

Manuel d'utilisation original

MLC 530 SPG

Barrières immatérielles de sécurité

© 2022

Leuze electronic GmbH + Co. KG In der Braike 1 73277 Owen / Germany

Phone: +49 7021 573-0 Fax: +49 7021 573-199

www.leuze.com info@leuze.com

1	À propos de ce document				
	1.1	Moyens de signalisation utilisés	6		
	1.2	Listes de contrôle	7		
2	Séci	urité	8		
	2.1 2.1.1 2.1.2	Utilisation conforme et emplois inadéquats prévisibles Utilisation conforme Emplois inadéquats prévisibles	8		
	2.2	Qualifications nécessaires			
	2.3	Responsabilité pour la sécurité			
	2.4	Exclusion de responsabilité			
3	Dasi	cription de l'appareil			
•	3.1	Aperçu des appareils de la gamme MLC			
	3.2	Connectique			
	3.3	Éléments d'affichage			
	3.3.1	Témoins de fonctionnement sur l'émetteur MLC 500	14		
	3.3.2	Témoins de fonctionnement sur le récepteur MLC 530 SPG			
	3.3.3	Affichage d'alignement	17		
4	Sma	rt Process Gating	18		
	4.1	Vue d'ensemble et principe	18		
	4.2	Conditions de SPG	20		
	4.3	Liste de contrôle SPG pour le programmeur	23		
	4.4	Modes de fonctionnement avec SPG			
	4.4.1	Mode de fonctionnement 1 - Arrêt qualifié			
	4.4.2 4.4.3	Mode de fonctionnement 4 - standard avec temps de tolérance courts Mode de fonctionnement 5 - Standard			
	4.4.4	Mode de fonctionnement 6 - Gating partiel			
	4.5	Fonctions de SPG indépendantes du mode de fonctionnement			
	4.5.1	Fin commandée du Gating			
	4.5.2 4.5.3	Prolongation du time-out de GatingRéinitialisation de la séquence de Gating			
	4.5.4	Redémarrage du Gating			
	4.5.5	Neutralisation	36		
5	Fond	ctions	38		
	5.1	Blocage démarrage/redémarrage RES	38		
	5.2	Commutation du canal de transmission	39		
	5.3	Choix de la portée	39		
	5.4	Sortie de signalisation	39		
	5.5	Blanking	40		
6	Арр	lications	43		
	6.1	Sécurisation d'accès avec SPG			
	6.1.1	Sortie de la zone dangereuse			
	6.1.2	Entrée de palettes	46		

7	Mon	tage	51
	7.1 7.1.1 7.1.2	Disposition de l'émetteur et du récepteur	52
	7.1.3	rapport à la direction d'approche	52 58
	7.1.4 7.1.5 7.1.6	Distance minimale aux surfaces réfléchissantesRésolution et distance de sécurité pour un blanking fixe	60
	7.2 7.2.1 7.2.2	Montage du capteur de sécurité Emplacements de montage adaptés	63
	7.2.3 7.2.4 7.2.5	Définition des sens de déplacement Fixation à l'aide d'écrous coulissants BT-NC60 Fixation à l'aide d'un support tournant BT-2HF Fixation à l'aide de supports pivotants BT-2SB10	64 65 65
8	7.2.6 Rac e	Fixation unilatérale sur la table de machine cordement électrique	
	8.1 8.1.1 8.1.2	Brochage de l'émetteur et du récepteurÉmetteur MLC 500	68 68
	8.2	Mode de fonctionnement 1	
	8.3	Mode de fonctionnement 4	
	8.4	Mode de fonctionnement 5	72
	8.5	Mode de fonctionnement 6	74
9	Mise	en service	75
	9.1	Mise en route	
	9.2	Alignement du capteur	75
	9.3 9.3.1 9.3.2	Touche d'acquittement Déverrouiller le blocage démarrage/redémarrage Redémarrage du Gating et neutralisation	76
	9.4	Programmation de zones de blanking fixe	
10	Cont	trôle	79
	10.1.1		79
		À effectuer par des personnes qualifiées à intervalles réguliers	
	10.3 10.3.1	À effectuer régulièrement par l'opérateur Liste de contrôle – À effectuer régulièrement par l'opérateur	82 83
11	Entr	etien	84
12	Résc	olution des erreurs	85
	12.1	Que faire en cas d'erreur ?	85
	12.2	Affichage des témoins lumineux	
		Messages d'erreur de l'affichage à 7 segments	
13	Élim	ination	92
14	Serv	ice et assistance	93

15	Caractéristiques techniques	94
	15.1 Caractéristiques générales	94
	15.2 Dimensions et poids	97
	15.3 Encombrement des accessoires	99
16	Informations concernant la commande et accessoires	102
17	Déclaration de conformité UE/CE	108

1 À propos de ce document

1.1 Moyens de signalisation utilisés

Tab. 1.1: Symboles d'avertissement et mots de signalisation

<u>^</u>	Symbole en cas de dangers pour les personnes
0	Symbole annonçant des dommages matériels possibles
REMARQUE	Mot de signalisation prévenant de dommages matériels
	Indique les dangers pouvant entraîner des dommages matériels si les mesures pour écarter le danger ne sont pas respectées.
ATTENTION	Mot de signalisation prévenant de blessures légères
	Indique les dangers pouvant entraîner des blessures légères si les mesures pour écarter le danger ne sont pas respectées.
AVERTISSEMENT	Mot de signalisation prévenant de blessures graves
	Indique les dangers pouvant entraîner des blessures graves ou mortelles si les mesures pour écarter le danger ne sont pas respectées.
DANGER	Mot de signalisation prévenant de dangers de mort
	Indique les dangers pouvant entraîner des blessures graves ou mortelles si les mesures pour écarter le danger ne sont pas respectées.

Tab. 1.2: Autres symboles

0	Symbole pour les astuces Les textes signalés par ce symbole donnent des informations complémentaires.
\$	Symbole pour les étapes de manipulation Les textes signalés par ce symbole donnent des instructions concernant les manipulations.
₽	Symbole pour les résultats de manipulation Les textes signalés par ce symbole décrivent les résultats des manipulations précédentes.

Tab. 1.3: Termes et abréviations

Temps de réaction	Le temps de réaction du dispositif de protection est le temps maximal entre l'apparition de l'événement qui provoque la réaction du capteur de sécurité et la mise à disposition du signal de coupure à l'interface du dispositif de protection (p. ex. état INACTIF de la paire d'OSSD).
Blanking	Désactivation de la fonction de protection de faisceaux individuels ou de zones de faisceaux avec contrôle d'interruption
EPE	Équipement de p rotection é lectro-sensible
CS	Signal de commutation d'une commande
	(Controller Signal)
FG	Groupe de fonctions
	(Function Group)
LED	Témoin lumineux, dispositif d'affichage dans l'émetteur et le récepteur
MaxiScan	Balayage multiple, jusqu'à 100 ms

MLC	Désignation brève du capteur de sécurité, composé d'un émetteur et d'un récepteur			
MTTF _d	Temps moyen avant une défaillance dangereuse			
	(Mean Time To dangerous Failure)			
OSSD	Sortie de commutation de sécurité			
	(Output Signal Switching Device)			
PFH _d	Probabilité de défaillance dangereuse par heure			
	(Probability of dangerous Failure per Hour)			
PFI	Champ de protection interrompu (Protection Field Interrupted)			
PL	Niveau de performance (Performance Level)			
Mode P	Mode de protection (Protection Mode)			
Résolution réduite	Réduction de la capacité de détection du champ de protection sans contrôle pour la tolérance des petits objets dans le champ de protection			
RES	Blocage démarrage/redémarrage			
	(Start/REStart interlock)			
Balayage	Un balayage du champ de protection du premier au dernier faisceau			
Capteur de sécurité	Système composé d'un émetteur et d'un récepteur			
SIL	Safety Integrity Level			
SPG	Smart Process Gating			
TH	Signal d'arrêt de temporisateur (Timer Halt)			
État	ACTIF : appareil intact, OSSD activées			
	INACTIF : appareil intact, OSSD désactivées			
	Verrouillage : appareil, connexion ou commande / manipulation erronée, OSSD désactivée (lock-out)			

1.2 Listes de contrôle

Les listes de contrôle (voir chapitre 10 "Contrôle") servent de référence pour le fabricant de la machine ou l'équipementier. Elles ne remplacent ni le contrôle de la machine ou de l'installation complète avant la première mise en service, ni leurs contrôles réguliers réalisés par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires"). Les listes de contrôle contiennent des exigences minimales de contrôle. D'autres contrôles peuvent s'avérer nécessaires en fonction de l'application concernée.

2 Sécurité

Pour le montage, l'exploitation et les contrôles, il convient de prendre en compte ce document ainsi que toutes les normes, prescriptions, règles et directives nationales et internationales qui s'appliquent. Les documents pertinents et livrés doivent être observés, imprimés et remis aux personnes concernées.

Avant de commencer à travailler avec le capteur de sécurité, lisez entièrement les documents relatifs aux activités impliquées et observez-les.

En particulier, les réglementations nationales et internationales suivantes sont applicables pour la mise en service, les contrôles techniques et la manipulation du capteur de sécurité :

- Directive 2006/42/CE
- Directive 2014/35/UE
- Directive 2014/30/UE
- Directive 89/655/CEE complétée par 95/63/CE
- OSHA 1910 Subpart O
- · Règlements de sécurité
- · Règlements de prévention des accidents et règles de sécurité
- Règlement sur la sécurité d'exploitation et loi sur la protection du travail (Betriebssicherheitsverordnung)
- loi allemande sur la sécurité des produits (Produktsicherheitsgesetz, ProdSG et 9e ProdSV)

AVIS

Les administrations locales sont également disponibles pour tout renseignement en matière de sécurité (p. ex. inspection du travail, corporation professionnelle, OSHA).

2.1 Utilisation conforme et emplois inadéquats prévisibles

AVERTISSEMENT

Une machine en fonctionnement peut causer des blessures graves !

- ☼ Vérifiez que le capteur de sécurité est correctement raccordé et que la fonction de protection du dispositif de protection est garantie.
- Pour tous les travaux de transformation, de maintenance et de contrôle, assurez-vous que l'installation est bien arrêtée et sécurisée contre la remise en marche.

2.1.1 Utilisation conforme

- Le capteur de sécurité ne peut être utilisé qu'après avoir été sélectionné conformément aux instructions respectivement valables, aux règles, normes et dispositions applicables en matière de protection et de sécurité au travail et après avoir été monté sur la machine, raccordé, mis en service et contrôlé par une personne qualifiée pour cela (voir chapitre 2.2 "Qualifications nécessaires"). Les appareils sont conçus pour l'emploi à l'intérieur exclusivement.
- Lors de la sélection du capteur de sécurité, il convient de s'assurer que ses performances de sécurité sont supérieures ou égales au niveau de performance requis PL_r déterminé dans l'évaluation des risques (voir chapitre 15.1 "Caractéristiques générales").
- Le capteur de sécurité sert à protéger les personnes ou les parties du corps aux postes dangereux, aux zones dangereuses ou aux accès de machines et d'installations.
- En fonction Sécurisation d'accès, le capteur de sécurité détecte uniquement les personnes qui entrent dans la zone dangereuse, pas celles qui se trouvent dans cette zone. Dans ce cas, un blocage démarrage/redémarrage ou une protection contre le passage des pieds adaptée est par conséquent indispensable dans la chaîne de sécurité.
- Vitesses d'approche maximales autorisées (voir ISO 13855) :
 - 1,6 m/s pour les sécurisations d'accès
 - 2.0 m/s pour les sécurisations de postes dangereux

- Le capteur de sécurité ne doit subir aucune modification de construction. En cas de modification du capteur de sécurité, la fonction de protection n'est plus garantie. Par ailleurs, la modification du capteur de sécurité annule les prétentions de garantie envers le fabricant du capteur de sécurité.
- La réparation non conforme du dispositif de protection peut entraîner la perte de la fonction de protection. N'effectuez aucune réparation sur les composants de l'appareil.
- L'intégration et l'installation correctes du capteur de sécurité doivent être régulièrement contrôlées par des personnes qualifiées pour cela (voir chapitre 2.2 "Qualifications nécessaires").
- Le capteur de sécurité doit être remplacé au bout de 20 ans au maximum. Les réparations et le remplacement de pièces d'usure ne prolongent pas la durée de vie.

Le SPG ne peut être utilisé que si la commande connaît les points suivants :

- Les moments auxquels la marchandise transportée se trouve au plus 200 mm avant ou au plus 200 mm après l'équipement de protection électro-sensible (EPE). Le cas échéant, des mesures supplémentaires pour la détermination de la position seront nécessaires, p. ex. un déclencheur, un capteur, etc.
- Si des mesures supplémentaires pour la détermination de la position sont nécessaires, elles ne doivent pas provenir d'une source facile à manipuler.
 Servez-vous éventuellement de l'analyse d'informations supplémentaires telles que le signal de défilement de la bande.

AVERTISSEMENT

Réduire la vitesse de convoyage!

Si la commande ne connaît pas le moment auquel l'objet quitte le champ de protection, il convient de réduire la vitesse de convoyage à la valeur maximale autorisée pour la fin automatique du Gating :

Modes de fonctionnement MF1, MF6: 0,1 m/s

Mode de fonctionnement MF4 : 0,4 m/s Mode de fonctionnement MF5 : 0,2 m/s

2.1.2 Emplois inadéquats prévisibles

Toute utilisation ne répondant pas aux critères énoncés au paragraphe « Utilisation conforme » ou allant au-delà de ces critères n'est pas conforme.

Le capteur de sécurité s'avère **inadapté** en tant que dispositif de protection pour une utilisation dans les cas suivants :

- Danger provenant de la projection d'objets ou de liquides brûlants ou dangereux depuis la zone dangereuse
- Applications dans une atmosphère explosive ou facilement inflammable

AVERTISSEMENT

Le déplacement sur ou à côté du convoyeur à bande risque d'entraîner des blessures graves !

Assurez-vous qu'en mode SPG, personne ne puisse traverser ni se déplacer sur ni à côté du convoyeur à bande ou de la marchandise transportée.

