muting durante 3 s, en caso de que falten dos señales de muting durante 300 ms

4.1 Bloqueo de inicio/reinicio

El bloqueo de inicio/reinicio evita la habilitación automática de los circuitos de seguridad y un arranque automático de la instalación (p. ej. cuando el campo de protección vuelve a estar libre o se ha restablecido una interrupción de la alimentación de tensión). El operario debe cerciorarse de que no haya ninguna persona dentro de la zona de peligro antes de habilitar de nuevo manualmente la instalación con el pulsador de inicio/reinicio (vea capítulo 8.4.1).

4.2 Monitorización de contactores

El equipo de protección sin contacto supervisa los circuitos de retorno de los contactores conectados. La señal en la entrada EDM se compara con el estado de las OSSD. El circuito de retorno debe estar abierto con las OSSD conectadas (alta impedancia). Con las OSSD desconectadas en la entrada EDM hay 0 V (vea capítulo 7.2). La reacción en la entrada EDM frente a las OSSD se ha retardado como máximo en 500 ms (contactor).

4.3 Salida de señalización

El transceptor tiene una salida de señalización. El pin 1 indica el estado de las OSSDs.

Tabla 4.3: Indicación del estado de las OSSDs

Tensión en la salida de señalización (pin 1)	OSSD
0 V	On
24 V	Off

4.4 Modo MultiScan

Una interrupción del campo de protección tiene que persistir varios ciclos de exploración antes de que la instalación se desconecte. Con ello se aumenta la disponibilidad (p. ej. si se producen ligeras sacudidas).

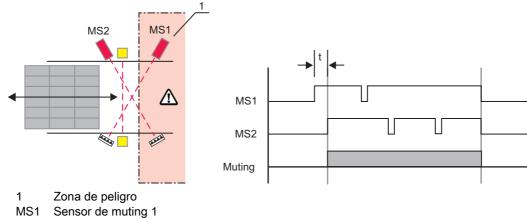
4.5 Muting

Mediante el muting, la función de protección se puede suprimir temporalmente y conforme a lo prescrito, p.ej. cuando se van a transportar objetos a través del campo de protección. Entretanto, las OSSD permanecen, a pesar de la interrupción de uno o varios haces, en estado ON.

El muting se inicia exclusivamente de forma automática y a través de dos señales de muting independientes entre sí. Durante todo el tiempo que dura el proceso de muting, la lámpara de muting (de estar presente) luce continuamente. El proceso de muting finaliza cuando el muting finaliza correctamente por la liberación de señales de muting o cuando se ha excedido la duración máxima predeterminada (timeout de muting) antes de liberar las señales de muting.

Después de una perturbación o una interrupción condicionada por el funcionamiento (p. ej. corte de corriente, infracción de la condición de simultaneidad en el muting de 2 sensores con control temporizado al activar los sensores de muting), el sistema se puede restablecer manualmente con el pulsador de inicio/ reinicio y arrancar sin impedimentos.

NOTA



La norma IEC 62046 define los requisitos y otros ejemplos para aplicaciones de muting.

4.5.1 Muting de 2 sensores con control temporizado

Los dos sensores de muting MS1 y MS2 se disponen de tal manera que los haces se cruzan y el proceso puede activar ambos sensores de forma automática (en el espacio de 4 s). De esta manera se puede transportar un objeto en ambas direcciones a través del campo de protección. El punto de intersección debe hallarse dentro de la zona de peligro para que el muting no pueda activarse de forma involuntaria. Si el muting se ha activado conforme a lo prescrito, también permanece activo en caso de una interrupción breve de una única señal de sensor. Por ejemplo, puede haber breves interrupciones de señales en objetos envueltas en lámina, sobre todo en caso de usar fotocélulas autorreflexivas. Por eso, el sistema filtra estas breves interrupciones de señales durante un máximo de 3s. Si los dos sensores de muting están inactivos al mismo tiempo, finaliza el muting de 2 sensores con control temporizado tras finalizar el tiempo de filtrado.

MS2 Sensor de mutina 2

Período de tiempo en el que se deben activar ambos sensores de muting (< 4 s)

Muting de 2 sensores con control temporizado - disposición de los sensores de muting y Fig. 4.1: terminación del tiempo

4.5.2 Muting de 2 sensores con control secuencial (salida)

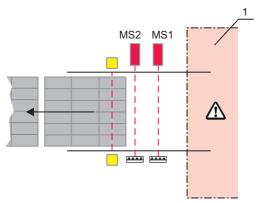
Para las salidas de las zonas de peligro, sobre todo en caso de que fuera de la zona de peligro hubiera poco espacio, resulta especialmente idóneo el muting de 2 sensores con control secuencial. En este caso, el transporte de material sólo está permitido en una dirección debido a la disposición de los sensores de muting. Los sensores de muting MS1 y MS2 se colocan dentro de la zona de peligro y se disponen de tal manera que se activen consecutivamente. El estado de muting se finaliza otra vez 8 s después de la liberación de MS1 y 5 s después de la liberación de MS2 (si MS1 ya está libre). De este modo, la mercancía transportada puede salir previamente del campo de protección. El MS2 debe activarse durante las 8 h siguientes tras el MS1.

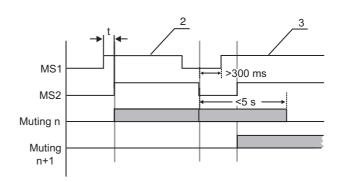
1 Zona de peligro

MS1 Sensor de muting 1

MS2 Sensor de muting 2

Período de tiempo en el que se deben activar ambos sensores de muting (< 8 h)


Fig. 4.2: Muting de 2 sensores con control secuencial - disposición de los sensores de muting y terminación del tiempo


El muting de 2 sensores con control secuencial también puede utilizarse cuando se van a mover objetos juntos y seguidos a través del campo de protección. Sin embargo, la distancia entre los distintos objetos debe ser al menos lo suficientemente grande como para que siempre pueda liberarse como mínimo un sensor de muting por al menos 300 ms entre dos objetos seguidos.

¡Peligro de muerte en caso de disposición incorrecta de los sensores de muting! Seleccione muting de 2 sensores con control secuencial sólo para salidas de material (vea capítulo 6.2.5).

- 1 Zona de peligro
- MS1 Sensor de muting 1
- MS2 Sensor de muting 2
- t Período de tiempo en el que se deben activar ambos sensores de muting (< 8 h)
- 2 Mercancía de muting 1
- 3 Mercancía de muting 2

Fig. 4.3: Muting en caso de sucesión de objetos compacta: disposición de los sensores de muting y terminación del tiempo

4.5.3 Timeout de muting

En los modos operativos predeterminados, el período de tiempo para el timeout de muting se ajusta a 10 sec y el muting finaliza automáticamente una vez transcurrido este tiempo (la función de protección vuelve a estar activa).

En los equipos del modelo MLD 531 no se pueden utilizar las funciones de prolongación del timeout de muting ni Muting Enable.

4.5.4 Reinicio de muting

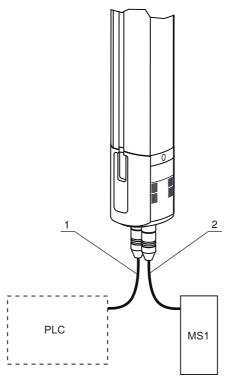
Tras un error de muting (p. ej. fallo en la tensión de alimentación, etc.), también se puede liberar de nuevo el recorrido de muting con el pulsador de reinicio incluso si el campo de protección está interrumpido (vea capítulo 8.4.2).

⚠ iAVISO!

¡Lesiones graves en caso de avance libre incontrolado!

- Una persona con la capacitación necesaria (vea capítulo 2.2) debe observar exactamente el proceso.
- Dado el caso, la persona con la capacitación necesaria debe soltar de inmediato (vea capítulo 2.2) el pulsador de reinicio para finalizar el movimiento peligroso.
- Asegúrese de que la zona de peligro sea visible desde el pulsador de reinicio y que la persona responsable pueda observar el proceso completo.
- Asegúrese antes y durante el override de muting que no hay ninguna persona dentro de la zona de peligro.

4.5.5 Conexión alternativa para segunda señal de muting


Precisamente en los casos en que la segunda señal de muting independiente procede, por ejemplo, de un sistema de mando, resulta ventajoso conectarlo en la interfaz de máquina (conector de 8 polos). En los modos de trabajo 2, 3 y 4 existe la alternativa de conectar la segunda señal de muting en la entrada MS2 de la interfaz local (hembrilla de 5 polos).

NOTA

La señal de muting procedente del sistema de mando no debe estar presente de forma permanente, sino que únicamente se conmutará en caso de que se necesite el muting.

- 1 Interfaz de máquina (de 8 polos)
- 2 Interfaz local (hembrilla de 5 polos)

Fig. 4.4: 2^a señal de muting procedente del control

4.5.6 Modos de funcionamiento de muting

Las modelos de equipo MLD 531 con muting integrado pueden funcionar en cuatro modos de funcionamiento distintos. Dependiendo del modo de funcionamiento seleccionado se dispone de diferentes funciones para cada tipo de muting.

Por lo general, todas las funciones y modos de funcionamiento pueden seleccionarse sin necesidad de medios auxiliares como un PC, software, etc.

Encontrará información más detallada sobre la selección del modo de funcionamiento en el capítulo «Conexión eléctrica» (vea capítulo 7.3).

Tabla 4.4: Modos de trabajo y funciones del MLD 531 (muting de 2 sensores)

	Funci	Funciones				
Modo de funcionamiento	RES	EDM	Modo de funcionamiento de muting	Timeout de muting	Conexión alternativa para segunda señal de muting ^{a)}	
1	•	Selecciona- ble	Muting de 2 sensores con control temporizado	10 sec		
2	•	Selecciona- ble	Muting de 2 sensores con control temporizado	10 sec	•	
3	•	Selecciona- ble	Muting de 2 sensores con control secuencial	10 sec	•	
4	•		Muting de 2 sensores con control secuencial	10 sec	•	

a) en caso de que la segunda señal de muting proceda, p. ej., de un control, también se podrá conectar la señal en el conector de 8 polos (suele representar la conexión con el armario de distribución).

El modo de funcionamiento 5 no se puede utilizar en los modelos de equipo MLD 531.

El modo de funcionamiento 6 (muting parcial) no se puede utilizar en sistemas transceptor de los modelos de equipo MLD 531.

5 Aplicaciones

5.1 Protección de accesos

Los sensores de seguridad MLD se utilizan p. ej. como protección de accesos a las zonas de peligro. Sólo detectan las personas cuando entran en la zona de peligro, pero no detectan si una persona ya está dentro de la zona de peligro. Por ello, la protección de accesos solo debe utilizarse con el rearme manual/ automático activado, o bien deben tomarse medidas de seguridad adicionales.

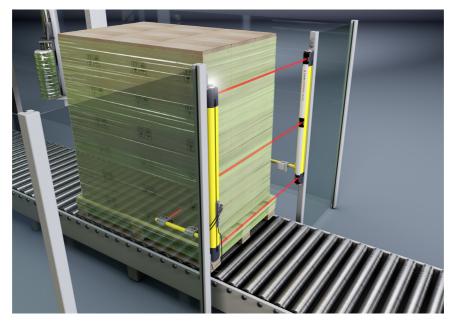


Fig. 5.1: Protección de 3 haces para salidas de la zona de peligro

Fig. 5.2: Protección de 3 haces con el sistema transceptor en una aplicación con un robot de paletización

Fig. 5.3: Protección de accesos con muting de 2 sensores con control paralelo (temporizado) en una aplicación con un enrollador de palets

6 Montaje

∱ ¡AVISO!

¡Accidentes graves a causa de un montaje inadecuado!

La función de protección del sensor de seguridad sólo está garantizada cuando ha sido montado apropiadamente y con profesionalidad para el ámbito de aplicación previsto.

- Encargue el montaje del sensor de seguridad únicamente a personas con la capacitación necesaria (vea capítulo 2.2).
- Respete las distancias de seguridad necesarias (vea capítulo 6.1.2).
- \$ Observe las normas y prescripciones relevantes, así como este manual.
- Limpie el emisor y el receptor de forma periódica: condiciones ambientales (vea capítulo 14), cuidado (vea capítulo 10).
- b Después del montaje, compruebe que el sensor de seguridad funciona correctamente.

6.1 Disposición del transceptor y del espejo deflector

Los equipos de protección ópticos sólo pueden ofrecer su efecto protector si se montan con la suficiente distancia de seguridad. Para ello, se deben tener en cuenta todos los tiempos de retardo, p. ej. los tiempos de respuesta del sensor de seguridad y de los elementos de mando, así como el tiempo de parada de la máquina.

Las siguientes normas ofrecen fórmulas de cálculo:

- EN ISO 13855, «Posicionamiento de los equipos de protección en función de la velocidad de aproximación de partes del cuerpo humano»: situación de montaje y distancias de seguridad
- EN IEC 61496-2, «Equipos de protección optoelectrónicos»: distancia de las superficies reflectantes/espejos deflectores

6.1.1 Alturas del haz y alcances

Tabla 6.1: Alturas y alcances del haz de las variantes de equipos

Haces / distancia entre haces [mm]	Recomendación de altura del haz según la norma EN ISO 13855 [mm]	Alcance Transceptor [m]
2 / 500	400 ^{a)} , 900	0,5 hasta 8
3 / 400	300, 700, 1100	0,5 hasta 6 o 8

a) El haz más bajo se puede ajustar a 400 mm solo si la evaluación de riesgos lo permite.

6.1.2 Cálculo de la distancia de seguridad

Fórmula general para calcular la distancia de seguridad S de un equipo de protección optoelectrónico según EN ISO 13855:

$$S = K \cdot T + C$$

S [mm] = Distancia de seguridad

K [mm/s] = 1600 mm/s (velocidad de aproximación para protección de accesos)

T [s] = Tiempo total de retraso

C [mm] = 850 mm (valor estándar de la longitud del brazo)

☼ Calcule la distancia de seguridad S de la protección de accesos de acuerdo a la fórmula según EN ISO 13855:

S [mm] = Distancia de seguridad

 $egin{array}{lll} t_a & & [s] & = \mbox{Tiempo de respuesta del equipo de protección} \\ t_i & [s] & = \mbox{Tiempo de respuesta de la interfaz de seguridad} \\ \hline \end{array}$

t_m [s] = Tiempo de parada de la máquina

$$S = 1600 \text{ mm/s} \cdot (t_a + t_i + t_m) + 850 \text{ mm}$$

NOTA

Si en las comprobaciones regulares se dan tiempos de parada mayores, a t_m se le deberá sumar el correspondiente suplemento.

Ejemplo de cálculo

Un robot con un tiempo de parada de 250 ms se va a proteger con un sensor de seguridad. El tiempo de respuesta es de 10 ms y no es necesario utilizar una interfaz adicional.

$$S = K \cdot T + C$$

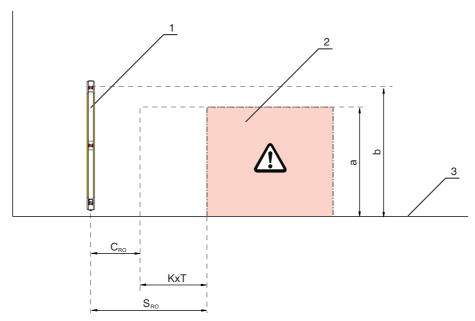
K [mm/s] = 1600 mm/s T [ms] = (10 ms + 250 ms) C [mm] = 850 mm

S [mm] = $1600 \text{ mm/s} \cdot 0.26 \text{ s} + 850 \text{ mm}$

S [mm] = 1266 mm

6.1.3 Cálculo de la distancia de seguridad para campos de protección verticales con acceso por arriba

Si es posible el acceso a un campo de protección vertical por encima o por debajo, deberá tenerse en cuenta un suplemento C_{RO} sobre la distancia de seguridad conforme a EN ISO 13855.


$$S_{RO} = K \cdot T + C_{RO}$$

S_{RO} [mm] = Distancia de seguridad en caso de acceso por encima del campo de protección
 K [mm/s] = 1600 mm/s (velocidad de aproximación para protección de accesos)
 T [s] = Tiempo total de retraso, suma (ta + ti + tm) de t_a: tiempo de respuesta del equipo de protección t_i: tiempo de respuesta de la interfaz de seguridad t_m: tiempo de parada de

la máguina

C_{RO} [mm] = Valor vea tabla 6.2 (distancia adicional en que puede moverse una parte del cuerpo hacia el equipo de protección antes de que se active el equipo)

- 1 Sensor de seguridad
- 2 Zona de peligro
- 3 Suelo
- a Altura del punto peligroso
- b Altura del haz situado más arriba del sensor de seguridad

Fig. 6.1: Suplemento a la distancia de seguridad en caso de acceso por arriba o por abajo

Tabla 6.2: Paso por encima del campo de protección vertical de un equipo de protección sin contacto (extracto de EN ISO 13855)

Altura a del punto peligroso [mm]	Altura b del canto superior del campo de protección del equipo de protección sin contacto				
	900	1000	1100	1200	1300
	Distancia adicio	onal $C_{\scriptscriptstyle{RO}}$ a la zona	de peligro [mm]		
2600	0	0	0	0	0
2500	400	400	350	300	300
2400	550	550	550	500	450
2200	800	750	700	650	650
2000	950	950	850	850	800
1800	1100	1100	950	950	850
1600	1150	1150	1100	1000	900
1400	1200	1200	1100	1000	900
1200	1200	1200	1100	1000	850
1000	1200	1150	1050	950	750
800	1150	1050	950	800	500
600	1050	950	750	550	0

Altura a del punto peligroso [mm]	Altura b del canto superior del campo de protección del equipo de protección sin contacto								
	900	900 1000 1100 1200 1300							
	Distancia adicional C _{RO} a la zona de peligro [mm]								
400	900	700	0	0	0				
200	600	0	0	0	0				
0	0	0	0	0	0				

Se aportan

- · la altura «a» del punto peligroso
- la altura «b» del haz situado más arriba del sensor de seguridad

Se busca la distancia necesaria S del sensor de seguridad al punto peligroso y con ello el suplemento C_{RO}.

- Busque en el encabezado de columna la columna con el siguiente valor inferior sobre la altura del haz situado más arriba del sensor de seguridad (b).
- 🔖 Busque en la columna izquierda el siguiente valor superior sobre el punto peligroso.
- ¡Si $S_{RO} > S$, entonces se deberá aplicar $S_{RO}!$

Ejemplo de cálculo

Un sistema de máquina con un tiempo de parada de 300 ms se va a proteger con un sensor de seguridad de 3 haces. El tiempo de respuesta es de 35 ms y no es necesario utilizar una interfaz adicional. Se parte de una altura de la zona de peligro de 600 mm. Se van a aplicar haces a una altura de 300 mm, 700 mm y 1100 mm del suelo.

Cálculo de la distancia de seguridad S:

```
S = K \cdot T + C

K \quad [mm/s] = 1600 \text{ mm/s}

T \quad [ms] = 335 \text{ ms}

C \quad [mm] = 850 \text{ mm}

S \quad [mm] = 1600 \text{ mm/s} \cdot 0,335 \text{ s} + 850 \text{ mm}

S \quad [mm] = 1386 \text{ mm}
```

Cálculo de la distancia de seguridad S_{RO} en caso de acceso por encima del campo de protección:

Puesto que la altura del haz situado más arriba es de 1100 mm, deberá tenerse en cuenta un posible acceso por arriba. Con una altura de la zona de peligro de 600 mm, el valor para C_{RO} = 750 mm (vea tabla 6.2).

```
S_{RO} = K \cdot T + C_{RO}

K \quad [mm/s] = 1600 \text{ mm/s}

T \quad [ms] = 335 \text{ ms}

C_{RO} \quad [mm] = 750 \text{ mm}

S \quad [mm] = 1600 \text{ mm/s} \cdot 0,335 \text{ s} + 750 \text{ mm}

S_{RO} \quad [mm] = 1286 \text{ mm}
```

¡De ello se deriva $S_{RO} < S$, y por tanto debe aplicarse S!

Cálculo de la distancia de seguridad S_{RO} en caso de modificación de la altura del haz que se encuentra más arriba:

La altura del haz que se encuentra más arriba es ahora de 900 mm. Todos los demás parámetros se mantienen iguales. Resulta así para C_{RO} = 1050 mm (vea tabla 6.2).

$$S_{RO} = K \cdot T + C_{RO}$$

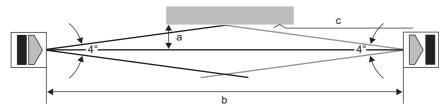
 $egin{array}{lll} K & [mm/s] & = 1600 \ mm/s \\ T & [ms] & = 335 \ ms \\ C_{RO} & [mm] & = 1050 \ mm \\ \end{array}$

S [mm] = $1600 \text{ mm/s} \cdot 0.335 \text{ s} + 1050 \text{ mm}$

 S_{RO} [mm] = 1586 mm

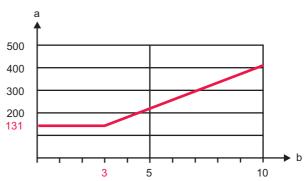
¡De ello se deriva $S_{RO} > S$, de modo que debe aplicarse $S_{RO}!$

6.1.4 Distancia mínima respecto a las superficies reflectantes


⚠ ¡AVISO!

A

¡Lesiones graves por no respetar las distancias mínimas respecto a superficies reflectantes! Las superficies reflectantes pueden desviar los haces del emisor hasta llegar al receptor. En ese caso una interrupción del campo de protección no podría detectarse.


♥ Determine la distancia mínima a (vea figura 6.2).

Asegúrese de que todas las superficies reflectantes tienen la distancia mínima necesaria respecto al campo de protección (vea figura 6.3 y vea figura 6.4).

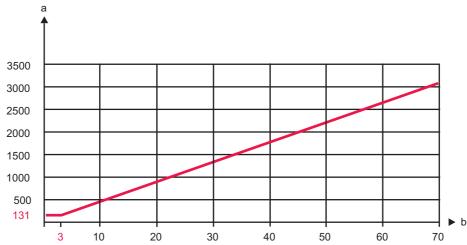

- a Distancia mínima requerida respecto a las superficies reflectantes [mm]
- b Anchura del campo de protección [m]
- c Superficie reflectante

Fig. 6.2: Distancia mínima respecto a las superficies reflectantes según la anchura del campo de protección

- a Distancia mínima requerida respecto a las superficies reflectantes [mm]
- b Anchura del campo de protección [m]

Fig. 6.3: Distancia mínima respecto a las superficies reflectantes en función de la anchura del campo de protección hasta 10 m

- a Distancia mínima requerida respecto a las superficies reflectantes [mm]
- b Anchura del campo de protección [m]

Fig. 6.4: Distancia mínima respecto a las superficies reflectantes en función de la anchura del campo de protección hasta 70 m

Tabla 6.3: Fórmula para calcular la distancia mínima respecto a las superficies reflectantes

Distancia (b) emisor- receptor	Cálculo de la distancia mínima (a) respecto a las superficies reflectantes		
b ≤ 3 m	a [mm] = 131		
b > 3 m	a [mm] = tan(2,5°) · 1000 · b [m] = 43,66 · b [m]		

6.1.5 Prevención de la interferencia recíproca de los equipos contiguos

Si hay un receptor en la trayectoria del haz de un emisor contiguo, puede producirse una diafonía óptica y, por consiguiente, provocar conmutaciones erróneas y el fallo de la función de protección.

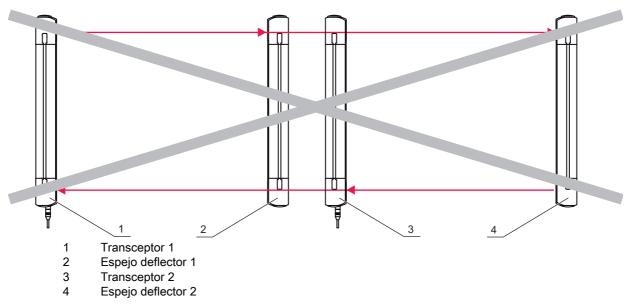


Fig. 6.5: Diafonía óptica de sensores de seguridad contiguos debido a montaje erróneo

iAVISO!

¡En caso de que haya dos sistemas montados prácticamente uno junto al otro, el emisor de uno de los sistemas puede influir en el receptor del otro sistema y, por consiguiente, afectar a la función de protección!

☼ Evite la interferencia óptica de equipos contiguos.

Monte los equipos contiguos separados por un apantallamiento o disponga una pared divisoria para impedir una interferencia recíproca.

🔖 Monte los equipos contiguos de forma opuesta para impedir una interferencia recíproca.

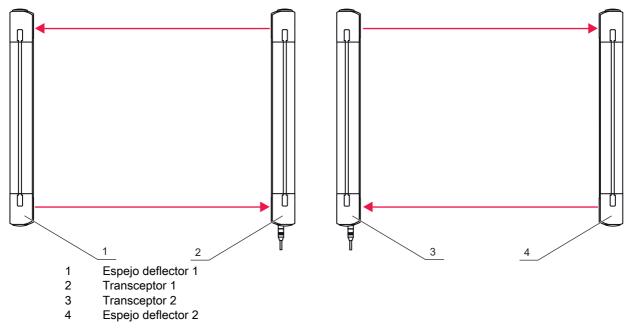


Fig. 6.6: Montaje opuesto

6.2 Disposición de los sensores de muting

NOTA

Los sensores de muting detectan material y envían las señales necesarias para el muting. Para la disposición de los sensores de muting, la norma IEC 62046 proporciona indicaciones fundamentales. Estas indicaciones deben tenerse en cuenta durante el montaje de los sensores de muting.

6.2.1 Conceptos básicos

Antes de que comience con la selección y el montaje de los sensores de muting, tenga en cuenta lo siguiente:

- El muting debe activarse por medio de dos señales de muting cableadas de forma independiente y no debe depender completamente de señales de software, como por ejemplo un PLC.
- Si se utiliza un transceptor como sensor de seguridad y fotocélulas reflexivas como sensores de muting, las conexiones eléctricas sólo serán necesarias en un único lado, p. ej. en una cadena de transporte.
- Coloque los sensores de muting de modo que siempre esté garantizada la distancia mínima respecto al equipo de protección (vea capítulo 6.2.3).
- Coloque los sensores de muting siempre de modo que se detecte el material y no el medio de transporte, p. ej. el palet.
- El material debe poder pasar sin obstáculos y las personas deben detectarse con seguridad.

AVISO!

¡Lesiones graves por activación involuntaria del muting!

- Evite mediante un montaje adecuado de los sensores de muting que el muting pueda ser activado por una persona de forma involuntaria, por ejemplo mediante la activación simultánea de los sensores de muting con el pie.
- Coloque la lámpara de muting de modo que sea visible en todo momento y desde todos los lados.

∱ ¡AVISO!

¡Peligro de muerte en caso de protección insuficiente de los sensores de muting!

Protección contra el accionamiento involuntario de la inhibición (permanente) por culpa de daños mecánicos o una alineación incorrecta de los sensores de muting (según IEC 62046).

6.2.2 Selección de sensores de muting optoelectrónicos

Los sensores de muting detectan material y envían las señales necesarias para el muting (la salida está activa: 24 V, cuando se detecta material). Las señales se pueden generar por ejemplo con los sensores optoelectrónicos de Leuze:

- Fotocélulas reflexivas de conmutación oscuridad
- · Fotocélulas de barrera de conmutación oscuridad
- · Sensores de conmutación claridad

NOTA

Leuze recomienda utilizar la caja de conexión de sensores AC-SCMx para la conexión de los sensores de muting.