2.2 Qualifications nécessaires

Le capteur de sécurité ne doit être configuré, monté, raccordé, mis en service, entretenu et contrôlé dans l'application que par des personnes compétentes dans l'activité en question. Conditions générales pour les personnes compétentes dans ces activités :

- Elles ont bénéficié d'une formation technique appropriée.
- Elles connaissent chacune des parties pertinentes du manuel d'utilisation du capteur de sécurité et de celui de la machine.

Exigences minimales spécifiques à l'activité pour les personnes qualifiées :

Configuration

Connaissances et expériences dans la sélection et l'application de dispositifs de protection des machines ainsi que dans l'application des règles techniques et des règlements en vigueur localement en matière de protection et de sécurité au travail et de techniques de sécurité.

Connaissances en programmation de commandes de sécurité SRASW selon EN ISO 13849-1.

Montage

Connaissances et expériences nécessaires à la mise en place et à l'alignement sûrs et corrects du capteur de sécurité par rapport à la machine concernée.

Installation électrique

Connaissances et expériences nécessaires au raccordement électrique sûr et correct ainsi qu'à l'intégration sûre du capteur de sécurité dans le système de commande relatif à la sécurité.

Commande et maintenance

Connaissances et expériences requises pour le contrôle régulier et le nettoyage du capteur de sécurité, après instruction par le responsable.

Entretien

Connaissances et expériences dans le montage, l'installation électrique, la commande et la maintenance du capteur de sécurité conformément aux exigences mentionnées plus haut.

Mise en service et contrôle

- Expériences et connaissances des règles et prescriptions relatives à la protection et à la sécurité au travail et aux techniques de sécurité, nécessaires pour pouvoir juger la sécurité de la machine et de l'application du capteur de sécurité, y compris l'équipement de mesure nécessaire à cela.
- De plus, les personnes remplissent actuellement une fonction dans l'environnement de l'objet du contrôle et se maintiennent au niveau des évolutions technologiques par une formation continue *Personne qualifiée* au sens de la Betriebssicherheitsverordnung (règlement allemand sur la sécurité des entreprises) ou d'autres dispositions légales nationales.

2.3 Responsabilité pour la sécurité

Le fabricant et l'exploitant de la machine doivent assurer que la machine et le capteur de sécurité mis en œuvre fonctionnent correctement et que toutes les personnes concernées sont suffisamment informées et formées.

Le type et le contenu de toutes les informations transmises ne doivent pas mener à des actions représentant un risque pour la sécurité de la part des utilisateurs.

Le fabricant de la machine est responsable des points suivants :

- · Construction sûre de la machine et indication de risques résiduels éventuels
- La sécurité de la mise en œuvre du capteur de sécurité, prouvée par le premier contrôle réalisé par une personne qualifiée pour cela (voir chapitre 2.2 "Qualifications nécessaires")
- La transmission de toutes les informations pertinentes à l'exploitant
- · Le respect de toutes les prescriptions et directives relatives à la mise en service de la machine

L'exploitant de la machine assume les responsabilités suivantes :

- L'instruction de l'opérateur
- · Le maintien de la sécurité de l'exploitation de la machine
- · Le respect de toutes les prescriptions et directives relatives à la protection et la sécurité au travail
- Le contrôle régulier par une personne qualifiée pour cela (voir chapitre 2.2 "Qualifications nécessaires")

2.4 Exclusion de responsabilité

La responsabilité de Leuze electronic GmbH + Co. KG est exclue dans les cas suivants :

- Le capteur de sécurité n'est pas utilisé de façon conforme.
- · Les consignes de sécurité n'ont pas été respectées.
- · Les emplois inadéquats raisonnablement prévisibles ne sont pas pris en compte.
- · Le montage et le raccordement électrique ne sont pas réalisés par un personnel compétent.
- Il n'est pas vérifié que la machine fonctionne impeccablement (voir chapitre 10 "Contrôle").
- Des modifications (p. ex. de construction) sont apportées au capteur de sécurité.

3 Description de l'appareil

Le capteur de sécurité est constitué d'un émetteur MLC 500 et d'un récepteur MLC 530SPG. Il dispose d'une protection contre la surtension et la surintensité de courant conformément à CEI 60204-1 (classe de protection 3). Le capteur de sécurité subit une influence non dangereuse de la lumière ambiante (p. ex. étincelles de soudage, feux d'avertissement).

3.1 Aperçu des appareils de la gamme MLC

La série se caractérise par quatre classes de récepteurs différentes (Basic, Standard, Extended, SPG) avec des caractéristiques et des fonctions précises (voir tableau ci-après).

Tab. 3.1: Modèles de la série avec des caractéristiques et des fonctions spécifiques

Type d'appareil	Émetteur		Récepteur					
Pack fonctionnel				Ва	sic	Standard	Extended	SPG
Modèle	MLC 500 MLC 501	MLC 500/ A	MLC 502	MLC 510 MLC 511	MLC 510/ A	MLC 520	MLC 530	MLC 530 SPG
OSSD (2x)				•		•	•	•
AS-i		•			•			
Commutation du canal de transmission			•	•		•	•	•
Affichage à LED	•	•	•	•	•	•	•	•
Affichage à 7 segments						•	•	•
Démarrage/ redémarrage automatique				•		•	•	
RES							•	•
EDM								
Enchaîne- ment							-	
Blanking							•	•
Inhibition							•	
SPG								•
Balayage multiple							•	•
Réduction de la portée	•		•					
Entrée test								

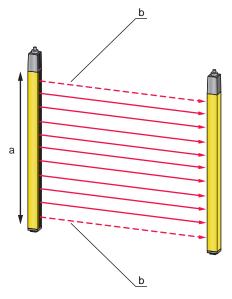
Propriétés du champ de protection

La distance entre faisceaux et le nombre de faisceaux dépendent de la résolution et de la hauteur du champ de protection.

AVIS

En fonction de la résolution, la hauteur effective du champ de protection peut être supérieure à la zone optiquement active entourée de jaune du capteur de sécurité (voir chapitre 3.1 "Aperçu des appareils de la gamme MLC" et voir chapitre 15.1 "Caractéristiques générales").

Synchronisation des appareils


La synchronisation du récepteur et de l'émetteur pour la mise en place d'un champ de protection qui fonctionne se fait de manière optique (c.-à-d. sans câble), via deux faisceaux de synchronisation codés spécialement. Un cycle (c.-à-d. un passage du premier au dernier faisceau) est appelé balayage. La durée d'un balayage détermine la longueur du temps de réaction et a des répercussions sur le calcul de la distance de sécurité (voir chapitre 7.1.1 "Calcul de la distance de sécurité S").

AVIS

Afin d'assurer la synchronisation et le fonctionnement corrects du capteur de sécurité, au moins un des deux faisceaux de synchronisation doivent être dégagés au moment de la synchronisation et du fonctionnement.

Une interruption des deux faisceaux de synchronisation pouvant durer jusqu'à 60 secondes peut survenir durant le processus SPG (voir chapitre 4.1 "Vue d'ensemble et principe").

- a Zone active optiquement, entourée de jaune
- b Faisceaux de synchronisation

Fig. 3.1: Système émetteur-récepteur

QR code

Le capteur de sécurité porte un QR code ainsi que l'indication de l'adresse Web associée.

À l'adresse Web indiquée, vous trouverez les informations de l'appareil et les messages d'erreur (voir chapitre 12.3 "Messages d'erreur de l'affichage à 7 segments") après avoir scanné le QR code à l'aide d'un appareil final mobile ou après avoir entré l'adresse Web.

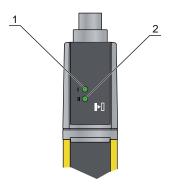
L'utilisation d'appareils finaux mobiles risque d'impliquer des frais de communication mobile.

www.mobile.leuze.com/mlc/

Fig. 3.2: QR code avec adresse Web associée (URL) sur le capteur de sécurité

3.2 Connectique

L'émetteur et le récepteur disposent d'un connecteur M12 comme interface vers la commande machine avec le nombre de broches suivant :


Modèle	Type d'appareil	Prise appareil
MLC 500	Émetteur	5 pôles
MLC 530 SPG	Récepteur Extended, Smart Process Gating	8 pôles

3.3 Éléments d'affichage

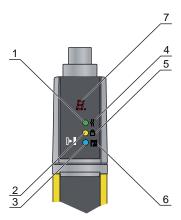
Les éléments d'affichage des capteurs de sécurité vous facilitent la mise en service et l'analyse des erreurs.

3.3.1 Témoins de fonctionnement sur l'émetteur MLC 500

Deux témoins lumineux servant à la signalisation du fonctionnement se trouvent sur l'émetteur, dans les coiffes de raccordement :

- 1 LED1, verte/rouge
- 2 LED2, verte

Fig. 3.3: Témoins sur l'émetteur MLC 500


Tab. 3.2: Signification des témoins lumineux sur l'émetteur

	État	Description
LED1	LED2	
OFF	OFF	Appareil éteint
Verte	OFF	Fonctionnement normal canal 1
Verte	Verte	Fonctionnement normal canal 2
Verte clignotante	OFF	Portée réduite canal 1
Verte clignotante	Verte clignotante	Portée réduite canal 2
Rouge	OFF	Erreur de l'appareil
Verte	Rouge clignotante	Test externe (uniquement MLC 502)

3.3.2 Témoins de fonctionnement sur le récepteur MLC 530 SPG

Le récepteur comprend trois témoins lumineux et un afficheur 7-segments pour visualiser l'état de fonctionnement :

- 1 LED1, rouge/verte
- 2 LED2, jaune
- 3 LED3, bleue
- 4 Symbole d'OSSD
- 5 Symbole de RES
- 6 Symbole de blanking/SPG
- 7 Afficheur 7-segments

Fig. 3.4: Témoins sur le récepteur MLC 530 SPG

Tab. 3.3: Signification des témoins lumineux sur le récepteur

LED	Couleur	État	Description
1	Rouge/verte	OFF	Appareil éteint
		Rouge	OSSD inactive
		Rouge, clignotant lentement (env. 1 Hz)	Erreur externe
		Rouge, clignotant rapidement (env. 10 Hz)	Erreur interne
		Verte	OSSD active
2	Jaune	OFF	RES activé et validé
			ou RES bloqué et champ de protection interrompu
		ON, OSSD inactive	RES activé et bloqué mais prêt au déverrouillage - champ de protection libre
		ON, OSSD active	Signal de commutation CS présent

LED	Couleur	État	Description
3 Bleue		OFF	Aucune fonction spéciale (blanking, SPG, etc.) active
		ON	Paramètre du champ de protection (blanking) programmé correcte- ment
		Clignotant lentement	SPG actif
			ou neutralisation active
		Éclairs rapides	Champ de protection interrompu et RES bloqué
			Programmation des para- mètres du champ de protec- tion
			ou redémarrage/neutralisation requis

Afficheur 7-segments

Pendant le fonctionnement normal, l'afficheur 7-segments indique le numéro du mode de fonctionnement. De plus, il s'avère utile lors du diagnostic d'erreur détaillé (voir chapitre 12 "Résolution des erreurs") et sert d'aide à l'alignement (voir chapitre 9.2 "Alignement du capteur").

Tab. 3.4: Signification de l'afficheur 7-segments

Affichage	Description
Après le démarrage	
8	Autotest
t n n	Temps de réaction (t) du récepteur en millisecondes (n n)
En fonctionnement normal	
1, 4, 5 ou 6	Mode de fonctionnement sélectionné
1, 4, 5 ou 6 clignotant	Signal faible
Pour l'alignement	
	Affichage d'alignement (voir chapitre 3.3.3 "Affichage d'alignement").
	Segment 1 : zone de faisceaux dans le tiers supérieur du champ de protection
	Segment 2 : zone de faisceaux dans le tiers central du champ de protection
	Segment 3 : zone de faisceaux dans le tiers inférieur du champ de pro- tection
Pour le diagnostic d'erreur	
F	Failure, erreur interne de l'appareil
E	Error, erreur externe
U	Usage Info, erreur d'application

Pour le diagnostic d'erreur, la lettre correspondante est affichée avant le code numérique de l'erreur, puis tous deux sont répétés en alternance. En cas d'erreurs entraînant un verrouillage, l'alimentation en tension doit être coupée et les erreurs résolues. Avant la remise en route, il convient de suivre les étapes décrites pour la première mise en service (voir chapitre 10.1 "Avant la mise en service et après modification").

L'afficheur 7-segments passe en mode d'alignement si l'appareil n'a pas encore été aligné et/ou que le champ de protection a été interrompu (après 5 s). Dans ce cas, chaque segment est affecté à une zone de faisceaux fixe du champ de protection.

17

3.3.3 Affichage d'alignement

Environ 5 s après une interruption du champ de protection, l'affichage à 7 segments passe en mode d'alignement.

Les 3 segments horizontaux représentent alors chacun un tiers du champ de protection complet (haut, milieu, bas). Si la résolution est uniforme sur l'ensemble du champ de protection, l'état de cette partie du champ est affiché de la manière suivante :

Tab. 3.5: Signification de l'affichage d'alignement

Segment	Description
Allumé	Tous les faisceaux de la zone de faisceaux sont libres.
Clignotant	Au moins un, mais pas tous les faisceaux de la zone de faisceaux sont libres.
Éteint	Tous les faisceaux de la zone de faisceaux sont interrompus.

Lorsque le champ de protection est libre pendant environ 5 s, l'affichage repasse à l'affichage du mode de fonctionnement.

4 Smart Process Gating

4.1 Vue d'ensemble et principe

Le Smart Process Gating (SPG) est une méthode de commande temporisée pour les mises en sécurité d'accès avec fonction de pontage.

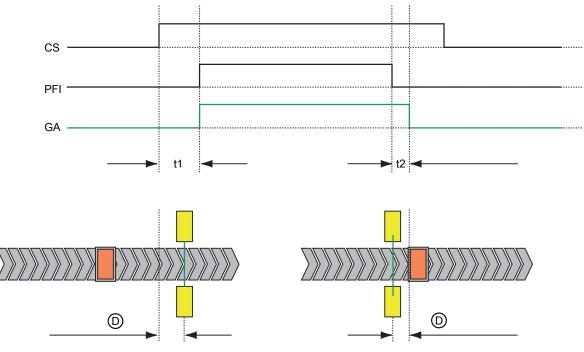
- · Le SPG sert exclusivement au transport de matériel depuis ou vers des zones dangereuses.
- Pour l'activation de la fonction de pontage, le SPG utilise deux signaux de commande indépendants.
- · Des capteurs externes ne sont pas nécessaires.

Principe du SPG

L'activation de la fonction de pontage est réalisée au moyen de deux signaux de commande indépendants :

- Un signal de commutation CS (Controller Signal) provenant d'une commande.
- Un signal d'interruption du champ de protection PFI déclenché par la marchandise transportée qui doit être détecté par le récepteur dans les 4 secondes (2 secondes en mode de fonctionnement 4) suivant le signal de commutation CS.

AVIS



Le capteur de sécurité doit rester synchrone pour recevoir un signal d'interruption du champ de protection PFI valide.

Les deux faisceaux de synchronisation de la barrière immatérielle de sécurité ne doivent pas être interrompus simultanément plus de 60 secondes pendant le processus SPG.

♦ Veillez à ce que toujours un faisceau de synchronisation reste dégagé.

CS Signal de commutation provenant de la commande

PFI Champ de protection interrompu

GA Gating actif

t1 < 4 s ou 2 s (selon le mode de fonctionnement)

t2 0,5 s, 1 s ou 2 s (selon le mode de fonctionnement)

D < 200 mm

Fig. 4.1: Principe du SPG

Fonctions et modes de fonctionnement du SPG

Les différentes fonctions de SPG sont regroupées en plusieurs modes de fonctionnement. Un mode de fonctionnement se compose d'un jeu de paramètres complet.

- Le mode de fonctionnement est câblé de manière fixe au moyen d'un fil de liaison dans le câble de raccordement. Ainsi, en cas de remplacement d'appareil, le capteur ne doit et ne peut pas être reconfiguré.
- Le numéro du mode de fonctionnement choisi est affiché de manière statique sur l'afficheur 7-segments du récepteur.
- Mode de fonctionnement 1 (MF1): SPG avec fonction d'arrêt qualifié (voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié")
- Mode de fonctionnement 4 (MF4): SPG standard avec temps de tolérance courts (voir chapitre 4.4.2 "Mode de fonctionnement 4 - standard avec temps de tolérance courts")
- Mode de fonctionnement 5 (MF5): SPG standard (voir chapitre 4.4.3 "Mode de fonctionnement 5 -Standard")
- Mode de fonctionnement 6 (MF6): SPG avec fonction d'arrêt qualifié et Gating partiel (voir chapitre 4.4.4 "Mode de fonctionnement 6 - Gating partiel")

Tab. 4.1: Récapitulatif des fonctions dans les différents modes de fonctionnement

	Mode de fonctionnement			
Fonctions	1	4	5	6
Niveau de performance				
PL d avec la commande standard		•	•	
PL e avec le contrôleur de sécurité	•	•	•	•
Temps minimal pour terminer le Gating (voir chapitre 4.5.1 "Fin commandée du Gating")	100 ms	100 ms	100 ms	100 ms

	Mode de fonctionnement			
Fonctions		4	5	6
Temps de tolérance de gating t1	4 s	2 s	4 s	4 s
Temps de filtrage du champ de protection	2 s	0,5 s	1 s	2 s
Une brève libération du champ de protection (1 s, resp. 2 s) est possible sans interruption du processus de Gating. Cela permet de tolérer des petits espaces dans le chargement.				
Vitesse de convoyage max. sans mesure supplémentaire	0,1 m/s	0,4 m/s	0,2 m/s	0,1 m/s
Arrêt qualifié	•	•		
Gating partiel				•

Les fonctions de SPG suivantes sont disponibles dans tous les modes de fonctionnement avec SPG :

- Interruption du Gating par la commande (voir chapitre 4.5.1 "Fin commandée du Gating")
- Prolongation du time-out de Gating (voir chapitre 4.5.2 "Prolongation du time-out de Gating")
- Réinitialisation de la séquence de Gating (voir chapitre 4.5.3 "Réinitialisation de la séquence de Gating")
- Redémarrage du Gating (voir chapitre 4.5.4 "Redémarrage du Gating")
- Neutralisation (voir chapitre 4.5.5 "Neutralisation")

AVIS

Les fonctions générales des barrières immatérielles de sécurité MLC suivantes sont disponibles dans tous les modes de fonctionnement avec SPG (voir chapitre 5 "Fonctions") :

Blocage démarrage/redémarrage (RES)

Commutation du canal de transmission

Choix de la portée

Sortie de signalisation

Blanking

4.2 Conditions de SPG

Conditions générales

Le SPG sert à la sécurisation d'accès lors de l'entrée de matériel dans des zones dangereuses ou de leur sortie hors de zones dangereuses. Par conséquent, les conditions suivantes doivent être remplies, comme pour l'inhibition :

- La marchandise transportée doit entièrement remplir l'ouverture à sécuriser pendant son passage. La distance aux parties fixes du dispositif de protection doit être inférieure à 200 mm. Si cette condition ne peut pas être garantie, d'autres mesures sont nécessaires, p. ex.
 - Des portes battantes dont l'actionnement est surveillé par un capteur de sécurité.
 - Des barrages immatériels de sécurité supplémentaires disposés à la verticale pour la surveillance des espaces.

A

AVERTISSEMENT

Le déplacement sur ou à côté du convoyeur à bande risque d'entraîner des blessures graves !

Assurez-vous qu'en mode SPG, personne ne puisse traverser ni se déplacer sur ni à côté du convoyeur à bande ou de la marchandise transportée.

Conditions de SPG

Le SPG ne peut être utilisé que si la commande connaît les points suivants :

- Les moments auxquels la marchandise transportée se trouve au plus 200 mm avant ou au plus 200 mm après l'équipement de protection électro-sensible (EPE). Le cas échéant, des mesures supplémentaires pour la détermination de la position seront nécessaires, p. ex. un déclencheur, un capteur, etc.
- Si des mesures supplémentaires pour la détermination de la position sont nécessaires, elles ne doivent pas provenir d'une source facile à manipuler.

Servez-vous éventuellement de l'analyse d'informations supplémentaires telles que le signal de défilement de la bande.

<u>^</u>

AVERTISSEMENT

Réduire la vitesse de convoyage!

Si la commande ne connaît pas le moment auquel l'objet quitte le champ de protection, il convient de réduire la vitesse de convoyage à la valeur maximale autorisée pour la fin automatique du Gating :

Modes de fonctionnement MF1, MF6: 0,1 m/s

Mode de fonctionnement MF4 : 0,4 m/s Mode de fonctionnement MF5 : 0,2 m/s

AVIS

L'émetteur et le récepteur du dispositif de protection doivent être montés de manière à ce qu'ils ne soient pas déplacés ou endommagés par la marchandise transportée.

Les conditions nécessaires au mode SPG sont souvent remplies dans les cas d'application suivants :

- Lors de la sortie d'une cellule de traitement, la commande connaît généralement le moment auquel le traitement se termine et celui auquel l'entraînement du système de transport doit être activé.
- Autour des voies de convoyage, par exemple dans le cas de transporteurs transversaux, la séquence et la position précises des marchandises transportées sont le plupart souvent connues. Grâce à cette connaissance, le signal de commutation CS nécessaire au mode SPG peut être généré dans la commande.

Conditions pour générer le signal de commutation CS

- Le signal de commutation CS ne peut être généré qu'une fois que la marchandise transportée se trouve à moins de 200 mm du champ de protection. Cela permet d'éviter que des personnes ne pénètrent dans la zone dangereuse lorsque le Gating est activé.
- Le signal de commutation CS doit être généré par exemple automatiquement sur la base de la séquence du processus ou dérivé par prolongation des délais dans la commande.
- La marchandise transportée doit déclencher l'interruption du champ de protection (PFI) en moins de 4 secondes (2 secondes en MF4) après apparition du signal de commutation CS.
- Afin d'éviter que des personnes ne pénètrent dans la zone dangereuse après la fin du Gating, il doit être garanti que la marchandise transportée se trouve à moins de 200 mm du champ de protection à la fin du Gating.
 - Le cas échéant, la fin commandée du Gating doit être appliquée pour réduire l'espace (voir chapitre 4.5.1 "Fin commandée du Gating").
 - Si aucune autre mesure n'est possible, la barrière de protection doit être rallongée en conséquence.

AVIS

Fausse manoeuvre lors de la génération du signal de commutation CS!

Si la génération du signal de commutation CS dépend directement et exclusivement de l'action d'une personne, des fausses manoeuvres ou des manipulations délibérées sont possibles.

- ☼ Veillez à ce que le signal de commutation CS ne soit en aucun cas dérivé directement ou exclusivement de l'appui sur une touche.
 - Cela s'applique tout particulièrement en cas de fonctionnement avec SPG aux postes de préparation de commandes.

AVIS

- Les limites de 200 mm avant et après la zone dangereuse doivent également être respectées au démarrage de l'installation et en cas de changement des vitesses de convoyage. Conformément à l'évaluation des risques ou à la norme C spécifique à la machine, des écarts sont possibles si nécessaire.
- Ul convient de tenir compte des limites de 200 mm avant et après la zone dangereuse dès la conception de l'installation.

Définition du mode de fonctionnement

Selon la fonction requise, sélectionnez le mode de fonctionnement approprié grâce au câblage électrique correspondant (voir chapitre 8 "Raccordement électrique").

voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié"

voir chapitre 4.4.2 "Mode de fonctionnement 4 - standard avec temps de tolérance courts"

voir chapitre 4.4.3 "Mode de fonctionnement 5 - Standard"

voir chapitre 4.4.4 "Mode de fonctionnement 6 - Gating partiel"

Terminer le Gating

- Fin automatique du Gating : le champ de protection est libre pendant plus de 0,5 seconde (MF4), 1 seconde (MF5) ou de 2 secondes (MF1 ou MF6).
- Fin commandée du Gating : le signal du champ de protection et le signal de commutation CS restent tous les deux inactifs pendant plus de 0,1 seconde (voir chapitre 4.5.1 "Fin commandée du Gating").

4.3 Liste de contrôle SPG pour le programmeur

Tab. 4.2: Liste de contrôle pour l'intégration du SPG

Généralités						
Critère pour le mode SPG	Critère satisfait	Remarque				
Sécurisation d'accès avec passage de matériau						
La position de la marchandise trans- portée est connue de la commande						
La position de la marchandise trans- portée est connue de la commande avec une mesure supplémentaire		Des mesures supplémentaires pos- sibles sont par exemple un déclen- cheur, un capteur, etc.				
L'information de position provient d'une source difficile à manipuler						
Génération des signaux						
Critère pour le mode SPG	Critère satisfait	Remarque				
Le signal de commutation CS n'est pas généré directement par une personne						
Si un capteur est utilisé pour dériver le signal CS, le signal de ce capteur ne peut être utilisé qu'indirectement		p. ex. par prolongation des délais dans la commande				
Interruption du champ de protection <4 s après le signal de commutation						
Le signal de commutation n'est généré que si l'objet se trouve à moins de 200 mm du champ de protection						
Le signal de commutation CS n'est plus appliqué à 200 mm après la libé- ration du champ de protection		Le cas échéant, la fin commandée du Gating doit être utilisée (voir chapitre 4.5.1 "Fin commandée du Gating")				

AVIS

Lors de l'entrée dans la zone dangereuse, le risque de manipulation est accru.

Afin de réduire le risque de manipulation, analysez des informations supplémentaires, par exemple le signal de défilement de la bande.

4.4 Modes de fonctionnement avec SPG

Différents modes de fonctionnement sont disponibles pour utiliser le SPG dans diverses applications.

- Le mode de fonctionnement est câblé de manière fixe au moyen d'un fil de liaison dans le câble de raccordement. Ainsi, en cas de remplacement d'appareil, une nouvelle configuration n'est ni requise ni même possible.
- Le numéro du mode de fonctionnement choisi est affiché de manière statique sur l'affichage à 7 segments du récepteur.

Tab. 4.3: Récapitulatif des fonctions dans les différents modes de fonctionnement

	Mode de fonctionnement			
Fonctions	1	4	5	6
Niveau de performance				
PL d avec la commande standard		•	•	
PL e avec le contrôleur de sécurité	•	•	•	•
Temps minimal pour terminer le Gating (voir chapitre 4.5.1 "Fin commandée du Gating")	100 ms	100 ms	100 ms	100 ms
Temps de tolérance de gating t1	4 s	2 s	4 s	4 s
Temps de filtrage du champ de protection	2 s	0,5 s	1 s	2 s
Une brève libération du champ de protection (1 s, resp. 2 s) est possible sans interruption du processus de Gating. Cela permet de tolérer des petits espaces dans le chargement.				
Vitesse de convoyage max. sans mesure supplémentaire	0,1 m/s	0,4 m/s	0,2 m/s	0,1 m/s
Arrêt qualifié	•	•		•
Gating partiel				

4.4.1 Mode de fonctionnement 1 - Arrêt qualifié

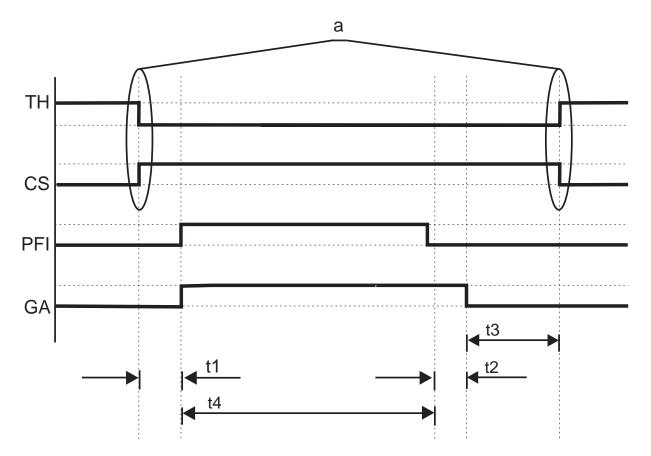
Dans ce mode de fonctionnement, les fonctions suivantes sont actives (voir chapitre 8.2 "Mode de fonctionnement 1") :

- · Fonction d'arrêt qualifié
- MaxiScan
- Blocage démarrage/redémarrage actif (voir chapitre 5.1 "Blocage démarrage/redémarrage RES")

Les fonctions suivantes peuvent être choisies en plus :

- Prolongation du time-out de SPG jusqu'à 100 heures (voir chapitre 4.5.2 "Prolongation du time-out de Gating")
- Blanking fixe avec tolérance de position de ± 1 faisceau programmable (voir chapitre 5.5 "Blanking")

AVIS

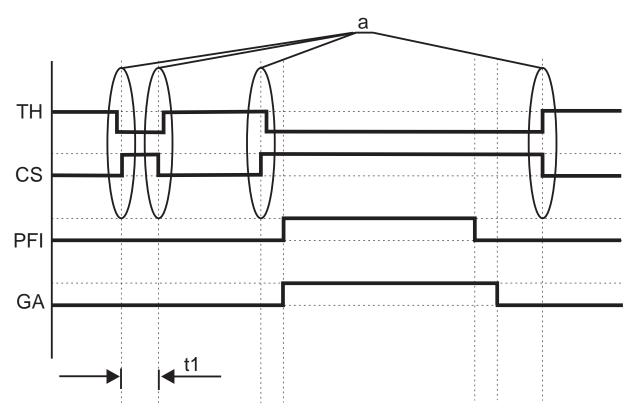


Le signal d'arrêt de temporisateur TH de la commande ne doit pas être généré par inversion du signal de commutation CS.