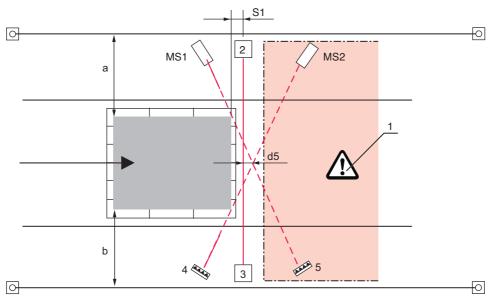
En caso de no utilizar la caja de conexión de sensores AC-SCMx, se debe garantizar que el muting no se puede activar por un defecto a tierra o la interrupción de los cables de señales o de la fuente de alimentación de los sensores de muting.

En el capítulo «Indicaciones de pedido y accesorios» (vea capítulo 15) encontrará una visión general de los sensores de muting apropiados de Leuze.

6.2.3 Distancia mínima para sensores de muting optoelectrónicos

La distancia mínima es la distancia entre el campo de protección del AOPD y los puntos de detección de los haces luminosos del sensor de muting. Esta distancia debe respetarse durante el montaje de los sensores de muting para que las palets o el material no puedan alcanzar el campo de protección antes de anular la función de protección del AOPD mediante las señales de muting. La distancia mínima depende del tiempo que el sistema necesita para procesar las señales de muting.

- Calcule la distancia mínima según cada caso de aplicación, bien para el muting de 2 sensores con control temporizado (vea capítulo 6.2.4) o bien para el muting de 2 sensores con control secuencial (vea capítulo 6.2.5).
- Asegúrese al disponer los sensores de muting que se respeta la distancia mínima calculada respecto al campo de protección.


6.2.4 Disposición de los sensores de muting en el muting de 2 sensores con control temporizado

En el muting de 2 sensores con control temporizado se utilizan a menudo fotocélulas de barrera o fotocélulas reflexivas. El material puede moverse en ambas direcciones (vea capítulo 4.5.1). Esta solución de muting puede implementarse con facilidad utilizando kits de sensores de muting preajustados (accesorios) para sensores de seguridad MLD (vea figura 14.10).

NOTA

En Internet están disponibles unas instrucciones de montaje para los kits de sensores de muting MLD para la descarga en http://www.leuze.com/mld/.

- 1 Zona de peligro
- 2 Transceptor de muting
- 3 Espejo deflector pasivo
- 4 Reflector MS2
- 5 Reflector MS1
- MS1 Sensor de muting 1
- MS2 Sensor de muting 2
- S1 Distancia mínima entre el campo de protección del AOPD y los puntos de detección de los haces luminosos del sensor de muting
- a,b Distancia entre la mercancía transportada y la valla de seguridad
- d5 Distancia del punto de intersección de los haces luminosos del sensor de muting respecto del plano del campo de protección

Fig. 6.7: Disposición típica de los sensores de muting en el muting de 2 sensores con control temporizado (ejemplo según IEC 62046)

En el muting de 2 sensores con control temporizado, los haces de los sensores de muting deben cruzarse detrás del campo de protección del sensor de seguridad, es decir, dentro de la zona de peligro, para que el muting no se pueda activar de forma involuntaria.

Las distancias a y b entre aristas fijas y objeto de muting (p.ej. mercancía transportada) deben definirse de manera que una persona no pueda cruzar estas aberturas sin ser reconocido mientras la palet atraviesa la zona de muting. Sin embargo si se debe partir de la base que hay personas aquí, se deberá evitar el peligro de aplastamiento, p. ej. mediante puertas oscilantes que están integradas eléctricamente en el circuito de seguridad.

Distancia mínima S1

 $S1 \ge v \cdot 0.05 s$

S1 [mm] = Distancia mínima entre el campo de protección del AOPD y los puntos de detección de los haces de luz del sensor de muting

v [m/s] = Velocidad del material

Distancia a, b

a, b ≤ 200 mm

a, b [mm] = Distancia entre la mercancía transportada y la valla de seguridad

Distancia d5

d5 ≤ 200 mm y tan pequeño como práctico

d5 [mm] = Distancia del punto de intersección de los haces luminosos del sensor de muting respecto del plano del campo de

protección

Si la mercancía de muting tiene una anchura de 800 mm, se transporta en el centro y la distancia entre las rejas ópticas de seguridad MLD 2 y 3 es de 1160 mm, se pueden seleccionar 300 mm para la distancia 2 a MS2 y 3 al reflector MS1, y 200 mm para la distancia MS1 a 2 y 3 al reflector MS2.

Altura de los haces luminosos del sensor de muting d7

Los dos haces luminosos de los sensores de muting deben tener una altura mínima d7.

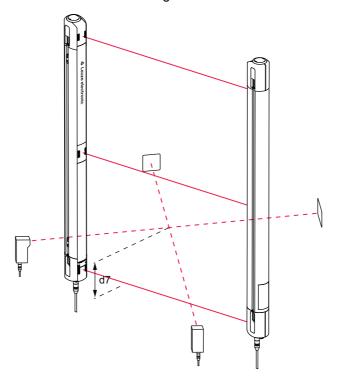


Fig. 6.8: Disposición de los sensores de muting en la altura d7

Monte los sensores de muting de manera que el punto de intersección de sus haces de luz se sitúe a la misma altura o por encima del haz de luz más inferior del sensor de seguridad (d7).

La manipulación con los pies se evita o se ve dificultada, ya que el campo de protección se interrumpe antes del haz de luz del sensor de muting.

NOTA

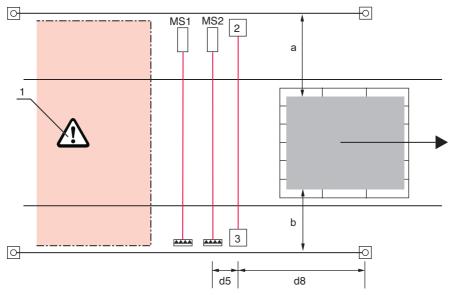
Para aumentar la seguridad y dificultar las manipulaciones, MS1 y MS2, de ser posible, deben colocarse a distintas alturas (es decir, sin intersección en forma de puntos de los haces luminosos).

6.2.5 Disposición de los sensores de muting en el muting de 2 sensores con control secuencial

En este modo de funcionamiento de muting, debido a la disposición de los sensores de muting, el transporte del material sólo está permitido en una dirección (vea capítulo 4.5.2).

Esta solución de muting puede implementarse con facilidad utilizando kits de sensores de muting premontados (accesorios) para sensores de seguridad MLD (vea figura 14.10).

NOTA


En Internet están disponibles unas instrucciones de montaje para los kits de sensores de muting MLD para la descarga en http://www.leuze.com/mld/.

iAVISO!

¡Peligro de muerte en caso de disposición incorrecta de los sensores de muting!

Seleccione muting de 2 sensores con control secuencial sólo para salidas de material (vea capítulo 6.2.5).

- 1 Zona de peligro
- 2 Transceptor de muting
- 3 Espejo deflector pasivo
- MS1 Sensor de muting 1
- MS2 Sensor de muting 2
- a,b Distancia entre la mercancía transportada y la valla de seguridad
- d5 Distancia entre MS2 y AOPD
- d8 Distancia desde el extremo del equipo de protección mecánico, p. ej. una valla de seguridad, hasta el campo de protección

Fig. 6.9: Disposición típica de los sensores de muting en el muting de 2 sensores con control secuencial (ejemplo según IEC 62046)

Las distancias a y b entre aristas fijas y objeto de muting (p.ej. mercancía transportada) deben definirse de manera que una persona no pueda cruzar estas aberturas sin ser reconocido mientras la palet atraviesa la zona de muting. Sin embargo si se debe partir de la base que hay personas aquí, se deberá evitar el peligro de aplastamiento, p. ej. mediante puertas oscilantes que están integradas eléctricamente en el circuito de seguridad.

Distancia a, b

a, b ≤ 200 mm

a, b [mm] = Distancia entre la mercancía transportada y la valla de seguridad

Distancia d5, mínima (distancia mínima)

 $d5 \ge v \cdot 0.05s$

d5 [mm] = Distancia del haz de luz desde MS2 en vertical hacia el plano del campo de protección v [m/s] = Velocidad del material

Distancia d5, máxima

 $d5 \le 200 \ mm$

d5 [mm] = Distancia del haz de luz desde MS2 en vertical hacia el plano del campo de protección

Altura de los haces luminosos del sensor de muting

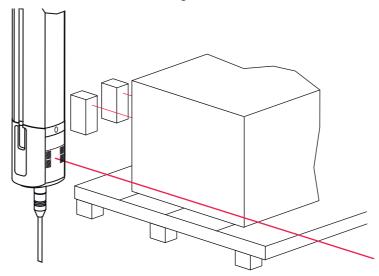


Fig. 6.10: Disposición de los sensores de muting en la altura

NOTA

Los sensores de muting deben encontrarse encima del haz inferior del sensor de seguridad.

- Elegir la altura de los haces de luz de los sensores de muting de tal manera que se encuentren por encima del haz inferior del sensor de seguridad y detecten así el material en vez del palet o del medio de transporte.
- ☼ En caso contrario, deberá introducir medidas adicionales para evitar que las personas accedan a la zona de peligro a través del palet o el medio de transporte.

Distancia d8 desde el extremo del equipo de protección mecánico hasta el campo de protección

 $d8 \ge v_{max} \cdot 5s - 200mm$

d8 [mm] = Distancia desde el extremo del equipo de protección mecánico, p. ej. una valla de seguridad, hasta el campo de protección

v_{max} [ms] = Máxima velocidad del material

6.3 Montaje del sensor de seguridad

Proceda del siguiente modo:

• Seleccione el tipo de fijación, p. ej. el soporte giratorio (vea capítulo 6.3.2) o el soporte de sujeción (vea capítulo 6.3.3).

- Tenga lista una herramienta adecuada y monte el sensor de seguridad siguiendo las indicaciones sobre los puntos de montaje (vea capítulo 6.3.1).
- Si fuera necesario, coloque adhesivos con indicaciones de seguridad en el sensor de seguridad o la columna de montaje una vez montados.

Después del montaje, puede conectar el sensor de seguridad eléctricamente (vea capítulo 7), ponerlo en funcionamiento y alinearlo (vea capítulo 8) así como comprobarlo (vea capítulo 9.1).

6.3.1 Puntos de montaje adecuados

Campo de aplicación: Montaje

Comprobador: Instalador del sensor de seguridad

Tabla 6.4: Lista de comprobación para los preparativos de montaje

Comprobaciones:	Sí	No
¿Cumplen las alturas del haz los requerimientos de EN ISO 13855 (vea capítulo 6.1.1)?		
¿Se ha respetado la distancia de seguridad respecto al punto peligroso (vea capítulo 6.1.2)?		
¿Se ha respetado la distancia mínima respecto a las superficies reflectantes (vea capítulo 6.1.4)?		
¿Queda descartado que los sensores de seguridad montados uno junto al otro se influ- yen recíprocamente (vea capítulo 6.1.5)?		
¿Existe la posibilidad de acceder al punto peligroso o a la zona de peligro únicamente a través del campo de protección?		
¿Se impide que el campo de protección pueda ser rodeado arrastrándose por el suelo, estirándose o pasando por encima?		
¿Señalan las conexiones del emisor y el receptor la misma dirección? En los sistemas transceptores: ¿Miran las placas de características del transceptor y el espejo en la misma dirección?		
¿Se pueden montar el emisor y el receptor o el transceptor y el espejo deflector en posición vertical (nivel) y a la misma altura sobre una base plana?		
¿Se pueden fijar el emisor y el receptor o el transceptor y el espejo deflector de tal manera que no se puedan desplazar ni girar?		
¿Queda accesible el sensor de seguridad para su comprobación y sustitución?		
¿Queda descartado que el pulsador de inicio/reinicio se pueda accionar desde la zona de peligro?		
¿Es completamente visible la zona de peligro desde el lugar de montaje del pulsador de inicio/reinicio?		

6.3.2 Soporte giratorio BT-SET-240 (opcional)

Con el soporte giratorio en fundición inyectada de cinc se puede girar el sensor de seguridad 240° por su propio eje, así como alinearse con facilidad y montarse con fiabilidad. Hay dos modelos disponibles: BT-SET-240B con contrasoporte (para emisor y receptor en el lado superior) y BT-SET-240C con anillo de fijación (para emisor y receptor en el lado de conexión o para el espejo deflector arriba/abajo).

Apertura de las cubiertas para soportes en el equipo

Retire las cubiertas al utilizar los soportes giratorios BT-SET-240:

- Presione en el punto marcado en la cubierta hasta que se abra en el lado opuesto.
- Haga palanca con un objeto puntiagudo o con la uña en un lateral de la cubierta hasta que pierda su soporte.

La cubierta se puede retirar.

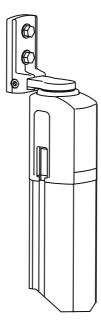


Fig. 6.11: Soporte giratorio BT-SET-240B

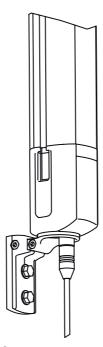


Fig. 6.12: Soporte giratorio BT-SET-240C

NOTA

Puede descargar de Internet unas instrucciones de montaje detalladas para los soportes giratorios en http://www.leuze.com/mld/

6.3.3 Soporte de sujeción BT-P40 (opcional)

Las soportes de sujeción BT-P40 también se encuentran disponibles para el montaje con tuercas correderas en las columnas de montaje DC/UDC-...-S1. Con los soportes de sujeción, el sensor de seguridad se puede ajustar en altura de forma flexible y fijarse en su posición vertical.

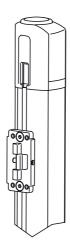


Fig. 6.13: Soporte de sujeción BT-P40

6.3.4 Soporte orientable de sujeción BT-2SB10 (opcional)

El soporte orientable BT-2SB10 se puede montar en la ranura en C que se encuentra en el lateral del MLD. Según la situación de montaje, el MLD se puede fijar con el soporte por la parte trasera o lateral. El soporte también está disponible con un diseño que amortigua las vibraciones para condiciones mecánicas exigentes (BT-2SB10-S).