Le mode de fonctionnement 1 est principalement prévu pour l'emploi du SPG à petite vitesse de convoyage (< 0,1 m/s), par exemple dans l'environnement automobile. Pour qu'une fin automatique du Gating soit possible à des vitesses inférieures à 0,1 m/s, t2 doit être réglé à 2 s.

La fonction d'arrêt qualifié permet de provoquer un arrêt normal du fonctionnement sans interruption du champ de protection, même après l'activation du signal de commutation CS.

- CS Signal de commutation provenant de la commande
- TH Signal d'arrêt de temporisateur provenant de la commande
- PFI Champ de protection interrompu
- GA Gating actif
- a Changement de signal ambivalent CS et TH
- t1 < 4 s
- t2 2 s
- t3 < 20 s
- t4 < 10 min


Fig. 4.2: Mode de fonctionnement 1 - Arrêt qualifié

La séquence Gating est initiée par le changement de signal ambivalent CS / TH en l'espace de 0,5 seconde.

Si le champ de protection ne peut pas être interrompu dans les 4 secondes suivant l'initiation de la séquence de Gating, un arrêt qualifié est possible.

La fonction d'arrêt de la séquence de Gating ainsi que de redémarrage du Gating est initiée par un nouveau changement par flanc des signaux CS et TH.

CS Signal de commutation provenant de la commande

TH Signal d'arrêt de temporisateur provenant de la commande

PFI Champ de protection interrompu

GA Gating actif

active

a Changement de signal ambivalent CS et TH

t1 < 4 s

Fig. 4.3: Mode de fonctionnement 1 - Arrêt qualifié

4.4.2 Mode de fonctionnement 4 - standard avec temps de tolérance courts

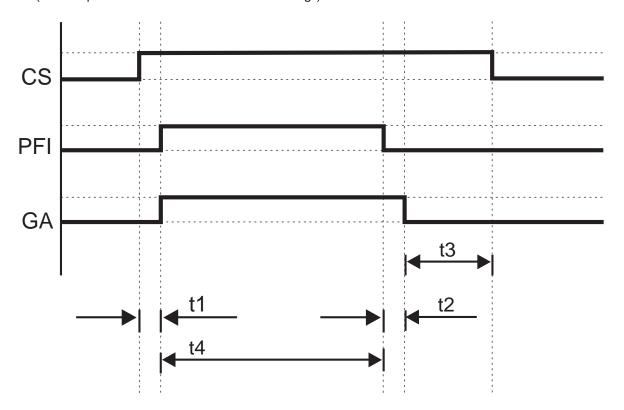
Dans ce mode de fonctionnement, les fonctions suivantes sont actives (voir chapitre 8.3 "Mode de fonctionnement 4") :

- MaxiScan
- Blocage démarrage/redémarrage actif (voir chapitre 5.1 "Blocage démarrage/redémarrage RES")

Les fonctions suivantes peuvent être choisies en plus :

- Prolongation du time-out de Gating jusqu'à 100 heures (voir chapitre 4.5.2 "Prolongation du time-out de Gating")
- Blanking fixe avec tolérance de position de ± 1 faisceau programmable (voir chapitre 5.5 "Blanking")

AVIS


En mode de fonctionnement 4, il est aussi possible d'utiliser des commandes non sécuritaires. Cela permet d'atteindre le niveau de performance PL d.

Le mode de fonctionnement 4 est prévu principalement pour les vitesses de convoyage > 0,4 m/s que l'on rencontre par exemple dans l'environnement de l'intralogistique.

• Le temps de filtrage autorisé du champ de protection t2 est réglé à 0,5 s. Cela permet une libération du champ de protection jusqu'à 0,5 s, par exemple pour les espaces dans le chargement.

• En cas de vitesses de transport supérieures, la fin du Gating doit être provoquée par la commande (voir chapitre 4.5.1 "Fin commandée du Gating").

CS Signal de commutation provenant de la commande

TH Signal d'arrêt de temporisateur provenant de la commande (en option)

PFI Champ de protection interrompu

GA Gating actif

t1 < 2 s

t2 0,5 s

t3 < 20 s

t4 < 10 min

Fig. 4.4: Mode de fonctionnement 5

AVIS

Le dépassement de temps de 10 minutes peut être prolongé en option jusqu'à 100 heures au moyen d'un autre signal de commande (signal d'arrêt de temporisateur TH) provenant de la commande (voir chapitre 4.5.2 "Prolongation du time-out de Gating").

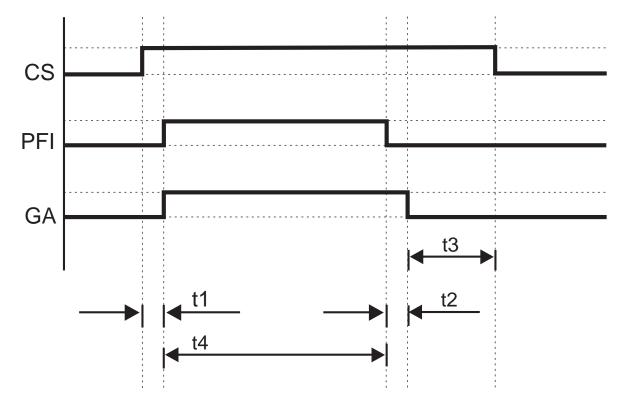
4.4.3 Mode de fonctionnement 5 - Standard

Dans ce mode de fonctionnement, les fonctions suivantes sont actives (voir chapitre 8.4 "Mode de fonctionnement 5") :

- MaxiScan
- Blocage démarrage/redémarrage actif (voir chapitre 5.1 "Blocage démarrage/redémarrage RES")

Les fonctions suivantes peuvent être choisies en plus :

- Prolongation du time-out de Gating jusqu'à 100 heures (voir chapitre 4.5.2 "Prolongation du time-out de Gating")
- Blanking fixe avec tolérance de position de ± 1 faisceau programmable (voir chapitre 5.5 "Blanking")


AVIS

En mode de fonctionnement 5, il est aussi possible d'utiliser des commandes non sécuritaires. Cela permet d'atteindre le niveau de performance PL d.

Le mode de fonctionnement 5 est prévu principalement pour les vitesses de convoyage > 0,2 m/s que l'on rencontre par exemple dans l'environnement de l'intralogistique.

- Le temps de filtrage autorisé du champ de protection t2 est réglé à 1 s. Cela permet une libération du champ de protection jusqu'à 1 s, par exemple pour les espaces dans le chargement.
- En cas de vitesses de transport supérieures, la fin du Gating doit être provoquée par la commande (voir chapitre 4.5.1 "Fin commandée du Gating").

- CS Signal de commutation provenant de la commande
- TH Signal d'arrêt de temporisateur provenant de la commande (en option)
- PFI Champ de protection interrompu
- GA Gating actif
- t1 < 4 s
- t2 1 s
- t3 < 20 s
- t4 < 10 min

Fig. 4.5: Mode de fonctionnement 5

AVIS

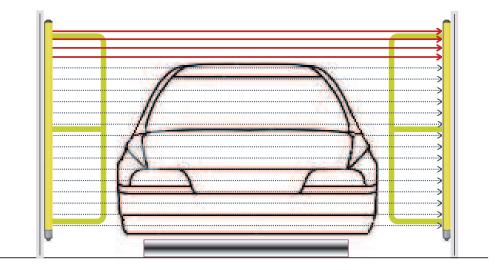
Le dépassement de temps de 10 minutes peut être prolongé en option jusqu'à 100 heures au moyen d'un autre signal de commande (signal d'arrêt de temporisateur TH) provenant de la commande (voir chapitre 4.5.2 "Prolongation du time-out de Gating").

4.4.4 Mode de fonctionnement 6 - Gating partiel

Dans ce mode de fonctionnement, les fonctions suivantes sont actives (voir chapitre 8.5 "Mode de fonctionnement 6") :

- · Gating partiel
- · Fonction d'arrêt qualifié
- MaxiScan
- Blocage démarrage/redémarrage actif (voir chapitre 5.1 "Blocage démarrage/redémarrage RES")

Les fonctions suivantes peuvent être choisies en plus :


- Prolongation du time-out de Gating jusqu'à 100 heures (voir chapitre 4.5.2 "Prolongation du time-out de Gating")
- Blanking fixe avec tolérance de position de ± 1 faisceau programmable (voir chapitre 5.5 "Blanking")

Comme le mode de fonctionnement 1, le mode de fonctionnement 6 est principalement prévu pour les vitesses de convoyage faibles (< 0,1 m/s). Pour qu'une fin automatique du Gating soit possible à des vitesses inférieures à 0,1 m/s, t2 doit être réglé à 2 s.

Gating partiel

En plus de la fonctionnalité du mode de fonctionnement 1, en mode de fonctionnement 6, un Gating partiel est réalisé. Les quatre faisceaux supérieurs sont alors exclus du Gating.

- Le Gating partiel permet de détecter un déplacement non autorisé sur une marchandise transportée ou de surveiller des clapets pendulaires.
- Lors d'un Gating partiel, les quatre faisceaux supérieurs du côté opposé au connecteur ne sont pas court-circuités pendant un processus de Gating. Une interruption de ces faisceaux entraîne toujours la désactivation des OSSD.

AVIS

Pendant le fonctionnement en mode 6, les quatre faisceaux supérieurs doivent être dégagés. Une interruption entraîne une désactivation des OSSD.

- La séquence Gating est initiée par le changement de signal ambivalent CS / TH en l'espace de 0,5 seconde.
- Si le champ de protection ne peut pas être interrompu dans les 4 secondes suivant l'initiation de la séquence de Gating, un arrêt qualifié est possible.

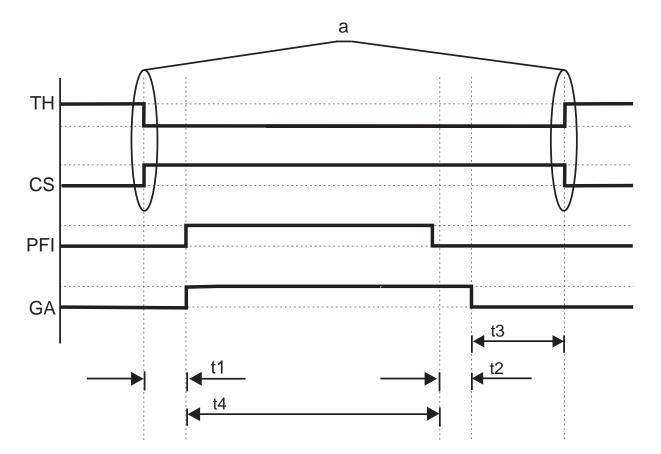
AVIS

Surveillance de clapets pendulaires!

Si le mode de fonctionnement 6 est utilisé pour la surveillance de clapets pendulaires, les consignes de sécurité supplémentaires suivantes doivent être observées :

- Le clapet pendulaire/la porte battante doit être robuste et ne doit pouvoir être démonté(e) qu'à l'aide d'un outil.
- La conception de la porte battante doit être conforme aux normes ISO 14120 et ISO 13857. Un accès latéral sans ouverture du clapet pendulaire doit être impossible.
- La marchandise transportée ne doit pas actionner le clapet pendulaire (par ex. dans le cas d'un chargement trop élevé).
- U'émetteur, le récepteur et le clapet pendulaire/la porte battante doivent être protégés des dommages, afin d'éviter par exemple toute rotation ou tout glissement.
- Le clapet pendulaire ne doit pas être réalisé dans un matériau transparent. L'ouverture du clapet pendulaire (dans les deux sens) doit interrompre en toute sécurité la zone du champ de protection correspondante.

Fonction d'arrêt qualifié

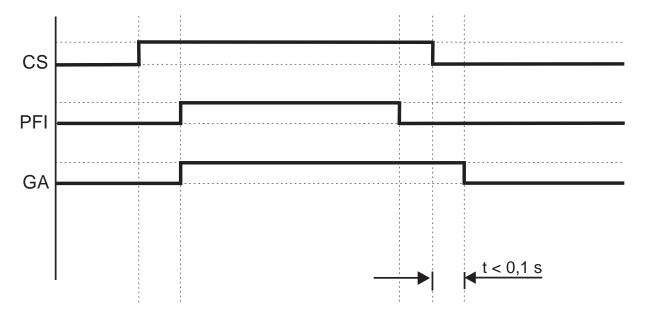

AVIS

Le signal d'arrêt de temporisateur TH de la commande ne doit pas être généré par inversion du signal de commutation CS.

La fonction d'arrêt de la séquence de Gating ainsi que de redémarrage du Gating est initiée par un nouveau changement par flanc des signaux CS et TH.