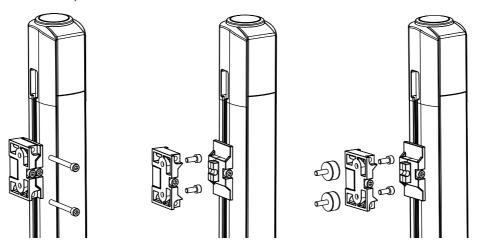


Fig. 6.14: Soporte orientable de sujeción BT-2SB10

7 Conexión eléctrica

¡Lesiones graves a causa de una conexión eléctrica errónea!

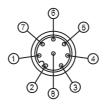
Encargue la conexión eléctrica únicamente a personas con la capacitación necesaria (vea capítulo 2.2).

AVISO!

¡Accidentes graves por selección incorrecta de funciones!

- Active el bloqueo de inicio/reinicio para las protecciones de accesos y asegúrese de que no se puede desbloquear desde la zona de peligro.
- Seleccione las funciones de tal manera que el sensor de seguridad pueda utilizarse conforme a lo prescrito (vea capítulo 2.1).
- ♥ Seleccione las funciones del sensor de seguridad (vea capítulo 7.2 o vea capítulo 7.3).

NOTA


Tendido de cables

- Tienda todos los cables de conexión y de señales dentro del espacio de montaje eléctrico o permanentemente, en canales de cables.
- ☼ Tienda los cables de modo que estén protegidos contra daños externos.
- ♦ Para más información: vea EN ISO 13849-2, tabla D.4.

7.1 Asignación de conector en el transceptor

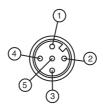
7.1.1 Asignación de conector estándar

Los transceptores de los modelos MLD 531 disponen de un conector M12 de 8 polos y una hembrilla adicional de 5 polos. La hembrilla de 5 polos sirve para la conexión de las señales de los sensores de muting. Alternativamente, los sensores se pueden conectar directamente mediante la caja de conexión AC-SCMx. La hembrilla tiene codificación A.

- 1 Blanco
- 2 Marrón
- 3 Verde
- 4 Amarillo
- 5 Gris
- 6 Rosa
- 7 Azul
- 8 Rojo

Fig. 7.1: Asignación de conector en el **transceptor** MLD 531

Tabla 7.1: Asignación de conector en el transceptor MLD 531


Pin	MLD 531 (modo de funcionamiento 1, 2, 4)	MLD 531 (modo de funcionamiento 3)
1	Señal de estado RES/OSSD	Señal de estado RES/OSSD
2	+24 V	0 V
3	EDM (no disponible en el modo de funcionamiento 4)	EDM

Pin	MLD 531 (modo de funcionamiento 1, 2, 4)	MLD 531 (modo de funcionamiento 3)
4	MS2 (opcional, no disponible en el modo de funcionamiento 1)	MS2 (opcional)
5	OSSD2	OSSD2
6	OSSD1	OSSD1
7	0 V	+24 V
8	0 V	0 V

El modo de funcionamiento del modelo de equipo MLD 531 se rige por la asignación de pines del conector de 8 polos, pudiendo cambiarlo en el equipo estando sin corriente. Al poner en marcha el equipo, el software determina los parámetros así ajustados.

7.1.2 Asignación de conectores de la hembrilla local

- 1 Marrón
- 2 Blanco
- 3 Azul
- 4 Negro
- 5 Gris

Fig. 7.2: Asignación de la hembrilla de 5 polos del transceptor MLD 531

Tabla 7.2: Asignación de pines de la hembrilla de 5 polos (para sensores de muting, indicación de muting y pulsador de inicio/reinicio de muting)

Pin	MLD 531 (de 5 polos)
1	+24 V
2	MS2
3	0 V
4	MS1
5	RES/LMP

M :AVISO

Merma de la función de protección debido a señales de muting defectuosas

La conexión a masa del receptor/transceptor MLD 531 debe cablearse entre las conexiones a masa de las señales de muting MS1 y MS2. Para los sensores de muting y el sensor de seguridad debe emplearse una fuente de alimentación común. Los cables de conexión de los sensores de muting deben tenderse separados y protegidos.

7.2 Selección de la monitorización de contactores y el bloqueo de inicio/reinicio

La monitorización de contactores y el bloqueo de inicio/reinicio se parametrizan mediante los pines 1, 3 y 4. Si está seleccionado, el circuito de retorno para la monitorización de contactores se conecta en el pin 3, el pulsador de reinicio para el bloqueo de inicio/reinicio se conecta en el pin 1. Con el pin 4 se parametriza el bloqueo de inicio/reinicio.

Los modos de funcionamiento EDM y RES se parametrizan de la siguiente manera:

Tabla 7.3: Parametrización EDM/RES

	MLD 531 a)	MLD 531 ^{a)}
Pin y función	Sin EDM, con RES	Con EDM, con RES
Pin 3, EDM	+24 V	0 V vía circuito de retorno cerrado
Pin 4, Mode	0 V	0 V

a) no posible en el modo de funcionamiento 4

7.3 Selección de los modos de funcionamiento de muting

A parte de EDM y RES, los equipos del modelo MLD 531 disponen de las siguientes funciones:

- Timeout de muting de 10 s
- La señal de muting 2 como señal de control (MS2 también se puede conectar en este caso en el conector de 8 polos)
- · Reinicio de muting
- · Muting de 2 sensores con control temporizado
- · Muting de 2 sensores con control secuencial

Estas funciones se pueden seleccionar a través del modo de funcionamiento correspondiente (vea tabla 7.4).

Tabla 7.4: Parametrización MLD 531

	Funciones				Selección del modo de funcionamiento			
Modo de funcionamiento	RES	EDM, seleccionable	Tipo de muting	Timeout de muting	Conector pin 2	Conector pin 7	Conector pin 1	Conector pin 8
1	•	•	Muting de 2 sensores con control temporizado	10 sec	+24 V	0 V	Puente hacia el pin 4	0 V
2	•	•	Muting de 2 sensores con control temporizado	10 sec	+24 V	0 V	Puente hacia el pin 8	Puente hacia el pin 1
3	•	•	Muting de 2 sensores con control secuencial	10 sec	0 V	+24 V	Puente hacia el pin 8	Puente hacia el pin 1
4	•		Muting de 2 sensores con control secuencial	10 sec	+24 V	0 V	Puente hacia el pin 3	

La selección del modo de funcionamiento de muting deseado tiene lugar a través de los pines 2 y 7 (tensión de alimentación), así como un puente entre el pin 1 y otro pin.

El modo de funcionamiento 5 no se puede utilizar en los modelos de equipo MLD 531.

El modo de funcionamiento 6 (muting parcial) no se puede utilizar en sistemas transceptor de los modelos de equipo MLD 531.

7.3.1 Modo de funcionamiento 1:

- El bloqueo de inicio/reinicio está seleccionado
- · La monitorización de contactores se puede seleccionar
- El timeout de muting es de como máximo 10 s

Tabla 7.5: Selección del modo de funcionamiento y otras funciones

Pin	Conexión
Selección o	del modo de funcionamiento
2	+24 V
7	0 V
4	Puente hacia el pin 1
8	0 V
Otras funciones	
1	RES (a través del pulsador de inicio con +24 V)
3	EDM (sin EDM: +24 V; con EDM: 0 V vía el circuito de retorno)
5	OSSD2
6	OSSD1

Fig. 7.3: Ejemplo de conexión del sistema transceptor MLD 531: muting de 2 sensores con control temporizado con timeout de muting de 10 s

7.3.2 Modo de funcionamiento 2:

- El bloqueo de inicio/reinicio está seleccionado
- · La monitorización de contactores se puede seleccionar
- El timeout de muting es de como máximo 10 s
- En caso de que una segunda señal de muting proceda, p. ej., de un sistema de mando, la señal también se podrá conectar en este caso en el conector de 8 polos.

Tabla 7.6: Selección del modo de funcionamiento y otras funciones

Pin	Conexión
Selección o	del modo de funcionamiento
2	+24 V
7	o v
8	Puente hacia el pin 1
Otras funci	ones
1	RES (a través del pulsador de inicio con +24 V)
3	EDM (sin EDM: +24 V; con EDM: 0 V vía el circuito de retorno)
4	MS2 (la segunda señal de muting también se puede conectar aquí)
5	OSSD2
6	OSSD1

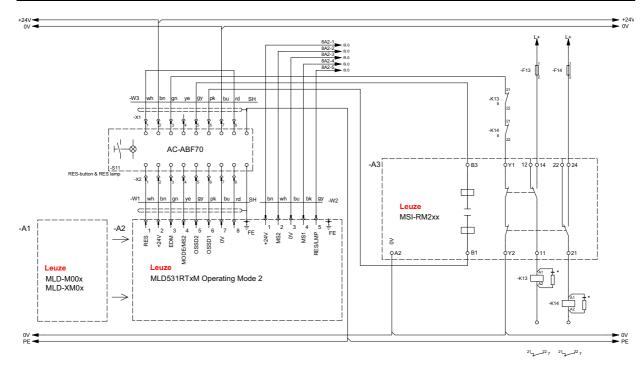


Fig. 7.4: Ejemplo de conexión del MLD 531 (sistema transceptor): muting de 2 sensores con control temporizado con timeout de muting de 10 s

7.3.3 Modo de funcionamiento 3:

- El bloqueo de inicio/reinicio está seleccionado
- La monitorización de contactores se puede seleccionar
- La segunda señal de muting se puede conectar a través de la interfaz de máquina (es decir, la señal procede de un sistema de mando)

Tabla 7.7: Selección del modo de funcionamiento y otras funciones

Pin	Conexión
Selección o	del modo de funcionamiento
2	0 V
7	+24 V
8	Puente hacia el pin 1
Otras funci	ones
1	RES (a través del pulsador de inicio con +24 V)
3	EDM (sin EDM: +24 V; con EDM: 0 V vía el circuito de retorno)
4	MS2 (la segunda señal de muting también se puede conectar aquí)
5	OSSD2
6	OSSD1

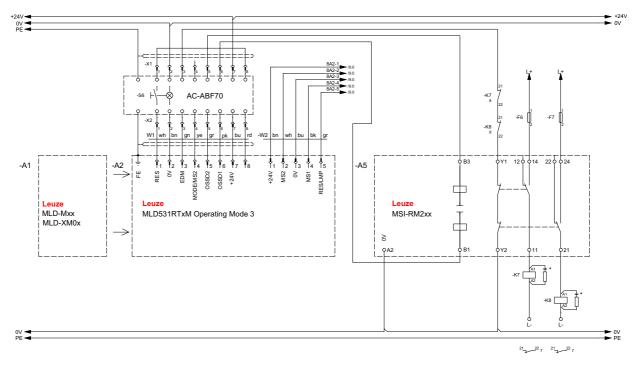


Fig. 7.5: Ejemplo de conexión del MLD 531 (sistema transceptor): muting de 2 sensores con control secuencial con timeout de muting de 10 s

7.3.4 Modo de funcionamiento 4:

- El bloqueo de inicio/reinicio está seleccionado
- · No hay monitorización de contactores
- En caso de que una segunda señal de muting proceda, p. ej., de un control, la señal también se podrá conectar en este caso en el conector de 8 polos

Tabla 7.8: Selección del modo de funcionamiento y otras funciones

Pin	Conexión		
Selección o	del modo de funcionamiento		
2	+24 V		
7	0 V		
3	Puente hacia el pin 1		
Otras funci	Otras funciones		
1	RES (a través del pulsador de inicio con +24 V)		
4	MS2 (la segunda señal de muting también se puede conectar aquí)		
5	OSSD2		
6	OSSD1		

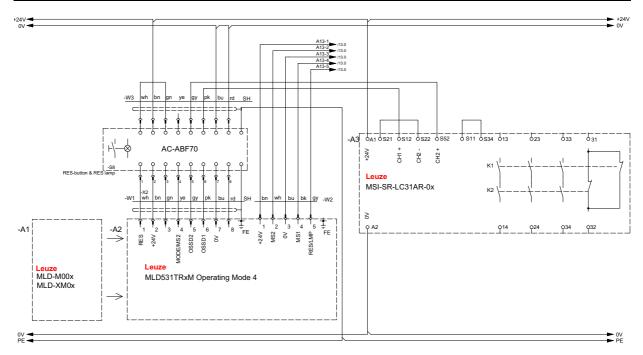


Fig. 7.6: Ejemplo de conexión del MLD 531 (sistema transceptor): muting de 2 sensores con control secuencial con timeout de muting de 10 s

8 Poner en marcha

¡Lesiones graves a causa de un sensor de seguridad usado de forma inadecuada!

- Asegúrese de que el equipo completo y la integración del equipo de protección optoelectrónico han sido comprobados por personas encargadas para tal fin y que tengan la capacitación necesaria (vea capítulo 2.2).
- Asegúrese de que un proceso que conlleve peligro solo pueda iniciarse con el sensor de seguridad conectado.

Requisitos:

- El sensor de seguridad ha sido montado y conectado según el manual
- · Los operarios han sido instruidos en lo referente al uso correcto
- El proceso que conlleva peligro está desconectado, las salidas del sensor de seguridad están desembornadas y la instalación está protegida contra una reconexión
- 🔖 Después de la puesta en marcha, compruebe la función del sensor de seguridad (vea capítulo 9).

8.1 Conexión

Requerimientos impuestos a la tensión de alimentación (fuente de alimentación):

- · Debe estar garantizada una separación de red segura
- Debe encontrarse disponible una reserva de corriente de al menos 2 A
- · La función de bloqueo de inicio/reinicio debe estar conectada y activada

NOTA

Asegúrese de que la instalación no se puede poner en marcha sola.

☼ Conecte la alimentación de tensión en el sensor de seguridad.

El sensor de seguridad realiza un breve autotest.

☼ Compruebe que el LED verde esté permanentemente encendido.

El sensor de seguridad está listo para ser utilizado.

8.2 Alineación del sensor de seguridad

NOTA

Perturbaciones en el funcionamiento por alineación incorrecta o deficiente.

- La alineación en el marco de la puesta en marcha deberá ser llevada a cabo únicamente por personas expertas.
- Tenga en cuenta las hojas de datos y las instrucciones de montaje de cada uno de los componentes.

Preajuste

Fije el emisor y el receptor o el transceptor y el espejo deflector a la misma altura de modo que los cristales frontales estén alineados entre sí.

NOTA

Asegúrese de que las dos conexiones miren hacia abajo.

En sistemas transceptores: Asegúrese de que las placas de características estén en el mismo lado en el transceptor y en el espejo.

8.3 Alineación sin alineador láser integrado

El emisor y el receptor o el transceptor y el espejo deflector se deben alinear entre sí. Sólo después está el sensor de seguridad listo para ser utilizado. La alineación se puede realizar con el campo de protección libre observando los diodos luminosos.

Requisitos:

- El montaje y el preajuste han concluido, es decir, el emisor y el receptor o el transceptor y el espejo deflector se encuentran en posición vertical y los cristales frontales de los equipos están alineados entre sí.
- El sensor de seguridad está conectado eléctricamente.
- Los diodos luminosos en los ejes ópticos del emisor se iluminan en verde, los diodos luminosos y, dado el caso, el display de 7 segmentos en el receptor también están activos.
- Uando el LED en el receptor es rojo y para optimizar el ajuste (LED verde encendido), suelte los tornillos de los soportes o de las columnas de montaje.

NOTA

Afloje los tornillos sólo hasta el punto en que los equipos o las columnas aún puedan girarse.

- Sire el receptor hacia la izquierda hasta que el LED1 aún parpadee en verde o aún no se ilumine en rojo. Si es necesario, también tiene que girar con cuidado el emisor en esta dirección.
- ♦ Anote el valor del ángulo de torsión.
- Si es necesario, también tiene que girar con cuidado el emisor en esta dirección.
- Anote el valor del ángulo de torsión.
- Ajuste la posición óptima del receptor. Ésta se encuentra en el centro de ambos valores del ángulo de torsión hacia la izquierda y la derecha.

8.4 Pulsador de inicio/reinicio

Con el pulsador de inicio/reinicio se puede desbloquear el bloqueo de inicio/reinicio o activar un reinicio de muting. La persona responsable puede restablecer con ello el funcionamiento normal de la instalación después de una interrupción del proceso (activación de la función de protección, fallo de la alimentación de tensión, error de muting) (vea capítulo 8.4.1 y vea capítulo 8.4.2).

8.4.1 Desbloqueo del bloqueo de inicio/reinicio

iAVISO!

¡Lesiones graves a causa de un desenclavamiento prematuro del bloqueo de inicio/reinicio! Cuando se desbloquea el bloqueo de inicio/reinicio, la instalación puede arrancar automáticamente.

Asegúrese antes de desbloquear el bloqueo de inicio/reinicio que no hay ninguna persona dentro de la zona de peligro.

Los LED rojo y amarillo se encienden mientras el rearrangue esté bloqueado.

- Asegúrese de que el campo de protección activo está libre.
 - El LED amarillo se enciende sólo cuando el campo de protección está libre.
- En caso de que el campo de protección activo no esté libre, elija otro modo de proceder (vea capítulo 8.4.2).
- Asegúrese de que no haya ninguna persona en la zona de peligro.
- ♥ Pulse el pulsador de inicio/reinicio y suéltelo de nuevo (tras 0,15 ... 4 s).
- El receptor/transceptor conmuta de nuevo al estado CONECTADO.

8.4.2 Reinicio de muting

Cuando la lámpara de muting indica un error mediante el parpadeo (p. ej. timeout de muting, fallo de la tensión de alimentación), se puede activar la función de muting manualmente y la instalación también se puede iniciar con los ejes ópticos del sensor de seguridad interrumpidos. Así se puede liberar el recorrido de muting.

⚠ ¡AVISO!

¡Lesiones graves debido a un reinicio prematuro del muting!

- Asegúrese de que la zona de peligro sea visible desde el pulsador de inicio/reinicio y que la persona responsable pueda observar el proceso completo.
- Asegúrese antes y durante el reinicio de muting que no hay ninguna persona dentro de la zona de peligro.
- ♦ Asegúrese de que no haya ninguna persona en la zona de peligro.
- Accione el pulsador de inicio/reinicio dentro del tiempo definido de la siguiente manera: pulsar, soltar, volver a pulsar.

Mientras se mantiene pulsado el pulsador de inicio/reinicio, la función de muting permanece activa después de pulsar por segunda vez el botón. Es decir, las OSSD quedan habilitadas durante un máximo de 2 minutos, aun si no consta una condición válida de muting.

Repetir el proceso en caso de ser necesario.

NOTA

En caso de que se reconozca una condición válida de muting después de haber pulsado por segunda vez el botón, se puede soltar el pulsador de inicio/reinicio inmediatamente, p. ej. después de una parada de la cinta transportadora a causa de una interrupción transitoria de tensión, timeout de muting, o similares.

♥ Vuelva a soltar el pulsador de inicio/reinicio.

La lámpara de muting se enciende constantemente y el sistema regresa al funcionamiento normal. En caso contrario, las OSSD se vuelven a desconectar.

NOTA

También se puede realizar un inicio/reinicio mediante la señal del PLC (impedancia de salida < 1,6 kΩ, conmutador PNP).

9 Comprobar

AVISO!

¡Lesiones graves debido a la máquina en marcha!

Al realizar cualquier modificación, trabajos de mantenimiento y comprobación, asegúrese de que la instalación está parada con seguridad y de que está asegurada para no poder volver a ponerse en funcionamiento.

Los sensores de seguridad deberán ser sustituidos después de 20 años como máximo.

- \$\text{Sustituya los sensores de seguridad siempre completos.}
- Tenga en cuenta entre las comprobaciones las disposiciones nacionales vigentes.
- \$ Documente todas las comprobaciones de forma comprensible.

9.1 Antes de la primera puesta en marcha y después de una modificación

¡Lesiones graves a causa de un comportamiento no previsible de la máquina durante la primera puesta en marcha!

Asegúrese de que no haya ninguna persona en la zona de peligro.

Según IEC 62046 y las disposiciones nacionales (p. ej. Directiva Comunitaria 2009/104/CE), las comprobaciones deberán ser realizadas por personas con la capacitación necesaria (vea capítulo 2.2) en las siguientes situaciones:

- · Antes de la primera puesta en marcha
- · Después de realizar modificaciones en la máquina
- Tras un período de inactividad de la máquina prolongado
- · Después de actualizar el equipamiento o una nueva configuración del sensor de seguridad
- Compruebe la efectividad de la función de desconexión en todos los modos de trabajo de la máquina según la siguiente lista de comprobación y las indicaciones de prueba.
- Documente todas las comprobaciones de un modo comprensible y adjunte a la documentación la configuración del sensor de seguridad, incl. los datos sobre las distancias de seguridad y las distancias mínimas.
- Instruya al operario antes de que asuma una actividad. La instrucción se sitúa dentro del ámbito de responsabilidades del propietario de la máquina.
- ☼ Coloque indicaciones sobre la comprobación diaria en el idioma del país del operario en un lugar visible en la máquina, p. ej. imprimiendo el capítulo correspondiente (vea capítulo 9.3).
- Compruebe si el sensor de seguridad se ha seleccionado correctamente según las disposiciones locales y directivas vigentes.
- Compruebe si el sensor de seguridad se utiliza según las condiciones ambientales específicas que deben cumplirse (vea capítulo 14).
- Asegúrese de que el sensor de seguridad está protegido contra sobrecorriente.
- Realice una comprobación visual en búsqueda de daños y compruebe la función eléctrica (vea capítulo 9.2).

Requisitos mínimos de la fuente de alimentación:

- · Separación de red segura
- · Al menos 2 A de reserva de corriente
- · Anulación del fallo de red por al menos 20 ms

Sólo cuando se ha determinado que el dispositivo de seguridad optoelectrónico funciona correctamente, puede integrarse en el circuito de mando de la instalación.

NOTA

Leuze ofrece como inspección de seguridad la comprobación a cargo de personas con la capacitación necesaria antes de la primera puesta en marcha (vea capítulo 13).

Indicaciones de prueba

Para detectar cualquier reflexión del entorno y comprobar el funcionamiento correcto en general, interrumpa cada haz de luz con una barra de comprobación no transparente de como mín. 42 mm de diámetro en las siguientes posiciones:

- Interrupción de cada haz directamente delante de cada óptica de emisión y óptica de recepción, así como directamente delante y detrás de los espejos deflectores.
- Interrupción de cada haz en la mitad de los recorridos de la luz (entre emisor y receptor, entre emisor y espejo deflector, entre espejos deflectores, entre espejo deflector y receptor).

En caso de que la distancia entre el emisor y el receptor o los espejos deflectores sea demasiado grande, o resulte muy complicado determinar y mantener la posición de desconexión exacta por cada haz, se puede introducir la barra de comprobación verticalmente a través de los haces, de modo que todos los haces sean interrumpidos al menos una vez. A continuación, en la medida de lo posible, el cuerpo/la barra de comprobación se debe sujetar con el brazo extendido en los haces.

Durante esta comprobación, el MLD debe apagarse una vez por cada haz interrumpido. La desconexión de las OSSD se puede comprobar a grandes distancias con la ayuda de un compañero que se sitúe junto al receptor y observe el LED1. Cuando se interrumpe un haz, el LED1 pasa de verde a rojo.

Se debe comprobar realizando interrupciones al menos una vez con el rearme manual del MLD activado y una vez con el rearme manual desactivado para verificar que ambos modos funcionan correctamente. Las comprobaciones deben ser llevadas a cabo por personal capacitado.

Listas de comprobación

Las siguientes listas de comprobación sirven de referencia para el fabricante de la máquina o el instalador del equipamiento. No sustituyen a la comprobación de la máquina o instalación completas antes de la primera puesta en marcha, ni tampoco a sus comprobaciones periódicas por parte de personas con la capacitación necesaria (vea capítulo 2.2). Las listas de comprobación contienen requerimientos de comprobación mínimos. En función de la aplicación, pueden ser necesarias más comprobaciones.

🔖 Archive las listas de comprobación junto con la documentación de la máquina.

9.1.1 Lista de comprobación - antes de la primera puesta en marcha

Comprobadores: Personas con la capacitación necesaria (vea capítulo 2.2)

Tabla 9.1: Lista de comprobación - antes de la primera puesta en marcha

Comprobaciones:	Sí	No
¿Se han tenido en cuenta todas las directivas de seguridad y normas relevantes para este tipo de máquina?		
¿Contiene la declaración de conformidad de la máquina una relación de estos documentos?		
¿Cumple el sensor de seguridad las prestaciones técnicas de seguridad exigidas en el análisis de riesgos (PL, SIL, categoría)?		
Esquema de conexiones: ¿Se han integrado las dos salidas de seguridad (OSSD) conforme a la categoría de seguridad exigida en el control de la máquina?		
Esquema de conexiones: ¿Se han supervisado los elementos de conmutación activados por el sensor de seguridad (p. ej. contactores) con contactos con guiado positivo a través de un circuito de retorno (EDM)?		
¿Concuerda el cableado eléctrico con los esquemas de conexiones?		
¿Se han llevado a la práctica de forma efectiva las medidas de protección necesarias contra una descarga eléctrica?		
¿Se ha medido el tiempo de parada máximo de la máquina y se ha registrado en la documentación de la máquina?		

Cuerpo/barra de comprobación: Barra redonda opaca de como mínimo 150 mm de longitud y 45 mm ± 3 mm de diámetro.

Comprobaciones:	Sí	No
¿Se respeta la distancia de seguridad requerida (campo de protección del sensor de seguridad respecto al punto peligroso más cercano)?		
¿Se puede acceder a todos los puntos peligrosos de la máquina únicamente a través del campo de protección del sensor de seguridad? ¿Se han montado correctamente todos los equipos de protección adicionales (p. ej. rejilla protectora) y se han protegido contra una manipulación?		
¿Se ha colocado de la forma prescrita la unidad de control para activar el bloqueo de inicio/reinicio del sensor de seguridad o la máquina?		
¿Se ha alineado correctamente el sensor de seguridad y se han apretado todos los tornillos de fijación y los conectores?		
¿Están exentos de daños y sin signos de manipulación el sensor de seguridad, los cables de conexión, conectores, caperuzas de protección y unidades de control?		
¿Se ha comprobado la efectividad de la función de protección para todos los modos de trabajo de la máquina mediante una comprobación del funcionamiento?		
¿Se ha colocado el pulsador de inicio/reinicio para restablecer el AOPD conforme a lo prescrito de tal manera fuera de la zona de peligro que no sea accesible desde la zona de peligro y exista una visibilidad completa sobre la zona de peligro desde el lugar de su instalación?		
¿Provoca la interrupción de cualquier haz una parada del movimiento peligroso?		
¿Se detiene el movimiento peligroso al separar el AOPD de la tensión de alimentación y resulta necesario accionar el pulsador de inicio/reinicio tras regresar la tensión de alimentación para restablecer la máquina?		
¿Es efectivo el sensor de seguridad durante todo el movimiento peligroso de la máquina?		
¿Se han colocado las indicaciones sobre la comprobación diaria del sensor de seguridad para que sean legibles y bien visibles para operarios?		
¿Se ha colocado en modo bien visible la lámpara de muting en el recorrido de entrada/ salida?		

9.2 Periódicamente por parte de personas capacitadas

Se deben realizar comprobaciones periódicas sobre la interacción segura del sensor de seguridad y la máquina para que se puedan detectar modificaciones en la máquina o manipulaciones no autorizadas en el sensor de seguridad. Las disposiciones nacionales vigentes regulan los intervalos de comprobación (recomendación según IEC 62046: 12 meses).

- Encargue todas las comprobaciones únicamente a personas con la capacitación necesaria (vea capítulo 2.2).
- ∜ Tenga en cuenta las prescripciones nacionales vigentes y los plazos que allí se exigen.

NOT

Leuze ofrece como inspección de seguridad la comprobación periódica a cargo de personas con la capacitación necesaria (vea capítulo 13).