- CS Signal de commutation provenant de la commande
- TH Signal d'arrêt de temporisateur provenant de la commande
- a Changement de signal ambivalent CS et TH
- PFI Champ de protection interrompu
- GA Gating actif
- t1 < 4 s
- t2 < 2 s
- t3 < 20 s
- t4 < 10 min

Fig. 4.6: Mode de fonctionnement 6 - Arrêt qualifié

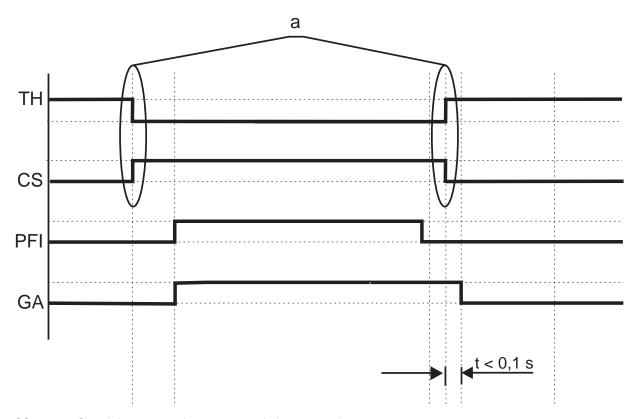

4.5 Fonctions de SPG indépendantes du mode de fonctionnement

4.5.1 Fin commandée du Gating

L'interruption du Gating par la commande permet de minimiser la distance entre champ de protection et marchandise transportée à la fin de la fonction de Gating.

La fin commandée du Gating sert à garantir le respect de la distance de moins de 200 mm nécessaire entre la marchandise transportée et le champ de protection à la fin de la fonction de Gating.

- La séquence de Gating initiée est terminée en retirant le signal de commutation CS.
- Le signal de commutation CS ne doit être retiré qu'après libération du champ de protection (signal PFI).
- La séquence de Gating s'achève au plus tard 100 ms après le retrait du signal de commutation CS.



- CS Signal de commutation provenant de la commande
- PFI Champ de protection interrompu
- GA Gating actif

Fig. 4.7: Fin commandée du Gating en modes de fonctionnement MF4 et MF5

Dans les modes de fonctionnement MF1 et MF6, le signal d'arrêt de temporisateur TH doit en plus être commuté de manière ambivalente.

CS Signal de commutation provenant de la commande

TH Signal d'arrêt de temporisateur provenant de la commande

PFI Champ de protection interrompu

GA Gating actif

a Changement de signal ambivalent CS et TH

Fig. 4.8: Fin commandée du Gating en modes de fonctionnement MF1 et MF6

AVIS

Si, à la fin du processus de Gating, la distance entre marchandise transportée et champ de protection est supérieure à 200 mm, la fin commandée du Gating doit être appliquée pour réduire la distance.

Si la fin commandée du Gating n'est pas appliquée, d'autres mesures sont nécessaires, par exemple une clôture.

AVIS

Mode de fonctionnement MF5 : si la vitesse de convoyage v est < 0,2 m/s, ni la fin commandée du Gating ni aucune autre mesure n'est nécessaire.

Modes de fonctionnement MF1, MF6 : si la vitesse de convoyage v est < 0,1 m/s, ni la fin commandée du Gating ni aucune autre mesure n'est nécessaire.

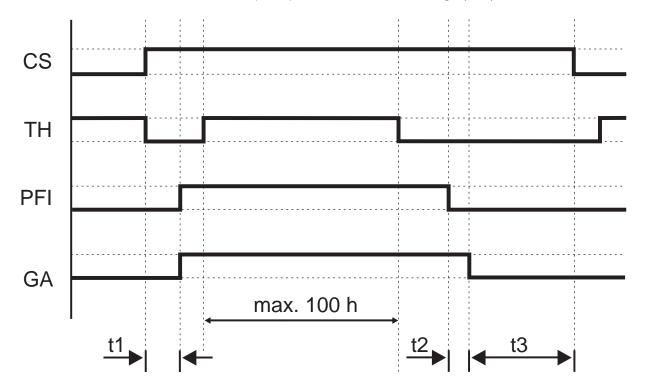
4.5.2 Prolongation du time-out de Gating

Afin d'empêcher les manipulations simples, le cycle de pontage est limité dans le temps. Un dépassement de ce temps (time-out) termine le Gating et entraîne l'arrêt des OSSD (E79).

AVIS

Interruption de la synchronisation émetteur/récepteur en cas de prolongation du timeout !

Les OSSD de la barrière immatérielle de sécurité se coupent si la synchronisation de l'émetteur et du récepteur au moyen des faisceaux de synchronisation est interrompue pendant plus de 60 s.


Dans les scénarios d'application avec prolongation du time-out, veillez à ce que le faisceau de synchronisation le plus haut ou le plus bas ne soit pas interrompu par la marchandise transportée. Il convient pour cela de dimensionner la longueur du champ de protection en conséquence.

Le temps de time-out de Gating standard de 10 minutes peut être prolongé en option par la commande jusqu'à 100 heures au moyen d'un autre signal de commande (signal d'arrêt de temporisateur TH). La prolongation du time-out est disponible dans tous les modes de fonctionnement.

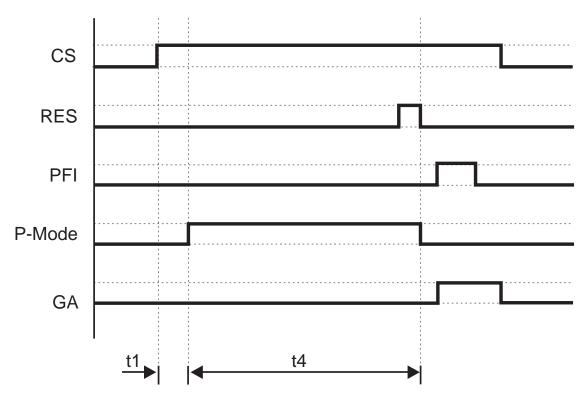
Le signal d'arrêt de temporisateur TH doit s'alterner dans les 0,5 s avec le signal de commutation CS :

- Le signal de commutation CS bascule de 0 V à +24 V.
- Le signal d'arrêt de temporisateur TH bascule de +24 V à 0 V.
- Lorsque le signal d'arrêt de temporisateur TH bascule de 0 V à +24 V, la séquence de Gating est prolongée.

Si la commande est défectueuse, le récepteur passe à l'état de verrouillage (E69).

- CS Signal de commutation provenant de la commande
- TH Signal d'arrêt de temporisateur provenant de la commande
- PFI Champ de protection interrompu
- GA Gating actif
- t1 < 4 s
- t2 0,5 s, 1 s ou 2 s (selon le mode de fonctionnement)
- t3 < 20 s

Fig. 4.9: Prolongation du time-out de SPG


4.5.3 Réinitialisation de la séquence de Gating

AVERTISSEMENT

Une réinitialisation non autorisée risque d'entraîner des blessures graves !

- \$\times\$ L'opération doit être observée attentivement par une personne instruite.
- Assurez-vous que la zone dangereuse est bien visible depuis l'emplacement de la touche de réinitialisation et que la personne instruite a la possibilité d'observer toute l'opération.

CS Signal de commutation provenant de la commande

RES Touche de redémarrage

PFI Champ de protection interrompu

Mode P Mode de protection

GA Gating actif t1 < 4 s t4 < 1 h

Fig. 4.10: Réinitialisation de la séquence de Gating

Si le signal de commutation CS est présent pendant plus de 4 s sans interruption du champ de protection, l'appareil passe en mode de protection (Protection Mode) et les OSSD se coupent. S'il n'y a ensuite aucune interruption du champ de protection, une nouvelle séquence de Gating peut être démarrée à l'aide du signal RES.

- Il est possible de redémarrer plusieurs fois une séquence de Gating si, même après application du signal RES, il ne se produit toujours pas d'interruption du champ de protection.
- Le redémarrage d'une séquence de Gating doit avoir lieu dans l'heure qui suit, sinon l'appareil passe à l'état de verrouillage.
- Le cas échéant, le signal de commutation CS doit être de nouveau appliqué avant l'initiation d'une nouvelle séquence de Gating.

4.5.4 Redémarrage du Gating

Un redémarrage du Gating est nécessaire dans les cas suivants :

 Le champ de protection est interrompu, mais un faisceau de synchronisation au moins n'est pas occupé.

et

- · Le signal de commutation CS est activé (mode de fonctionnement MF4 ou MF5).
- Le signal de commutation CS et le signal d'arrêt de temporisateur TH sont activés (modes de fonctionnement MF1 et MF6).

AVERTISSEMENT

Un redémarrage du Gating non autorisé risque d'entraîner des blessures graves !

- \$\text{L'opération doit être observée attentivement par une personne instruite.}
- Assurez-vous que la zone dangereuse est bien visible depuis l'emplacement de la touche de réinitialisation et que la personne instruite a la possibilité d'observer toute l'opération.
- Avant et pendant le redémarrage du Gating, veillez à ce que personne ne se trouve dans la zone dangereuse.

Exécuter un redémarrage du Gating

- Si le capteur de sécurité émet un message d'erreur, effectuez tout d'abord une réinitialisation d'erreur (voir chapitre 12 "Résolution des erreurs").
- ♦ Appuyez sur la touche de réinitialisation et relâchez-la au bout de 0,15 s à 4 s.

Les OSSD du capteur de sécurité sont activées.

AVIS

En présence d'un état de Gating valide (signal de commutation CS présent, champ de protection interrompu) lorsque vous appuyez sur la touche pour la deuxième fois, la séquence de Gating initiée se poursuit. La sortie de signalisation ML fournit en alternance 0 V et 24 V jusqu'à la réactivation des OSSD.

4.5.5 Neutralisation

Une neutralisation est nécessaire dans les cas suivants :

• Le champ de protection est interrompu et les deux faisceaux de synchronisation sont interrompus.

et

- Le signal de commutation CS est activé (mode de fonctionnement MF4 ou MF5).
- Le signal de commutation CS et le signal d'arrêt de temporisateur TH sont activés (modes de fonctionnement MF1 et MF6).

AVERTISSEMENT

Le dégagement incontrôlé risque de provoquer des blessures graves !

- ♥ L'opération doit être observée attentivement par une personne instruite.
- Use cas échéant, la personne instruite doit relâcher immédiatement la touche de réinitialisation pour mettre fin à un mouvement dangereux.
- Assurez-vous que la zone dangereuse est bien visible depuis l'emplacement de la touche de réinitialisation et qu'une personne responsable a la possibilité d'observer toute l'opération.
- Avant et pendant la neutralisation, veillez à ce que personne ne se trouve dans la zone dangereuse.

Exécuter une neutralisation

- Si le capteur de sécurité émet un message d'erreur, réalisez une réinitialisation d'erreur (voir chapitre 12 "Résolution des erreurs").
- ☼ Appuyez sur la touche de réinitialisation et relâchez-la au bout de 0,15 s à 4 s.
- 🔖 Appuyez sur la touche de réinitialisation une deuxième fois et maintenez-la enfoncée.
- ⇒ Les OSSD du capteur de sécurité sont activées.
- Cas 1 : condition de Gating valide
 Lorsqu'une condition de Gating valable est constatée, les OSSD restent dans l'état ACTIF, même si la
 touche de réinitialisation est relâchée. L'installation reprend son fonctionnement normal.
- Cas 2 : condition de Gating non valide
 Dans ces cas, la libération des OSSD n'est maintenue que tant que la touche de réinitialisation reste enfoncée.

AVIS

Neutralisation impossible en cas de défauts dans l'application !

Le problème à l'origine d'une condition de Gating non valable doit être recherché et résolu par une personne qualifiée.

Les OSSD sont arrêtés pendant le neutralisation lorsque la touche de réinitialisation est relâchée ou si la durée maximale pour le dégagement (120 s) est dépassée.

AVIS

La durée pour le dégagement est limitée à 120 s.

Si la touche de réinitialisation reste enfoncée après 120 secondes, le capteur de sécurité adopte son état de verrouillage au bout de 150 secondes.

Ensuite, il faut de nouveau appuyer sur la touche de réinitialisation et la maintenir enfoncée pour poursuivre l'opération. De cette manière, un dégagement progressif est possible.

AVIS

En présence d'un état de Gating valide (signal de commutation CS présent, champ de protection interrompu) lorsque vous appuyez sur la touche pour la deuxième fois, la séquence de Gating initiée se poursuit.

La sortie de signalisation ML fournit en alternance 0 V et 24 V jusqu'à la réactivation des OSSD.

5 Fonctions

Vous trouverez un récapitulatif des caractéristiques et des fonctions du capteur de sécurité au chapitre « Description de l'appareil » (voir chapitre 3.1 "Aperçu des appareils de la gamme MLC").

Pour le récapitulatif des fonctions de SPG, voir chapitre 4 "Smart Process Gating".

Les fonctions générales des barrières immatérielles de sécurité MLC suivantes sont disponibles dans tous les modes de fonctionnement avec SPG :

- Blocage démarrage/redémarrage (RES)
- · Commutation du canal de transmission
- · Choix de la portée
- · Sortie de signalisation
- Blanking
- MaxiScan

5.1 Blocage démarrage/redémarrage RES

Suite à une intrusion dans le champ de protection, le blocage démarrage/redémarrage assure le maintien du capteur de sécurité dans l'état INACTIF après libération du champ de protection. Il empêche la validation automatique des circuits de sécurité et un démarrage automatique de l'installation, par exemple lors de la libération du champ de protection ou du rétablissement de l'alimentation en tension après interruption.

AVIS

Pour les sécurisations d'accès, la fonction de blocage démarrage/redémarrage est obligatoire. Le fonctionnement du dispositif de protection sans blocage démarrage/redémarrage n'est autorisé que dans quelques rares cas d'exception et sous certaines conditions selon ISO 12100.

Utilisation du blocage démarrage/redémarrage

🔖 Sélectionnez le mode de fonctionnement souhaité (voir chapitre 8 "Raccordement électrique").

La fonction de blocage démarrage/redémarrage est activée automatiquement.

Remise en route du capteur de sécurité après immobilisation (état INACTIF) :

☼ Actionnez la touche de réinitialisation (appuyer/relâcher en 0,15 s à 4 s)

AVIS

La touche de réinitialisation doit être située à l'extérieur de la zone dangereuse, à un emplacement sûr et offrant à l'opérateur une bonne visibilité sur la zone dangereuse : celui-ci doit pouvoir vérifier que personne ne se trouve dans ladite zone conformément à CEI 62046 avant d'actionner la touche de réinitialisation.

DANGER

Danger de mort en cas de démarrage/redémarrage involontaire !

- Assurez-vous que la touche de réinitialisation pour le déverrouillage du blocage démarrage/ redémarrage reste inaccessible depuis la zone dangereuse.
- Avant de déverrouiller le blocage démarrage/redémarrage, assurez-vous que personne ne se trouve dans la zone dangereuse.