9.3 Periódicamente por parte de operarios

Se deberá comprobar el funcionamiento del sensor de seguridad periódicamente en función del riesgo según la siguiente lista de comprobación (frecuente pero no indispensable por parte del operario), para poder descubrir daños o manipulaciones prohibidas.

El ciclo de comprobación deberán determinarlo el integrador o el usuario de la máquina en función de la evaluación de riesgos (p. ej.: diariamente, al cambiar el turno, etc.), o estará prescrito por disposiciones nacionales o de asociaciones profesionales, en su caso dependiendo del tipo de máquina.

Debido a la complejidad de las máquinas y los procesos, bajo determinadas circunstancias puede ser necesario comprobar algunos puntos en unos intervalos de tiempo mayores. Por esta razón, tenga en cuenta la distribución en «Compruebe como mínimo» y «Compruebe en lo posible».

AVISO!

¡Lesiones graves a causa de un comportamiento no previsible de la máquina durante la comprobación!

Asegúrese de que no haya ninguna persona en la zona de peligro.

AVISO!

¡Lesiones graves en caso de proseguir con el funcionamiento de la máquina si se presentan errores durante la comprobación periódica!

Cuando conteste a uno de los puntos de la lista de comprobación (vea tabla 9.2) con un *no*, la máquina no deberá seguir funcionando.

- Encargue la comprobación (vea capítulo 2.2) de toda la máquina a personas con la capacitación necesaria (vea capítulo 9.1).
- Pare el estado peligroso.
- Compruebe si se han producido daños o manipulaciones en el emisor, el receptor y, en su caso, en el espejo deflector.
- ☼ Interrumpa el haz luminoso desde un lugar situado fuera de la zona de peligro y asegúrese de que no se puede arrancar la máquina cuando está interrumpido el haz luminoso.
- ♦ Arranque la máquina.
- 🔖 Asegúrese de que el movimiento peligroso se para en cuanto se interrumpe un haz luminoso.

9.3.1 Lista de comprobación - Periódicamente por parte de operarios

Tabla 9.2: Lista de comprobación – Comprobación periódica del funcionamiento por parte de personas/operarios instruidos

Compruebe como mínimo:	Sí	No
¿Está bien alineado el sensor de seguridad, están apretados todos los tornillos de sujeción y fijados todos los conectores?		
¿Están exentos de daños y sin signos de manipulación el sensor de seguridad, los cables de conexión, conectores y unidades de control?		
¿Son todos los puntos peligrosos de la máquina accesibles únicamente por uno o varios campos de protección de sensores de seguridad?		
¿Se han montado correctamente todos los equipos de protección adicionales (p. ej.: rejillas protectoras)?		
Compruebe en la medida de lo posible durante el funcionamiento:	Sí	No
¿Impide el bloqueo de inicio/reinicio el arranque automático de la máquina tras conectar o activar el sensor de seguridad?		
Durante el funcionamiento, interrumpa un eje luminoso del sensor de seguridad con un cuerpo de prueba.		
¿Se para inmediatamente el movimiento peligroso?		

10 Cuidados y conservación

NOTA

!Perturbaciones en el funcionamiento si hay suciedad en el emisor y el receptor!

Las superficies del cristal frontal no deben estar arañadas ni rugosas en los lugares de las entradas y salidas de los haces del emisor, receptor ni, en su caso, del espejo deflector.

No use productos químicos de limpieza.

Requisitos para la limpieza:

- La instalación está parada con seguridad y asegurada para que no pueda volver a conectarse.
- ☼ Limpie el cristal frontal con un paño limpio y antiestático.
- ♥ Tras limpiarlo, compruebe la posición del emisor y el receptor.
- ∜ Limpie periódicamente el sensor de seguridad de acuerdo con el grado de ensuciamiento.

11 Subsanar errores

11.1 ¿Qué hacer en caso de error?

Al conectar el sensor de seguridad, los elementos de indicación (vea capítulo 3.3) facilitan la comprobación del correcto funcionamiento y la localización de los errores.

Cuando se produzca algún error, mediante las indicaciones de los diodos luminosos puede saber de qué error se trata, o leer un mensaje en el display de 7 segmentos. En base al mensaje de error puede determinar la causa del error y aplicar medidas para subsanarlo.

NOTA

El sensor de seguridad puede estar averiado si indica un error.

- 🖔 Desactive la máquina y déjela desconectada.
- 🖔 Analice la causa del error basándose en las siguientes tablas y subsane el error.
- En el caso de que no pueda subsanar el error, póngase en contacto con la filial de Leuze competente o con el servicio postventa de Leuze (vea capítulo 13).

11.2 Indicadores de funcionamiento de los diodos luminosos

Diodo luminoso	Estado	Causa	Medida
LED en el emisor, por eje luminoso	Off	Haz emitido inactivo o no hay tensión de alimentación	Compruebe la fuente de alimentación y la conexión eléctrica. En su caso, sustituya la fuente de alimentación.
LED1 en el receptor	Rojo con parpadeo lento (aprox. 1 Hz)	Error externo	Compruebe la conexión de los cables. Desconecte, a modo de prueba, la conexión de las salidas OSSD directamente después del cable de conexión original. Con el MLDx20-xx: pruebe el equipo en rearme automático y sin monitorización de contactores EDM conectando el cable de conexión blanco con el amarillo y conectando 24V al cable verde.

Diodo luminoso	Estado	Causa	Medida
LED1 en el receptor	Rojo con parpadeo rápido (aprox. 10 Hz)	Error interno	Si el rearme no tiene éxito, contacte con el ser- vicio de atención al cliente.
LED1 en el receptor	Verde con parpadeo lento (aprox. 1 Hz)	Señal débil por suciedad y desajuste	Limpie el cristal frontal o compruebe la alineación del emisor y el receptor (vea capítulo 8.2). Compare los alcances necesarios para la aplicación con el alcance del equipo. Compruebe si el pin 2 del emisor está o no conectado a una alimentación de 24 V (máx. alcance).
LED2 en el receptor	Amarillo	Bloqueo de inicio/reini- cio bloqueado	En el caso de que no haya ninguna persona en la zona de peligro: Pulse el pulsador de reinicio.

11.3 Mensajes de error display de 7 segmentos

Error	Causa/descripción	Medidas
F[núm. 0- 255]	Error interno	Si el rearme no tiene éxito, contacte con el servicio de atención al cliente.
E01	Cortocircuito entre OSSD1 y OSSD2	Compruebe el cableado entre OSSD1 y OSSD2.
E02	Sobrecarga en OSSD1	Compruebe el cableado y/o cambie el componente conectado (reducir carga).
E03	Sobrecarga en OSSD2	Compruebe el cableado y/o cambie el componente conectado (reducir carga).
E04	Cortocircuito después de Vcc en OSSD1	Compruebe el cableado. En su caso, sustituya el cable.
E05	Cortocircuito después de Vcc en OSSD2	Compruebe el cableado. En su caso, sustituya el cable.
E06	Cortocircuito a GND en OSSD1	Compruebe el cableado. En su caso, sustituya el cable.
E07	Cortocircuito a +24 V en OSSD1	Compruebe el cableado. En su caso, sustituya el cable.
E08	Cortocircuito a GND en OSSD2	Compruebe el cableado. En su caso, sustituya el cable.
E09	Cortocircuito a +24 V en OSSD2	Compruebe el cableado. En su caso, sustituya el cable.
E14	Subtensión de alimentación	Seleccione una fuente de corriente adecuada
E15	Sobretensión de alimentación	Seleccione una fuente de corriente adecuada

Error	Causa/descripción	Medidas
E19	Detectado un emisor ajeno	Retire los emisores ajenos y aumente la distancia con respecto a las superficies reflectantes.
E24	Pulsador de inicio en conector conectado a 0 V	Compruebe el cableado.
E27	Cortocircuito en la interfaz local entre el pulsador de inicio y el MS1 (pin 4 y pin 5)	Compruebe el cableado.
E28	Cortocircuito en la interfaz local entre el pulsador de inicio y el MS2 (pin 2 y pin 5)	Compruebe el cableado.
E29	Pulsador de inicio en la interfaz local conectada a 0 V	Compruebe el cableado.
E30	El contacto de retorno de la monitorización de contactores no se abre	Compruebe el funcionamiento del contactor y la conexión de los cables. En su caso, cambie el contactor.
E31	El contacto de retorno de la monitorización de contactores no se cierra	Compruebe el funcionamiento del contactor y la conexión de los cables. En su caso, cambie el contactor.
E32	Contacto de retorno de la monitorización de contactores, no cerrado	Compruebe el funcionamiento del contactor y la conexión de los cables. En su caso, cambie el contactor.
E33	Contacto de retorno de la monitorización de contactores, no abierto	Compruebe el funcionamiento del contactor y la conexión de los cables. En su caso, cambie el contactor.
E39	Duración de accionamiento del pulsador de reinicio (también tecla de muting-reinicio) excedida, o cable cortocircuitado	Pulse el pulsador de reinicio. Si no se puede reiniciar, compruebe el cableado del pulsador de rearme.
E80	Modo de funcionamiento no válido debido a error de parametrización, p. ej. circuito erróneo o pulsador de inicio pulsado al arrancar	Compruebe el esquema de conexiones y el cableado, y reinicie.
E81	Modo de funcionamiento 1 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E82	Modo de funcionamiento 2 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E83	Modo de funcionamiento 3 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E84	Modo de funcionamiento 4 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E85	Modo de funcionamiento 5 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.

Error	Causa/descripción	Medidas
E86	Modo de funcionamiento 6 modificado en funcionamiento	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E88	Modo de funcionamiento modificado en funcionamiento con el bloqueo de inicio/reinicio (para MLD 320 y MLD 520)	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
E89	Modo de funcionamiento modificado en funcionamiento sin el bloqueo de inicio/reinicio (para MLD 320 y MLD 520)	Compruebe que se ha elegido el modo de funcionamiento correcto; si fuera necesario, cambie el modo de funcionamiento y reinicie.
U40	Modo de funcionamiento 3, cuando se activan MS2 y MS1	Compruebe la disposición y asignación de los sensores de muting.
U41	Condición de simultaneidad con muting no cumplida: segunda señal fuera de la tolerancia de 4 s	Compruebe la disposición de los sensores de muting.
U42	Limitación de tiempo de muting expirada	Compruebe el proceso de muting.
U43	No hay condición de muting válida: Fin de muting prematuro antes de liberar el campo de protección	Seleccione una condición de muting válida.
U51	Sólo una señal de muting activa en una violación el campo de protección, falta la segunda señal de muting	Compruebe el montaje de los sensores de muting y la activación de las señales de muting.
U54	Falta señal adicional de control de muting (Muting-Enable)	Compruebe la conexión del sensor de muting y la activación de la señal Muting-Enable. Dado el caso, vuelva a conectar el sensor de muting y actívelo con un rearme.
U56	Reinicio de muting cancelado	Compruebe las conexiones de los sensores de muting y, en su caso, efectúe un reinicio de muting.
U57	Muting parcial: haz superior inte- rrumpido	Compruebe el tamaño de los objetos, p. ej.: la altura de las paletas. Dado el caso, cambie el modo de funcionamiento (p.ej.: muting estándar) y reinicie.
U58	Error en la señal Muting-Enable	Compruebe si en la entrada Muting-Enable hay 0 V o si la señal ha persistido por más de 8 h.
U70	Señal débil	Compruebe la alineación del sensor de seguridad. Verifique si los cristales frontales presentan suciedad y, dado el caso, límpielos.
8 o .	Error al cargar	Separe el equipo 5 s de la alimentación de tensión.

11.4 Lámpara multicolor

Tabla 11.1: Significado de la indicación de la lámpara multicolor en MLD 531

Indicación	Significado	Medidas
Verde encendido constante- mente	OSSD encendida, sin muting	Ninguna
Rojo encendido constante- mente	OSSD apagada, sin muting	Ninguna
Amarillo/rojo alterno	Rearme manual interno bloqueado	Accione el pulsador de reinicio
Blanco encendido constantemente	OSSD encendida, sin estado válido de muting	Ninguna
Blanco parpadeante	OSSD encendida, error de muting o no hay condición válida de muting	Compruebe si se ha excedido la limitación de tiempo de muting, o si no se cumple la condición de simultaneidad (ambas señales de muting antes de que pasen 4 s).
Rojo/blanco, alterno	OSSD apagada, error de muting o no hay condición válida de muting	Compruebe si se ha excedido la limitación de tiempo de muting, o si no se cumple la condición de simultaneidad (ambas señales de muting antes de que pasen 4 s).
Rojo con parpadeo lento (1 Hz)	OSSD apagada, error del equipo/error del cableado	Compruebe el cableado.
Rojo con parpadeo rápido (10 Hz)	OSSD apagada, error interno	Si el rearme no tiene éxito, contacte con el servicio de atención al cliente.
Verde con parpadeo lento (1 Hz)	OSSD activada, señal débil	Compruebe la alineación o limpie las placas de salida del haz.

12 Eliminación de residuos

Al eliminar los residuos, observe las disposiciones vigentes a nivel nacional para componentes electrónicos.

13 Service y soporte

Línea directa de servicio

Los datos de contacto del teléfono de atención de su país los encontrará en el sitio web www.leuze.com en **Contacto & asistencia**.

Servicio de reparaciones y devoluciones

Los equipos averiados se reparan rápida y competentemente en nuestros centros de servicio al cliente. Le ofrecemos un extenso paquete de mantenimiento para reducir al mínimo posibles períodos de inactividad en sus instalaciones. Nuestro centro de servicio al cliente necesita los siguientes datos:

- Su número de cliente
- · La descripción del producto o descripción del artículo
- · Número de serie o número de lote
- Motivo de la solicitud de asistencia con descripción

Registre el producto afectado. La devolución se puede registrar en la sección **Contacto & asistencia > Servicio de reparación & reenvío** de nuestro sitio web www.leuze.com.

Para agilizar y facilitar el proceso, le enviaremos una orden de devolución con la dirección de devolución digitalmente.

¿Qué hacer en caso de asistencia?

NOTA

Utilizar este capítulo como plantilla de copia en caso de asistencia.

Rellene los datos de cliente y envíelos por fax junto con su orden de servicio al número de fax abajo indicado.

Datos de cliente (rellenar por favor)

Tipo de equipo:	
Número de serie:	
Firmware:	
Indicación en el display	
Indicación de los LEDs:	
Descripción del error	
Empresa:	
Persona de contacto/departamento:	
Teléfono (extensión):	
Fax:	
Calle/número:	
Código postal/ciudad:	
País:	

Número de fax de servicio de Leuze:

+49 7021 573 - 199

14 Datos técnicos

14.1 Datos generales

Tabla 14.1: Datos del haz/campo de protección

Haces / distancia entre haces [mm]	Recomendación de altura del haz según la norma EN ISO 13855 [mm]	Alcance Transceptor [m]
2 / 500	400, 900	0,5 hasta 8
3 / 400	300, 700, 1100	0,5 hasta 6 / 8

Tabla 14.2: Datos técnicos relevantes para la seguridad

	MLD 500
Tipo según EN IEC 61496	Tipo 4
SIL según IEC 61508	SIL 3
SIL máximo según EN IEC 62061	SIL 3
Performance Level (PL) según EN ISO 13849-1:2015	PL e
Categoría según EN ISO 13849-1:2015	Cat. 4
Probabilidad media de aparición de un fallo peligroso por hora (PFH _d)	6,6x10 ⁻⁹ 1/h
Tiempo medio hasta la aparición de un fallo peligroso (MTTF _d)	140 años
Duración de utilización (T _M)	20 años

Tabla 14.3: Datos generales del sistema

Sistema de conexión	M12 (8 polos /5 polos) en función del equipo
Tensión de alimentación U _v , emisor y receptor, transceptor	+24 V, ±20% (SELV)
Consumo de corriente del emisor	50 mA
Consumo de corriente del receptor/transceptor	150mA (sin carga)
Hembrilla local: tensión de alimentación por ejemplo para sensores de muting, consumo de corriente (máx.)	24 V, 450 mA
Valor común para fusible ext. en cable de alimentación para emisor y receptor / transceptor	2 A
Margen de validez cULus	Conexión con cables según los cables R/ C (CYJV2/7 o CYJV/7) listados o cables con los datos correspondientes
Sincronización	Óptica entre emisor y receptor
Clase de seguridad	III
Índice de protección	IP67 ^{a)}
Temperatura ambiente en servicio	-30 55 °C

Temperatura ambiente en almacén	-40 75 °C
Humedad del aire relativa (no condensable)	0 95%
Resistencia a las vibraciones	5 g, 10 - 55 Hz según IEC/EN 60068-2-6; amplitud 0,35 mm
Resistencia a los choques	10 g, 16 ms según IEC/EN 60068-2-27
Sección transversal del perfil	52 mm x 65 mm
Dimensiones	Vea dibujos acotados
Peso	vea tabla 14.8

a) los equipos cumplen de forma permanente con los requisitos del índice de protección IP67, siempre y cuando se cumpla como mínimo uno de los siguientes criterios: -Los capuchones con anillos junta incluidos en el suministro están atornillados a la rosca del conector M12 - A los conectores M12 sólo están conectados cables de conexión apropiados y preconfeccionados

Tabla 14.4: Datos de sistema del emisor

Fuente de luz	LED; grupo exento de riesgos según EN 62471:2008
Longitud de onda	850 nm
Duración de impulso	21,6 μs
Pausa de impulso	800 μs
Potencia	Potencia media: 1,369 μW

NOTA

La comprobación UL comprende únicamente comprobaciones de incendio y de choques.

Tabla 14.5: Receptor/transceptor, señales de aviso y de control

Salida de tensión, solo para unidades de control o sensor de seguridad		
RES	Entrada: Salida:	+24 V +24 V
EDM	Entrada:	+24 V: 10 mA
MODE	Entrada:	Contacto o transistor contra +24 V: 5 mA (pnp)
MS1, MS2	Entrada:	+24 V: 5 mA

Tabla 14.6: Patentes de EE.UU.

Patentes de EE.UU.	US 6,418,546 B
T 4.6/1.65 45 22:55:	US 7,741,595 B

Tabla 14.7: Receptor/transceptor de la interfaz de máquina, salidas de transistor de seguridad

Salidas de transistor OSSD	2 salidas de trai seguridad	2 salidas de transistor PNP (con control de cortocircuitos) de seguridad	
Clase (fuente) según CB24l Edition 2.0.1	C2		
	Mínimo	Típico	Máximo
Tensión de conmutación high activa (U _v - 1 V)	18,2 V	23 V	27,8 V
Tensión de conmutación low	0 V	0 V	+2,5 V
Corriente de conmutación (por salida)	2 mA	300 mA	380 mA
Corriente de fuga		<2 μA	200 μA ^{a)}
Capacidad de carga			0,3 μF
Inductividad de carga			2,2 H
Resistencia admisible del cable hasta la carga			<200 Ω ^{b)}
Sección de cable admisible	0,25 mm ²	0,25 mm ² / 0,34 mm ²	0,5 mm ^{2 c)}
Longitud de cable admisible entre el receptor y la carga			100 m
Ancho de impulso de prueba			340 μs
Intervalo de impulso de prueba	(5 ms)	60 ms	
Tiempo de rearme OSSD tras la interrupción del haz		100 ms	
Tiempo de respuesta OSSD		50 ms	

a) en caso de error (al interrumpirse el cable 0 V), las salidas se comportan como una resistencia de 120 k Ω según U_{ν} . Un PLC de seguridad postconectado no debe reconocer esto como un «1» lógico.

NOTA

Las salidas de transistor referidas a la seguridad se ocupan de la extinción de chispas. Por ello, en las salidas de transistor no es necesario utilizar los circuitos de extinción de chispas recomendados por los fabricantes de contactores/válvulas (circuitos RC, varistores o diodos de marcha libre). Estos alargan los tiempos de retardo de los elementos de conmutación inductivos.

14.2 Emisión de interferencias

El equipo corresponde al grupo 1 y la clase B según CISPR 11/EN 55011.

b) observe otras restricciones debido a la longitud del cable y la corriente de carga.

c) con grandes secciones de cable, no se deben utilizar hilos de cable directamente adyacentes para los cables de señales OSSD.

Grupos

- Grupo 1: todos los equipos, que no pertenecen al grupo 2 (equipos de laboratorio, equipos para la medición y el control de procesos industriales)
- Grupo 2: todos los equipos que generan intencionadamente energía de alta frecuencia para el procesamiento/la modificación de materiales (microondas y hornos de inducción, equipos de soldadura eléctricos)

Clases

- Clase A: instalaciones industriales en las que la red de alimentación de 230 V se suministra mediante un transformador independiente (de tensión media)
- Clase B: instalaciones comerciales, industriales y residenciales que son alimentadas por la red pública de 230 V (red de baja tensión) o están conectadas a la misma

14.3 Medidas, pesos

Tabla 14.8: Pesos

Número de haces	Distancia entre haces	Transceptor	Espejo deflector
2	500	1,4 kg	1,4 kg
3	400	2,0 kg	2,0 kg

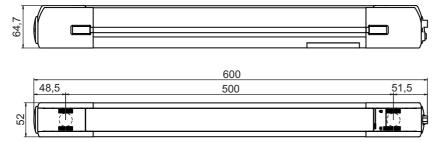


Fig. 14.1: Medidas MLD, transceptor de 2 haces

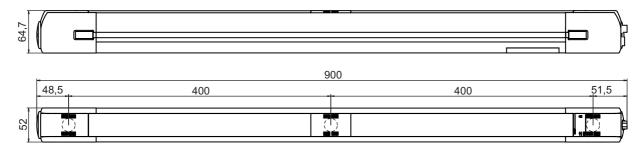


Fig. 14.2: Medidas MLD, transceptor de 3 haces

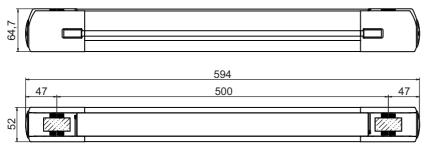


Fig. 14.3: Medidas MLD-M, espejo deflector de 2 haces

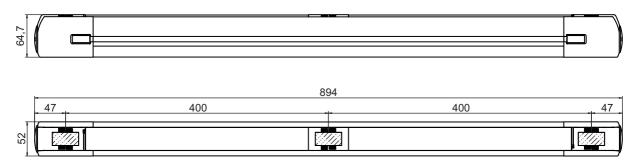
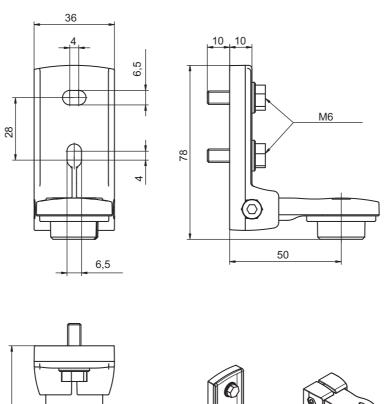
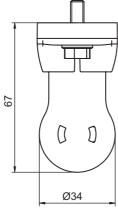
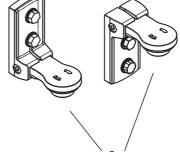
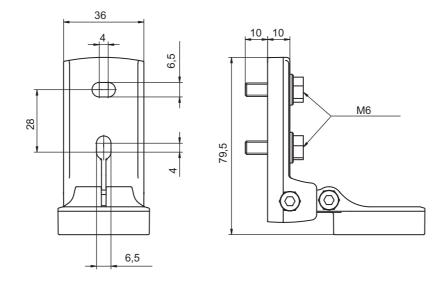
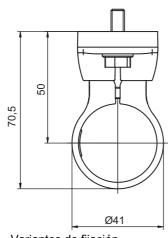
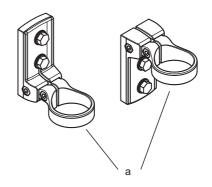





Fig. 14.4: Medidas MLD-M, espejo deflector de 3 haces

14.4 Dibujos acotados de los accesorios

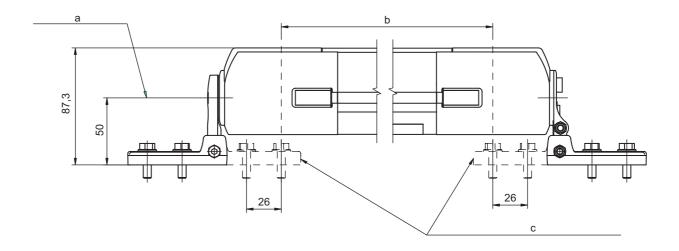


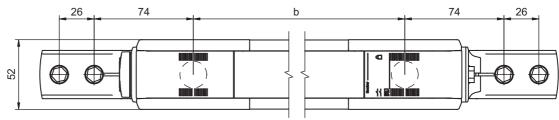




a Variantes de fijación

Fig. 14.5: Soporte giratorio BT-240B





a Variantes de fijación

Fig. 14.6: Soporte giratorio BT-240C

- a b
- Eje pivotante Distancia entre haces
- Variante de fijación alternativa С

Medidas para el montaje de BT-240B, BT-240C Fig. 14.7:

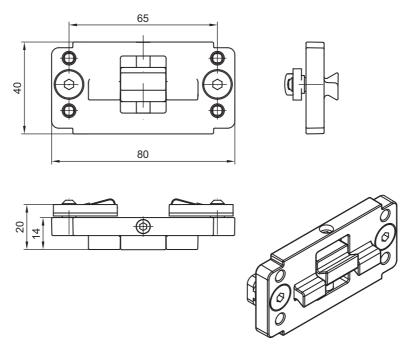


Fig. 14.8: Soporte de sujeción BT-P40

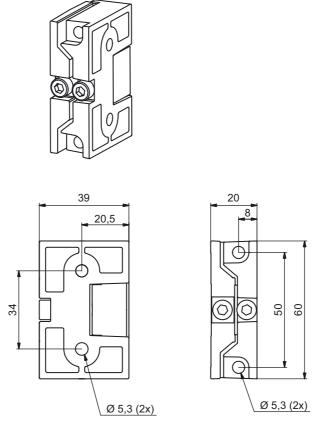


Fig. 14.9: Soporte orientable de sujeción BT-2SB10



Fig. 14.10: Kit de sensores de muting, muting de 2 sensores con control secuencial

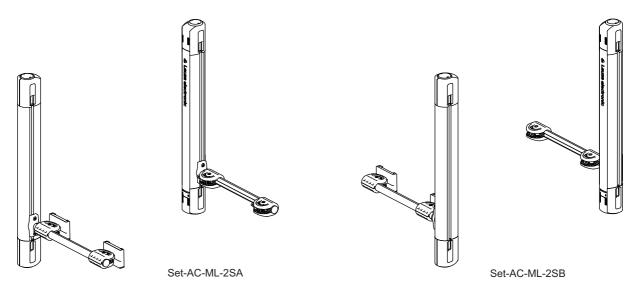


Fig. 14.11: Set-AC-ML-2SA o bien Set-AC-ML-2SB montado en dispositivo de seguridad multihaz MLD 500

15 Indicaciones de pedido y accesorios

15.1 Denominación de producto del sensor de seguridad MLDxyy-zab/t

Tabla 15.1: Código de producto

MLD	Dispositivo de seguridad multihaz
х	Serie 3 para MLD 300 o serie 5 para MLD 500
уу	Variante de función: 00: emisor 10: rearme automático 12: comprobación externa 20: EDM/RES 30: muting de 2 sensores 31: muting de 2 sensores, timeout abreviado 35: muting de 4 sensores
z	Tipo de equipo: T: emisor R: receptor RT: transceptor xT: emisor con un alcance elevado xR: receptor para alcance elevado
а	Número de haces
b	Opción: L: alineador láser integrado (para sistemas emisor-receptor) M: lámpara de estado integrada (MLD 320, MLD 520) o lámpara de estado y de muting integrada (MLD 330, MLD 335, MLD 510/A, MLD 530, MLD 531, MLD 535) E: conector hembra para indicador luminoso de muting externo (solo variantes AS-i)
/t	Salidas de seguridad (OSSD), sistema de conexión: - Salida de transistor, conector M12 A: Interfaz AS-i integrada, conector M12 (sistema de bus de seguridad)