Une fois que la touche de réinitialisation a été actionnée, le capteur de sécurité passe à l'état ACTIF.

5.2 Commutation du canal de transmission

Les canaux de transmission servent à éviter une interférence mutuelle des capteurs de sécurité très proches entre eux.

AVIS

Afin de garantir le fonctionnement fiable, les faisceaux infrarouges sont modulés de manière à se distinguer de la lumière ambiante. De cette manière, les étincelles de soudage ou les feux d'avertissement des gerbeurs de passage, par exemple, n'ont aucune influence sur le champ de protection.

Dans le réglage d'usine, le capteur de sécurité fonctionne dans tous les modes de fonctionnement avec le canal de transmission C1.

Le canal de transmission de l'émetteur peut être modifié en changeant la polarité de la tension d'alimentation (voir chapitre 8.1.1 "Émetteur MLC 500").

Sélectionner le canal de transmission C2 sur le récepteur :

- Reliez les broches 1, 3, 4 et 8 du récepteur et mettez-le en marche.
- ⇒ Le récepteur est connecté au canal de transmission C2. Éteignez à nouveau le récepteur et déconnectez les liaisons entre les broches 1, 3, 4 et 8 avant de remettre le récepteur en route.

Sélectionner à nouveau le canal de transmission C1 sur le récepteur :

- Répétez la procédure décrite ci-dessus pour choisir à nouveau le canal de transmission C1 sur le récepteur.
- ⇒ Le récepteur est de nouveau connecté au canal de transmission C1.

AVIS

Fonctionnement défectueux en cas de canal de transmission incorrect!

Sélectionnez le même canal de transmission sur l'émetteur et le récepteur associé.

5.3 Choix de la portée

Outre la sélection des canaux de transmission adaptés (voir chapitre 5.2 "Commutation du canal de transmission"), le choix de la portée sert également à éviter l'interférence mutuelle des capteurs de sécurité voisins. À portée réduite, la puissance lumineuse de l'émetteur diminue de manière à atteindre environ la moitié de la portée nominale.

- 🔖 Câblez la broche 4 (voir chapitre 8.1 "Brochage de l'émetteur et du récepteur").
- ⇒ Le câblage de la broche 4 définit la puissance d'émission et ainsi la portée (sans câblage de la broche 4, la portée réduite est sélectionnée).

AVERTISSEMENT

Perturbation de la fonction de protection en cas de puissance d'émission défectueuse!

La réduction de la puissance d'émission lumineuse de l'émetteur s'effectue sur un canal et sans contrôle de sécurité.

- N'utilisez pas cette option de réglage pour la sécurité.
- Notez que la distance à des surfaces réfléchissantes doit être choisie de façon à ne permettre aucune réflexion, même avec la puissance d'émission maximale (voir chapitre 7.1.4 "Distance minimale aux surfaces réfléchissantes").

5.4 Sortie de signalisation

En cas de Gating sans erreur, la sortie de signalisation émet 24 V.

Si le Gating est erroné, par exemple si le champ de protection n'est pas interrompu au bout de 4 s, elle se met à clignoter.

5.5 Blanking

Les fonctions de blanking sont utilisées lorsque des objets doivent se trouver dans le champ de protection pour des raisons d'exploitation.

AVIS

Lorsque la fonction *Blanking* est active, les objets adaptés doivent se trouver dans leur zone associée du champ de protection. Dans le cas contraire, les OSSD passent dans l'état ARRÊT même lorsque le champ de protection est libre ou elles restent dans l'état INACTIF.

AVERTISSEMENT

Une mauvaise application des fonctions de blanking peut causer des blessures graves!

- N'utilisez cette fonction que si les objets introduits ne présentent aucune face inférieure et/ ou supérieure brillante ou réfléchissante. Seules les surfaces mattes sont autorisées.
- Assurez-vous que les objets occupent toute la largeur du champ de protection de manière à empêcher l'intrusion dans le champ de protection par leur côté. Dans le cas contraire, la distance de sécurité avec résolution réduite doit être calculée en fonction de l'espace dans le champ de protection.
- ☼ Le cas échéant, installez correctement des blocages mécaniques fixés à l'objet (voir chapitre 15.1 "Caractéristiques générales") pour éviter la formation d'ombre en cas de pièces surélevées ou de montage en biais.
- Contrôlez constamment la position des objets et, le cas échéant, des blocages en les intégrant au circuit de sécurité électrique.
- Les opérations de blanking dans le champ de protection et les modifications de la résolution du champ de protection ne doivent être réalisées que par des personnes mandatées à cet effet et dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- Ne transmettez les outils correspondants (p. ex. une clé pour l'interrupteur à clé de programmation) qu'aux personnes compétentes.

AVIS

Les objets introduits doivent occuper toute la largueur du champ de protection, afin d'empêcher toute intrusion à côté de l'objet. Dans le cas contraire, des blocages doivent être prévus pour prévenir l'intrusion.

<u>^</u>

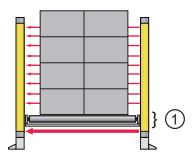
AVERTISSEMENT

Risque de blessures en cas d'application non autorisée du blanking!

Le blanking n'est pas autorisé pour les sécurisations de zones dangereuses car les zones masquées constitueraient des ponts accessibles vers les zones dangereuses.

N'utilisez pas le blanking pour les sécurisations de zones dangereuses.

Fonctions


Blanking fixe

Avec la fonction *Blanking fixe*, le capteur de sécurité offre la possibilité de masquer de manière fixe jusqu'à 10 zones de champ de protection, chacune constituée d'un nombre quelconque de faisceaux voisins.

Conditions

Au moins un des deux faisceaux de synchronisation ne doit pas être masqué.

Pour éviter que le faisceau de synchronisation inférieur soit interrompu, il est possible de masquer une partie de l'installation de convoyage.

1 Zone masquée

Fig. 5.1: Blanking fixe en cas de Gating

Les blocages mécaniques empêchent l'intrusion dans le champ de protection.

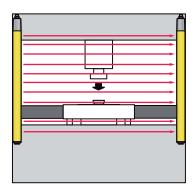


Fig. 5.2: Blanking fixe : les blocages mécaniques empêchent l'intrusion latérale dans le champ de protection II ne doit y avoir aucune formation d'ombre dans le champ de protection.

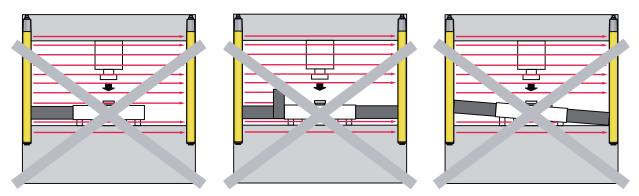


Fig. 5.3: Blanking fixe: éviter la formation d'ombre

Les zones de blanking programmées doivent être séparées par une distance minimale, correspondant à la résolution du capteur de sécurité.

Blanking fixe avec tolérance de faisceau

Le blanking fixe avec tolérance de faisceau est utilisé pour la sécurisation d'accès afin, par exemple, de masquer un transrouleur sans subir l'influence de perturbations.

Pour ce faire, le récepteur crée automatiquement une zone de tolérance d'un faisceau sur les deux côtés d'un objet fixe programmé et étend ainsi la zone de mouvement de l'objet de + 1 faisceau. Sur les bords de l'objet masqué, la résolution diminue en conséquence de 2 faisceaux.

Programmation de zones de blanking fixe

La programmation de zones de champ de protection avec blanking est réalisée à l'aide d'un interrupteur à clé (voir chapitre 9.4 "Programmation de zones de blanking fixe") :

- Placez tous les objets concernés par le blanking dans le champ de protection, à l'emplacement auquel ils doivent être masqués.
- ♦ Actionnez l'interrupteur à clé de programmation et relâchez-le au bout de 0,15 s à 4 s.
- ⇒ La programmation commence. La LED3 fait des éclairs bleus.
- ∜ Actionnez de nouveau l'interrupteur à clé de programmation et relâchez-le au bout de 0,15 s à 4 s.
- ⇒ La programmation se termine. La LED 3 s'allume en bleu si au moins une zone de faisceaux est occultée. Tous les objets ont été programmés sans erreur.

AVIS

Après la programmation d'un champ de protection libre (fin de programmation), c'est-à-dire la définition d'un champ de protection sans zones de blanking fixe, la LED bleue s'éteint.

Pendant la programmation, la taille d'objet détectée peut varier d'un faisceau maximum. Dans le cas contraire, la programmation se termine avec le message d'utilisateur U71 (voir chapitre 12.1 "Que faire en cas d'erreur ?").

Applications

6 Applications

Le capteur de sécurité génère exclusivement des champs de protection rectangulaires.

6.1 Sécurisation d'accès avec SPG

Les champs d'application typiques du MLC 530 SPG pour l'introduction de matériel dans des zones dangereuses ou la sortie de matériel hors de zones dangereuses se trouvent dans les secteurs de l'automobile et de l'intralogistique.

Fig. 6.1: Smart Process Gating (SPG) sur une chaîne de production automobile

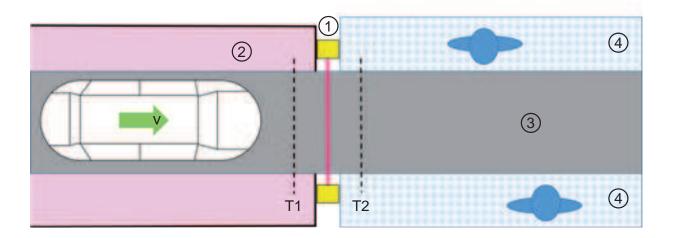


Fig. 6.2: Smart Process Gating (SPG) sur une voie de convoyage

6.1.1 Sortie de la zone dangereuse

Description

- Assemblage final de véhicules
 Les véhicules sont sortis de la zone dangereuse au moyen d'un système de transport.
- Niveau de performance nécessaire : PL e
- Vitesse de convoyage typique : < 0,1 m/s
- On utilise le mode de fonctionnement MF1 avec un contrôleur de sécurité (voir chapitre 4.4.1 "Mode de fonctionnement 1 Arrêt qualifié").

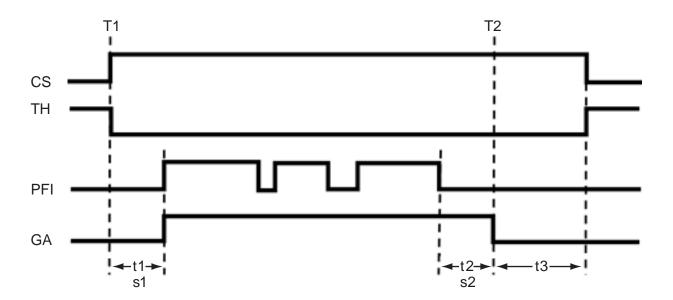
- 1 Barrage immatériel de sécurité avec mode SPG
- 2 Zone dangereuse (Danger Zone) ; station de montage automatisée
- 3 Système de transport
- 4 Poste de travail pour des travaux manuels
- T1 Démarrage du Gating-Start
- T2 Fin du Gating
- v Vitesse de convoyage du système de transport (typiquement < 0,1 m/s)

Fig. 6.3: Sortie de la zone dangereuse

Conditions et critères de fonctionnement admissible du SPG

Critère pour le mode SPG	Critère satisfait	Remarque
Sécurisation d'accès avec passage de matériau.	oui	
La position de la marchandise transportée est connue de la commande.	oui	La position actuelle du véhicule est déterminé à partir de la vitesse de convoyage et de la séquence du système.
L'information de position provient d'une source difficile à manipuler	oui	
Le signal de commutation CS n'est pas généré directement par une personne.	oui	La commande calcule le moment d'activation du signal de commutation CS à partir de la vitesse de convoyage et de la distance parcourue.
Le signal de commutation est gé- néré indirectement par un cap- teur.	Non pertinent	
Interruption du champ de protection moins de 4 s après le signal de commutation CS.	oui	Si le flux de transport est interrompu, la commande peut stopper le cycle de SPG si le champ de protection n'a pas encore été interrompu (voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié").

Critère pour le mode SPG	Critère satisfait	Remarque
Le signal de commutation CS n'est généré qu'une fois que la marchandise transportée se trouve à moins de 200 mm du champ de protection.	oui	À la vitesse de convoyage de 0,1 m/s, le signal de commutation CS doit être appliqué au plus tôt 2 s avant interruption du champ de protection.
Le signal de commutation CS n'est plus appliqué à 200 mm après la libération du champ de protection.	oui	À la vitesse de convoyage de 0,1 m/s, 200 mm sont parcourus en 2 s (0,1 m/s x 2 s = 200 mm). La condition nécessaire à la fin automatique du Gating est ainsi remplie.


Les conditions nécessaires au fonctionnement avec SPG sont satisfaites.

Consignes d'application

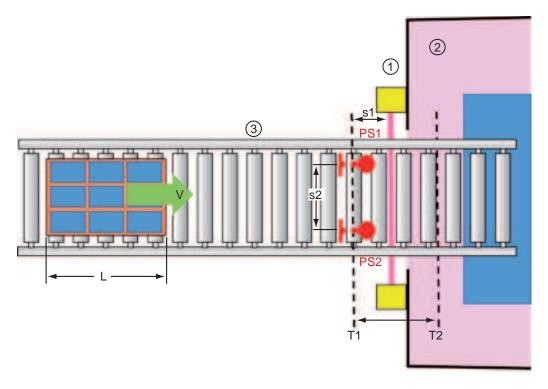
Critère	Valeur limite pour le mode SPG	Remarque
Interruption des faisceaux de syn- chronisation	> 60 s	Comme les faisceaux de synchronisation peuvent être interrompus pendant plus de 60 s, la longueur du champ de protection doit être choisie conformément à ISO 13855 et pour être supérieure à la hauteur maximale de la marchandise transportée.
Interruption du flux de transport nécessaire	oui	Choisir le mode de fonctionnement MF1 (voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié").
Distance de la marchandise trans- portée au dispositif de protection	< 200 mm	Aucune mesure supplémentaire n'est nécessaire puisqu'il n'est pas possible de se glisser entre la marchandise transportée et le dispositif de protection.
	> 200 mm	Mesures supplémentaires nécessaires, p. ex. clôtures ou portes battantes. L'analyse des portes battantes peut par exemple être réalisée en mode de fonctionnement MF6 (voir chapitre 4.4.4 "Mode de fonctionnement 6 - Gating partiel").
Temps de filtrage du champ de protection	2 s (MF 1, MF 6) 1 s (MF 5) 0,5 s (MF 4)	Une brève libération du champ de protection est possible sans interruption du processus de Gating. De cette manière, des petits espaces dans la marchandise transportée sont tolérables (voir chapitre 4.1 "Vue d'ensemble et principe").
		À la vitesse de convoyage de 0,1 m/s, en MF1, des espaces jusqu'à 200 mm sont tolérés (2 s x 0,1 m/s = 200 mm).
Gating > 10 minutes	10 minutes	Utiliser la prolongation du time-out.
		Il est possible de prolonger le time-out jusqu'à 100 heures (voir chapitre 4.5.2 "Prolongation du time-out de Gating").
		L'émetteur et le récepteur doivent rester syn- chrones pendant le time-out : le champ de pro- tection doit être plus long que la marchandise transportée.