Tabla 15.2: Ejemplos de selección

Denominación del producto	Características
MLD530-R1L	PL e (tipo 4) receptor, 1 haz con alineador láser
MLD320-RT3	PL c (tipo 2), EDM/RES, transceptor, 3 haces
MLD530-R2	PL e (tipo 4), EDM, RES, muting integrado, receptor, 2 haces
MLD500-T2L	PL e (tipo 4) emisor, 2 haces con alineador láser
MLD-M002	Espejo deflector, 2 haces para transceptor
MLD510-R3LE/A	PL e (tipo 4) receptor (3 haces) con interfaz AS-i así como elemento reflex para alineador láser y conector hembra para lámpara de muting externa

15.2 Variantes de equipo del sensor de seguridad

Tabla 15.3: Sistemas transceptores MLD 531

Distancia entre haces/ número de haces	Código	Artículo	Descripción	Opción
Alcance: 0,5 - 8	m	•	•	
500 mm / 2	66500100	MLD-M002	Espejo deflector	
	66588100	MLD531-RT2M	Transceptor	Con lámpara de estado y de muting integrada
Alcance: 0,5 - 6	Alcance: 0,5 - 6 m			
400 mm / 3	66500200	MLD-M003	Espejo deflec- tor	
	66588200	MLD531-RT3M	Transceptor	Con lámpara de estado y de muting integrada
Alcance: 0,5 - 8 m				
400 mm / 3	66500201	MLD-XM03	Espejo deflec- tor	
	66588200	MLD531-RT3M	Transceptor	Con lámpara de estado y de muting integrada

15.3 Accesorios para el sensor de seguridad

Tabla 15.4: Accesorios para el sensor de seguridad

Código	Artículo	Descripción	
Cables de conex	Cables de conexión		
678050	CB-M12-5000E-5GM	Cable de conexión, de 5 polos, longitud 5 m	
678051	CB-M12-10000E-5GM	Cable de conexión, de 5 polos, longitud 10 m	
678052	CB-M12-15000E-5GM	Cable de conexión, de 5 polos, longitud 15 m	
678053	CB-M12-25000E-5GM	Cable de conexión, de 5 polos, longitud 25 m	
50133860	KD S-M12-5A-P1-050	Cable de conexión, de 5 polos, longitud 5 m	
50133861	KD S-M12-5A-P1-100	Cable de conexión, de 5 polos, longitud 10 m	
678057	CB-M12-15000E-5GF	Cable de conexión, de 5 polos, longitud 15 m	
678058	CB-M12-25000E-5GF	Cable de conexión, de 5 polos, longitud 25 m	
678059	CB-M12-50000E-5GF	Cable de conexión, de 5 polos, longitud 50 m	
50135128	KD S-M12-8A-P1-050	Cable de conexión, de 8 polos, longitud 5 m	
50135129	KD S-M12-8A-P1-100	Cable de conexión, de 8 polos, longitud 10 m	
50135130	KD S-M12-8A-P1-150	Cable de conexión, de 8 polos, longitud 15 m	
50135131	KD S-M12-8A-P1-250	Cable de conexión, de 8 polos, longitud 25 m	

Código	Artículo	Descripción		
678064	CB-M12-50000E-8GF	Cable de conexión, de 8 polos, longitud 50 m		
Soportes y kits	Soportes y kits de soporte			
424417	BT-2P40	Kit de soporte compuesto por 2 soportes de sujeción BT-P40 para la fijación en columnas de montaje UDC-S2		
424422	BT-2SB10	Kit de soporte compuesto por 2 soportes de sujeción orientables BT-SB10 para la fijación en la ranura en C lateral.		
560347	BT-SET-240B	Soporte giratorio 240°, material: metal		
560344	BT-SET-240C	Soporte giratorio 240°, de apriete, material: metal		
560340	BT-SET-240BC	Kit de soporte compuesto por BT240B, BT 240C, con tornillos incluidos, material: metal		
560341	BT-SET-240CC	Kit de soporte para espejo, compuesto por 2 BT240C, con tornillos incluidos, material: metal		
560342	BT-SET-240BCS	Kit de soporte compuesto por BT240B, BT 240C, con tornillos y absorbedor de impactos incluidos, material: metal		
560343	BT-SET-240CCS	Kit de soporte para espejo, compuesto por 2 BT240C, con tornillos y absorbedor de impactos incluidos, material: metal		
540350	BT-SET-240BC-E	Kit de soporte compuesto de BT240B-E, BT 240C-E, con tornillos incluidos, material: plástico/ metal		
540351	BT-SET-240CC-E	Kit de soporte para espejo, compuesto por 2 BT240C-E, con tornillos incluidos, material: plástico/metal		
540352	BT-SET-240BCS-E	Kit de soporte compuesto de BT240B-E, BT 240C-E, con tornillos y absorbedor de impactos incluidos, material: plástico/metal		
540353	BT-SET-240CCS-E	Kit de soporte para espejo, compuesto por 2 BT240C-E, con tornillos y absorbedor de impactos incluidos, material: plástico/metal		
540354	BT-SET-240C-E	Soporte giratorio 240°, de apriete, material: plástico/metal		
540355	BT-SET-240CS-E	Soporte giratorio 240°, de apriete, con absorbedor de impactos incluido, material: plástico/metal		
540356	BT-SET-240BS-E	Soporte giratorio 240°, con absorbedor de impactos incluido, material: plástico/metal		
540357	BT-SET-240B-E	Soporte giratorio 240°, material: plástico/metal		
Accesorios de n	nuting			
520150	AC-SCM5U	Caja de conexión del sensor para MLD 530 y MLD 531 con conexión M12 para la conexión a la hembrilla local de 5 polos		

Código	Artículo	Descripción
520151	AC-SCM5U-BT	Caja de conexión del sensor para MLD 530 y MLD 531 con conexión M12 y placa de montaje para la conexión a la hembrilla local de 5 polos con 2 tornillos cilíndricos M4x22; 2 tuercas correderas BT-NC
520152	AC-SCM5U-BT-L	Caja de conexión del sensor para MLD 530 y MLD 531 con conexión M12 y escuadra de montaje en L para la conexión a la hembrilla local de 5 polos con 2 tornillos cilíndricos M4x22; 2 tuercas correderas BT-NC
426490	Set-AC-ML-2SA	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426491	Set-AC-ML-2SB	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426494	Set-AC-MT-2S	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426371	MSSU-H46	Kit de sensores de muting incl. 2 fotocélulas auto- rreflexivas
426506	Set-AC-MTX.2-1S	Kit de sensores de muting incl. 1 fotocélula reflexiva, 1 reflector
426520	Set-AC-MLX-2SA	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426521	Set-AC-MLX-2SB	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426524	Set-AC-MTX-2S	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426526	Set-AC-MLX.2-2SA	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426527	Set-AC-MLX.2-2SB	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
426529	Set-AC-MTX.2-2S	Kit de sensores de muting incl. 2 fotocélulas reflexivas, 2 reflectores
430305	MMS-A-2N55	Kit de soportes para sensores de muting
430306	MMS-AP-N60	Kit de soportes para sensores de muting incl. 1 reflector
548800	MMS-A-1000	Sistema de montaje de muting, lado activo
548801	MMS-P-1000	Sistema de montaje de muting, lado pasivo, incl. 2 reflectores
548803	MMS-P-350	Sistema de montaje de muting, lado pasivo, incl. 2 reflectores
548804	MMS-A-350	Sistema de montaje de muting, lado activo
548805	MMS-A-1000-S	Sistema de montaje de muting, lado activo

15.4 Sensores de muting optoelectrónicos

Tabla 15.5: Fotocélulas reflexivas de conmutación oscuridad

Código	Artículo
Serie PRK3C	
50141869	PRK3C/4P
50140948	PRK3C/P-M8.3
50140946	PRK3C/PX-200-M12
50140947	PRK3C/PX-200-M8
50140945	PRK3C/PX-M8
Serie PRK25C	
50134272	PRK25C.A/4P
50134274	PRK25C.A/4P-200-M12
50134271	PRK25C.A/4P-M12
50134273	PRK25C.A/4P-M8
50134256	PRK25C.A2/4P
50134258	PRK25C.A2/4P-200-M12
50134255	PRK25C.A2/4P-M12
50134257	PRK25C.A2/4P-M8
50134288	PRK25C.D/4P
50134290	PRK25C.D/4P-200-M12
50134287	PRK25C.D/4P-M12
50134289	PRK25C.D/4P-M8
50139557	PRK25C.D/PX-2000-M12
50139556	PRK25C.D/PX-200-M12
50139555	PRK25C.D/PX-M8
50134296	PRK25C.D1/4P
50134298	PRK25C.D1/4P-200-M12
50134295	PRK25C.D1/4P-M12
50134297	PRK25C.D1/4P-M8
50137345	PRK25C.XA2/4P
50137343	PRK25C.XA2/4P-M12
50134280	PRK25C/4P
50134282	PRK25C/4P-200-M12
50134279	PRK25C/4P-M12
50134281	PRK25C/4P-M8

Código	Artículo
50139663	PRK25CL1.1/4P
50139656	PRK25CL1.1/4P-M12
50139661	PRK25CL1.1/4P-M8
50139658	PRK25CL1.1/PX-M12
Serie PRK46C	
50127015	PRK46C.1/4P-M12
50127025	PRK46C.D/4P
50127026	PRK46C.D/4P-200-M12
50127024	PRK46C.D/4P-M12
50127031	PRK46C.D/PX-200-M12
50127027	PRK46C.D/PX-M12
50129753	PRK46C.D1/4P-M12
50127028	PRK46C.D1/PX-M12
50127013	PRK46C/4P
50127014	PRK46C/4P-200-M12
50127012	PRK46C/4P-M12
50127017	PRK46C/PX-200-M12

Tabla 15.6: Sensores de conmutación claridad

Código	Artículo	
Serie HT3C		
50133596	HT3C.B/4P-200-M12	
50133604	HT3C.BS/4P-200-M12	
50133608	HT3C.BXL/4P-200-M12	
50139947	HT3C.HF/4P-200-M12	
50129381	HT3C.S/4P-200-M12	
50129385	HT3C.XL/4P-200-M12	
50129377	HT3C/4P-200-M12	
50143278	HT3CI.X/4P-200-M12	
50138110	HT3CI/4P-200-M12	
50133615	HT3CL1.B/4P	
50133616	HT3CL1.B/4P-200-M12	
50133617	HT3CL1.B/4P-200-M8	
50133614	HT3CL1.B/4P-M8	

Código	Artículo	
50129392	HT3CL1/4P	
50136348	HT3CL1/4P-100Y1	
50129393	HT3CL1/4P-200-M12	
50129394	HT3CL1/4P-200-M8	
50129391	HT3CL1/4P-M8	
50133620	HT3CL2.B/4P-200-M12	
50129397	HT3CL2/4P-200-M12	
Serie HT25C		
50143741	HT25C.HF/4P-200-M12	
50134240	HT25C.S/4P	
50134242	HT25C.S/4P-200-M12	
50134239	HT25C.S/4P-M12	
50134241	HT25C.S/4P-M8	
50142238	HT25C.S/4X-M12	
50143104	HT25C.X/4P	
50143103	HT25C.X/4P-M12	
50144956	HT25C.X/4X-200-M12	
50139626	HT25C.XL/4P	
50139624	HT25C.XL/4P-200-M12	
50143177	HT25C.XL/4P-200-M8	
50139619	HT25C.XL/4P-M12	
50139622	HT25C.XL/4P-M8	
50134216	HT25C/4P	
50134218	HT25C/4P-200-M12	
50134215	HT25C/4P-M12	
50134217	HT25C/4P-M8	
50147336	HT25C/P4-M12	
50144381	HT25CI.HF/4P-200-M12	
50134232	HT25CI/4P	
50134234	HT25CI/4P-200-M12	
50134231	HT25CI/4P-M12	
50134233	HT25CI/4P-M8	
50139640	HT25CL1/4P	
50139642	HT25CL1/4P-200-M12	

Código	Artículo	
50139638	HT25CL1/4P-M12	
50139644	HT25CL1/4P-M8	
50139649	HT25CL2/4P	
50139651	HT25CL2/4P-200-M12	
50139647	HT25CL2/4P-M12	
50139653	HT25CL2/4P-M8	
Serie HT46C		
50127054	HT46C/48-M12	
50127049	HT46C/4P	
50145451	HT46C/4P-1000-M12	
50129752	HT46C/4P-200-M12	
50145450	HT46C/4P-500-M12	
50127048	HT46C/4P-M12	
50127055	HT46C/4W-M12	
50130201	HT46C/4X-200-M12	
50127050	HT46C/4X-M12	
50127066	HT46CI/48-M12	
50127062	HT46CI/4P	
50129751	HT46CI/4P-200-M12	
50127061	HT46CI/4P-M12	
50134612	HT46CI/4W-200-M12	
50127067	HT46CI/4W-M12	

16 Declaración de conformidad

El equipo cumple los requisitos esenciales y las demás disposiciones pertinentes de la Directiva de Máquinas 2006/42/CE.

El fabricante del producto, Leuze electronic GmbH & Co. KG en D-73277 Owen/Teck, posee un sistema de control de calidad certificado según ISO 9001.

NOTA

Puede descargarse las instrucciones de uso originales y la declaración de conformidad CE en nuestro sitio web.

- ♦ Acceda al sitio web de Leuze en: www.leuze.com
- Como término de búsqueda, introduzca la denominación de tipo o el código del equipo. El código se puede encontrar en la placa de características del equipo bajo «Part. No.».
- 🕏 Encontrará los documentos en la página de producto del equipo en la pestaña *Descargas*.