Séquence des opérations

Mode de fonctionnement MF1 avec un contrôleur de sécurité (voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié").

- CS Signal de commutation provenant de la commande
- TH Signal d'arrêt de temporisateur provenant de la commande
- PFI Interruption du champ de protection
- GA Gating actif
- T1 Démarrage de la séquence de Gating
- T2 Fin du Gating
- t1 Différence temporelle entre le signal de commutation CS et l'interruption du champ de protection : < 4 s
- s1 Distance parcourue entre l'activation du signal de commutation CS et l'interruption du champ de protection : < 200 mm
- t2 Différence temporelle entre la libération du champ de protection et la fin automatique du Gating : 2 s
- s2 Distance parcourue entre la libération du champ de protection et la fin automatique du Gating : < 200 mm
- t3 Différence temporelle entre la fin du Gating et la coupure du signal de commutation CS/activation du signal d'arrêt de temporisateur : < 20 s

Fig. 6.4: Séquence des signaux lors de la sortie de la zone dangereuse


6.1.2 Entrée de palettes

Description

- Des europalettes supportant des caisses de boissons sont transportées dans le sens longitudinal vers une machine d'emballage sous film (enrouleuse) au moyen d'un transrouleur.
- Niveau de performance nécessaire : PL d
- Deux capteurs PS1 et PS2 sont montés pour détecter une palette entrante.
 - Les capteurs sont placés de manière à saisir simultanément la palette à une distance < 0,2 m devant le champ de protection de la barrière immatérielle de sécurité.
 - La simultanéité des signaux des deux capteurs est testée dans la commande (300 ms). L'actionnement simultané des capteurs au cours de ce bref laps de temps n'est pas possible pour une personne lorsque le système de transport fonctionne.
- Le signal de simultanéité analysé combiné au signal « le système de transport fonctionne » génère le signal de commutation CS qui démarre le cycle de SPG.
- Vitesse de convoyage : 0,3 m/s.
 - · Fin automatique de Gating impossible
 - Interruption du Gating par la commande nécessaire
- On utilise le mode de fonctionnement MF5 sans signal d'arrêt de temporisateur TH (voir chapitre 4.4.3 "Mode de fonctionnement 5 Standard").
 - Une fois lancée, l'entrée de la palette dans l'enrouleuse n'est plus interrompue jusqu'à ce que la palette se trouve à la position d'enroulement dans la zone dangereuse.

• Une prolongation du time-out n'est pas nécessaire. Le signal d'arrêt de temporisateur TH est commuté sur OFF.

- 1 Barrière immatérielle de sécurité avec fonction de SPG
- Zone dangereuse (Danger Zone); machine d'emballage sous film (enrouleuse)
- 3 Système de transport
- v Vitesse de convoyage du système de transport (0,3 m/s)
- PS1, PS2 Capteurs
- s2 Distance entre les capteurs PS1 et PS2, p. ex. 700 mm
- L Longueur de la palette
- T1 Démarrage du Gating-Start
- T2 Fin du Gating
- s1 Distance parcourue entre l'activation du signal de commutation CS et l'interruption du champ de protec
 - tion : < 200 mm

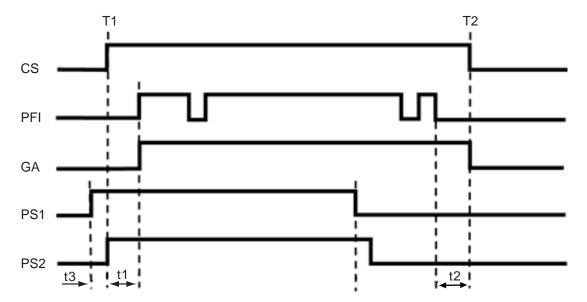
Fig. 6.5: Entrée d'une palette dans une zone dangereuse

Conditions et critères de fonctionnement admissible du SPG

Critère pour le mode SPG	Critère satisfait	Remarque
Sécurisation d'accès avec passage de matériau.	oui	
La position de la marchandise transportée est connue de la commande.	oui	La commande reçoit des informations supplémentaires en provenance de l'analyse des signaux des capteurs et du signal de défilement de la bande.
L'information de position provient d'une source difficile à manipuler	oui	
Le signal de commutation CS n'est pas généré directement par une personne.	oui	
Le signal de commutation est gé- néré indirectement par un cap- teur.	oui	
Interruption du champ de protection moins de 4 s après le signal de commutation CS.	oui	À la vitesse de convoyage de 0,3 m/s, le champ de protection est interrompu 0,66 s après application du signal de commutation (0,2 m : 0,3 m/s = 0,66 s).
Le signal de commutation CS n'est généré que si la marchan- dise transportée se trouve à moins de 200 mm du champ de protection.	oui	Les capteurs PS1 et PS2 sont disposés à moins de 200 mm du dispositif de protection.
Le signal de commutation CS n'est plus appliqué à 200 mm après la libération du champ de	non	À la vitesse de convoyage de 0,3 m/s, il en résulte une distance parcourue de 0,3 m/s x 1 s = 300 mm.
protection.		La fin automatique du Gating n'est pas possible. Le Gating doit être interrompu par la commande (voir chapitre 4.5.1 "Fin commandée du Gating").

Les conditions nécessaires au fonctionnement avec SPG sont satisfaites.

Consignes d'application


Critère	Valeur limite pour le mode SPG	Remarque
Interruption des faisceaux de synchronisation	< 60 s	Longueur du champ de protection dépendant uniquement de la norme ISO 13855.
Interruption du flux de transport nécessaire	non	
Distance de la marchandise trans- portée au dispositif de protection	< 200 mm	Aucune mesure supplémentaire n'est nécessaire puisqu'il n'est pas possible de se glisser entre la marchandise transportée et le dispositif de protection.
	> 200 mm	Mesures supplémentaires nécessaires, p. ex. clôtures ou portes battantes. L'analyse des portes battantes peut par exemple être réalisée en mode de fonctionnement MF6 (voir chapitre 4.4.4 "Mode de fonctionnement 6 - Gating partiel").
Interruption des capteurs PS1 et PS2 possible par une personne	non	Choisir une distance suffisamment grande entre les capteurs, p. ex. 700 mm.
Temps de filtrage du champ de protection	2 s (MF 1, MF 6) 1 s (MF 5) 0,5 s (MF 4)	Une brève libération du champ de protection est possible sans interruption du processus de Gating. De cette manière, des petits espaces dans la marchandise transportée sont tolérables (voir chapitre 4.1 "Vue d'ensemble et principe"). À la vitesse de convoyage de 0,3 m/s, en MF5, des espaces jusqu'à 300 mm sont tolérés (1 s x 0,3 m/s = 300 mm).

Séquence des opérations

- Mode de fonctionnement MF5 sans signal d'arrêt de temporisateur TH (voir chapitre 4.4.3 "Mode de fonctionnement 5 - Standard")
- Lancement de la séquence de Gating : lorsque le système de transport fonctionne, les capteurs PS1 et PS2 sont par exemple activés en 300 ms. La commande génère le signal de commutation CS au moment T1.
- Fin du Gating au moment T2 :

T2 = T1 + (L + 400 mm) / v

- (L + 400 mm): longueur de la palette plus 200 mm avant et après le dispositif de protection
- v : vitesse de convoyage du système de transport, p. ex. 0,3 m/s

- CS Signal de commutation provenant de la commande
- PFI Interruption du champ de protection
- GA Gating actif
- PS1 Capteur 1
- PS2 Capteur 2
- T1 Démarrage de la séquence de Gating
- T2 Fin du Gating
- t1 Différence temporelle entre le signal de commutation CS et l'interruption du champ de protection : < 4 s
- t2 Différence temporelle entre la libération du champ de protection et la coupure du signal de commutation CS : < 1 s
- t3 Différence temporelle entre les signaux des capteurs : < 300 ms

Fig. 6.6: Séquence des signaux lors de l'entrée d'une palette dans une zone dangereuse

7 Montage

\bigwedge

AVERTISSEMENT

Un montage non conforme risque d'entraîner de graves accidents !

La fonction de protection du capteur de sécurité n'est garantie que si celui-ci est adapté au domaine d'application prévu et a été monté de façon conforme.

- Use capteur de sécurité ne doit être monté que par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- Respectez les distances de sécurité requises (voir chapitre 7.1.1 "Calcul de la distance de sécurité S").
- ♦ Veillez à ce qu'il soit impossible de passer les pieds dans le dispositif de protection ni de ramper en dessous ou de passer par dessus et à tenir compte de l'accès des mains par le haut, par le bas et par le côté dans la distance de sécurité, le cas échéant à l'aide du supplément C_{RO} conformément à ISO 13855.
- Prenez des mesures afin d'empêcher l'utilisation du capteur de sécurité pour accéder à la zone dangereuse, par exemple en entrant ou en grimpant.
- 🔖 Respectez les normes importantes, les prescriptions et le présent mode d'emploi.
- Nettoyez l'émetteur et le récepteur régulièrement : conditions ambiantes (voir chapitre 15 "Caractéristiques techniques"), entretien (voir chapitre 11 "Entretien").
- Après le montage, assurez-vous que le capteur de sécurité fonctionne correctement.

7.1 Disposition de l'émetteur et du récepteur

Les dispositifs de protection offrent un effet protecteur uniquement s'ils sont montés avec une distance de sécurité suffisante. Tous les délais doivent être pris en compte, notamment les temps de réaction du capteur de sécurité et des éléments de commande, ainsi que le temps d'arrêt de la machine.

Les normes suivantes précisent des formules de calcul :

- CEI 61496-2, « Équipements de protection électro-sensibles » : distance des surfaces réfléchissantes/ miroirs de renvoi
- ISO 13855, « Sécurité des machines Positionnement des dispositifs de protection en fonction de la vitesse d'approche des parties du corps » : situation de montage et distances de sécurité

AVIS

Selon ISO 13855, il est possible de ramper sous les faisceaux supérieurs 300 mm et de passer par dessus les faisceaux inférieurs à 900 mm dans un champ de protection vertical. Pour le champ de protection horizontal, il convient de prévoir un montage adapté ou des dispositifs de couverture afin d'empêcher de monter sur le capteur de sécurité.

7.1.1 Calcul de la distance de sécurité S

AVIS

En cas d'utilisation du blanking, tenez compte des suppléments requis pour la distance de sécurité (voir chapitre 7.1.5 "Résolution et distance de sécurité pour un blanking fixe").

Formule générale de calcul de la distance de sécurité S d'un dispositif de protection optoélectronique selon ISO 13855

$$S = K \cdot T + C$$

S [mm] = Distance de sécurité K [mm/s] = Vitesse d'approche

T [s] = Retard total, somme de $(t_a + t_i + t_m)$

t_a [s] = Temps de réaction du dispositif de protection t_i [s] = Temps de réaction du relais de sécurité

t_m [s] = Temps d'arrêt de la machine

C [mm] = Supplément à la distance de sécurité

AVIS

Si, lors des contrôles réguliers, les temps d'arrêt obtenus sont supérieurs, il convient d'augmenter t_m d'un supplément adapté.

7.1.2 Calcul de la distance de sécurité pour les champs de protection à action orthogonale par rapport à la direction d'approche

Pour les champs de protection perpendiculaires, ISO 13855 fait la distinction entre

- S_{RT}: distance de sécurité pour l'accès à travers le champ de protection
- S_{RO} : distance de sécurité pour l'accès ${f par-dessus}$ le champ de protection

Les deux valeurs se distinguent par la manière d'obtenir le supplément C :

- C_{RT}: à partir d'une formule de calcul ou en tant que constante (voir chapitre 7.1.1 "Calcul de la distance de sécurité S")
- C_{RO}: voir tableau ci-après « Passage par-dessus le champ de protection vertical d'un équipement de protection électro-sensible (extrait de la norme ISO 13855) »

La plus grande des deux valeurs S_{RT} et S_{RO} doit être utilisée.

Calcul de la distance de sécurité S_{RT} selon ISO 13855 pour l'accès à travers le champ de protection :

Calcul de la distance de sécurité S_{RT} pour la sécurisation de postes dangereux

$$S_{RT} = K \cdot T + C_{RT}$$

S_{RT} [mm] = Distance de sécurité

K [mm/s] = Vitesse d'approche pour les sécurisations de postes dangereux avec réaction d'approche et direction d'approche normale par rapport au champ de protection (résolution de 14 à 40 mm) :

2000 mm/s ou 1600 mm/s si S_{RT} > 500 mm

T [s] = Retard total, somme de $(t_a + t_i + t_m)$

 t_a [s] = Temps de réaction du dispositif de protection t_i [s] = Temps de réaction du relais de sécurité

t_m [s] = Temps d'arrêt de la machine

 C_{RT} [mm] = Supplément pour les sécurisations de postes dangereux avec réaction d'approche pour les résolutions de 14 à 40 mm, d = résolution du dispositif de protection C_{RT} = 8 × (d - 14) mm

Calcul de la distance de sécurité S_{RT} pour la sécurisation de postes dangereux

$$S_{RT} = K \cdot T + C_{RT}$$

 S_{RT} [mm] = Distance de sécurité

K [mm/s] = Vitesse d'approche pour les sécurisations d'accès avec direction d'approche orthogonale au

champ de protection : 2000 mm/s ou 1600 mm/s si $S_{RT} > 500$ mm

T [s] = Retard total, somme de $(t_a + t_i + t_m)$

t_a [s] = Temps de réaction du dispositif de protection

t_i [s] = Temps de réaction du relais de sécurité

t_m [s] = Temps d'arrêt de la machine

C_{RT} [mm] = Supplément pour les sécurisations d'accès avec réaction d'approche pour les résolutions de

14 à 40 mm, d = résolution du dispositif de protection C_{RT} = 8 × (d - 14) mm. Supplément pour les sécurisations d'accès pour les résolutions > 40 mm : C_{RT} = 850 mm (valeur standard pour la

longueur de bras)

Exemple de calcul

L'accès à un robot avec un temps d'arrêt de 250 ms doit être sécurisé à l'aide d'une barrière immatérielle de sécurité avec une résolution de 90 mm et une hauteur du champ de protection de 1500 mm, dont le temps de réaction correspond à 6 ms. La barrière immatérielle de sécurité connecte directement les contacteurs dont le temps de réaction est déjà compris dans les 250 ms. Il est donc inutile de considérer une interface supplémentaire.

$$S_{RT} = K \cdot T + C_{RT}$$

K = [mm/s] = 1600

T [s] = (0.006 + 0.250)

 C_{RT} [mm] = 850

 S_{RT} [mm] = 1600 mm/s × 0,256 s + 850 mm

 S_{RT} [mm] = 1260

Cette distance de sécurité n'est pas disponible dans l'application. Par conséquent, un nouveau calcul est réalisé avec une barrière immatérielle de sécurité d'une résolution de 40 mm (temps de réaction = 14 ms) :

Calculez à nouveau la distance de sécurité S_{RT} avec la formule selon ISO 13855.

$$S_{RT} = K \cdot T + C_{RT}$$

Κ [mm/s] 1600

Т (0.014 + 0.250)[s] C_{RT} [mm] $8 \times \sim (40 - 14)$

 S_{RT} [mm] 1600 mm/s × 0,264 s + 208 mm

[mm] SRT

La barrière immatérielle de sécurité d'une résolution de 40 mm est ainsi adaptée à cette application.

AVIS

Le calcul avec K = 2000 mm/s fournit une distance de sécurité S_{RT} de 736 mm. La vitesse d'approche supposée K = 1600 mm/s est donc admissible.

Calcul de la distance de sécurité S_{Ro} selon ISO 13855 pour l'accès par-dessus le champ de protection:

Calcul de la distance de sécurité S_{Ro} pour la sécurisation de postes dangereux

$$S_{RO} = K \cdot T + C_{RO}$$

 S_{RO} [mm] Distance de sécurité

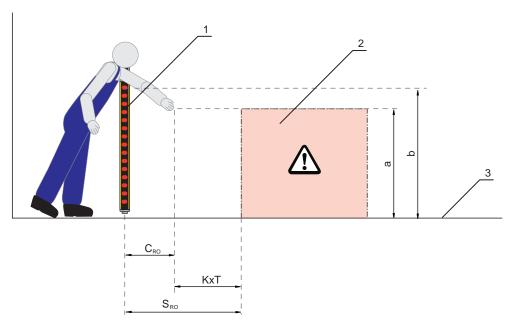
Κ [mm/s] Vitesse d'approche pour les sécurisations de postes dangereux avec réaction d'approche et di-

rection d'approche normale par rapport au champ de protection (résolution de 14 à 40 mm) :

2000 mm/s ou 1600 mm/s si $S_{RO} > 500$ mm

Retard total, somme de $(t_a + t_i + t_m)$ [s]

Temps de réaction du dispositif de protection [s]


t, Temps de réaction du relais de sécurité [s]

Temps d'arrêt de la machine [s]

Distance supplémentaire à laquelle une partie du corps peut se déplacer vers le dispositif de C_{RO} [mm]

> protection avant que celui-ci ne se déclenche : valeur (voir tableau ci-après « Passage par-dessus le champ de protection vertical d'un équipement de protection électro-sensible (extrait de la

norme ISO 13855) »).

- 1 Capteur de sécurité
- 2 Zone dangereuse
- 3 Sol
- a Hauteur du poste dangereux
- b Hauteur du faisceau le plus élevé du capteur de sécurité

Fig. 7.1: Supplément à la distance de sécurité en cas de contournement par le haut et pas le bas

Tab. 7.1: Passage par-dessus le champ de protection vertical d'un équipement de protection électro-sensible (extrait de la norme ISO 13855)

Hau- teur a du		ır b de l sensib		upérieu	re du cl	namp de	protec	tion de	l'équipe	ement d	e prote	ction
poste dange-	900	1000	1100	1200	1300	1400	1600	1800	2000	2200	2400	2600
reux [mm]	Distan	ce supp	lément	aire C _{RO}	à la zoı	ne dang	ereuse	[mm]				
2600	0	0	0	0	0	0	0	0	0	0	0	0
2500	400	400	350	300	300	300	300	300	250	150	100	0
2400	550	550	550	500	450	450	400	400	300	250	100	0
2200	800	750	750	700	650	650	600	550	400	250	0	0
2000	950	950	850	850	800	750	700	550	400	0	0	0
1800	1100	1100	950	950	850	800	750	550	0	0	0	0
1600	1150	1150	1100	1000	900	850	750	450	0	0	0	0
1400	1200	1200	1100	1000	900	850	650	0	0	0	0	0
1200	1200	1200	1100	1000	850	800	0	0	0	0	0	0
1000	1200	1150	1050	950	750	700	0	0	0	0	0	0
800	1150	1050	950	800	500	450	0	0	0	0	0	0
600	1050	950	750	550	0	0	0	0	0	0	0	0
400	900	700	0	0	0	0	0	0	0	0	0	0
200	600	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

Montage Leuze

En fonction des valeurs spécifiées, vous pouvez utiliser le tableau ci-dessus de trois façons différentes :

- 1. Les éléments suivants sont donnés :
 - · Hauteur a du poste dangereux
 - Distance S du poste dangereux au capteur de sécurité et supplément C_{RO}

On cherche la hauteur requise b du faisceau le plus élevé du capteur de sécurité, et par là même sa hauteur de champ de protection.

- 🔖 Dans la colonne de gauche, cherchez la ligne indiquant la hauteur du poste dangereux.
- 🔖 Dans cette ligne, cherchez la colonne indiquant la valeur directement supérieure au supplément C_{RO}.
- ⇒ L'en-tête de colonne fournit la hauteur requise du faisceau le plus élevé du capteur de sécurité.
- 2. Les éléments suivants sont donnés :
 - · Hauteur a du poste dangereux
 - · Hauteur b du faisceau le plus élevé du capteur de sécurité

On cherche la distance requise S du capteur de sécurité au poste dangereux, et par là même le supplément C_{RO} .

- ☼ Dans l'en-tête de colonne, cherchez la colonne dans laquelle la hauteur indiquée pour le faisceau le plus élevé du capteur de sécurité est directement inférieure.
- Dans cette colonne, cherchez la ligne indiquant la hauteur directement supérieure a du poste dangereux.
- ⇒ Vous trouverez le supplément C_{RO} au croisement de la ligne et de la colonne.
- 3. Les éléments suivants sont donnés :
 - Distance S du poste dangereux au capteur de sécurité et supplément C_{RO}.
 - · Hauteur b du faisceau le plus élevé du capteur de sécurité

On cherche la hauteur autorisée a du poste dangereux.

- ☼ Dans l'en-tête de colonne, cherchez la colonne dans laquelle la hauteur indiquée pour le faisceau le plus élevé du capteur de sécurité est directement inférieure.
- 🔖 Cherchez dans cette colonne la valeur directement inférieure au supplément réel C_{RO}.
- ⇒ Sur cette ligne, la valeur indiquée dans la colonne de gauche donne la hauteur autorisée du poste dangereux.
- Calculez à présent la distance de sécurité S avec la formule générale selon ISO 13855 (voir chapitre 7.1.1 "Calcul de la distance de sécurité S").
- ⇒ La plus grande des deux valeurs S_{RT} et S_{RO} doit être utilisée.

Exemple de calcul

La zone d'insertion d'une presse avec un temps d'arrêt de 130 ms doit être sécurisée à l'aide d'une barrière immatérielle de sécurité avec une résolution de 20 mm et une hauteur de champ de protection de 600 mm. Le temps de réaction de la barrière immatérielle de sécurité correspond à 12 ms, la commande de sécurité de presse a un temps de réaction de 40 ms.

La barrière immatérielle de sécurité est accessible par le haut. L'arête supérieure du champ de protection se trouve à une hauteur de 1400 mm ; le poste dangereux est situé à une hauteur de 1000 mm

La distance supplémentaire C_{RO} jusqu'au poste dangereux correspond à 700 mm (voir également le tableau « Passage par-dessus le champ de protection vertical d'un équipement de protection électro-sensible (extrait de la norme ISO 13855) »).

☼ Calculez la distance de sécurité S_{Ro} avec la formule selon ISO 13855.

$$S_{RO} = K \cdot T + C_{RO}$$

K [mm/s] = 2000

T [s] = (0.012 + 0.040 + 0.130)

 C_{RO} [mm] = 700

 S_{RO} [mm] = 2000 mm/s × 0,182 s + 700 mm

 S_{RO} [mm] = 1064

 S_{RO} étant supérieure à 500 mm, il est possible de répéter le calcul avec la vitesse d'approche de 1600 mm/ s \dot{s}

$$S_{RO} = K \cdot T + C_{RO}$$

K [mm/s] = 1600

T [s] = (0.012 + 0.040 + 0.130)

 C_{RO} [mm = 700

 S_{RO} [mm] = 1600 mm/s × 0,182 s + 700 mm

 S_{RO} [mm] = 992

AVIS

En fonction de la construction de la machine, une protection contre le passage des pieds peut s'avérer nécessaire, par exemple à l'aide d'une deuxième barrière immatérielle de sécurité disposée à l'horizontale. La plupart du temps, il est préférable de choisir une barrière immatérielle de sécurité plus longue, rendant le supplément C_{RO} égal à zéro (0).

7.1.3 Calcul de la distance de sécurité S pour une approche parallèle au champ de protection

Calcul de la distance de sécurité S pour la sécurisation de zones dangereuses

$$S = K \cdot T + C$$

S [mm] = Distance de sécurité

K [mm/s] = Vitesse d'approche pour les sécurisations de zones dangereuses avec direction d'approche pa-

rallèle au champ de protection (résolutions jusqu'à 90 mm) : 1600 mm/s

T [s] = Retard total, somme de $(t_a + t_i + t_m)$

t_a [s] = Temps de réaction du dispositif de protection

t_i [s] = Temps de réaction du relais de sécurité

 t_m [s] = Temps d'arrêt de la machine

C [mm] = Supplément pour la sécurisation de zones dangereuses avec réaction d'approche H = hauteur

du champ de protection, H_{min} = hauteur de montage minimale autorisée, mais jamais inférieure

à 0, d = résolution du dispositif de protection C = 1200 mm - 0,4 × H; H_{min} = 15 × (d - 50)

Exemple de calcul

La zone dangereuse devant une machine avec un temps d'arrêt de 140 ms doit être sécurisée si possible à hauteur du sol, à l'aide d'une barrière immatérielle de sécurité horizontale comme substitut de tapis de contact. La hauteur de montage H_{min} peut être = 0 - le supplément C à la distance de sécurité correspond alors à 1200 mm. Il faut utiliser le capteur de sécurité le plus court possible ; le premier choix est de 1350 mm.

Le récepteur d'une résolution de 40 mm et d'une hauteur du champ de protection de 1350 mm présente un temps de réaction de 13 ms, une interface relais supplémentaire présente un temps de réaction de 10 ms.

☼ Calculez la distance de sécurité S_{Ro} avec la formule selon ISO 13855.

$$S = K \cdot T + C$$

K [mm/s] = 1600

T [s] = (0.140 + 0.013 + 0.010)

C [mm] = 1200

S [mm] = $1600 \text{ mm/s} \times 0,163 \text{ s} + 1200 \text{ mm}$

S [mm] = 1461

La distance de sécurité de 1350 mm n'est pas suffisante, 1460 mm sont nécessaires.

Par conséquent, le calcul est répété avec une hauteur du champ de protection de 1500 mm. Le temps de réaction est maintenant de 14 ms.

☼ Calculez à nouveau la distance de sécurité S_{Ro} avec la formule selon ISO 13855.

$$S = K \cdot T + C$$

K [mm/s] = 1600

T [s] = (0.140 + 0.014 + 0.010)

C [mm] = 1200

S [mm] = $1600 \text{ mm/s} \times 0,164 \text{ s} + 1200 \text{ mm}$

S [mm] = 1463

Un capteur de sécurité adapté a été trouvé ; sa hauteur de champ de protection correspond à 1500 mm.

Les modifications suivantes doivent à présent être prises en compte dans cet exemple des conditions d'application :

De petites pièces sont parfois éjectées de la machine et peuvent tomber à travers le champ de protection. Ceci ne doit pas provoquer le déclenchement de la fonction de sécurité. De plus, la hauteur de montage passe à 300 mm.

MaxiScan

$$S = K \cdot T + C$$

K [mm/s] = 1600

T [s] = (0.140 + 0.100 + 0.010)

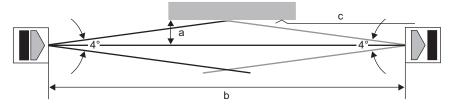
C [mm] = $1200 - 0.4 \times 300$

S [mm] = $1600 \text{ mm/s} \times 0.250 \text{ s} + 1080 \text{ mm}$

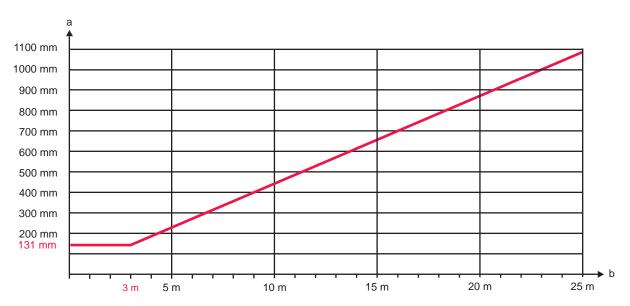
S [mm] = 1480

7.1.4 Distance minimale aux surfaces réfléchissantes

<u>^</u>


AVERTISSEMENT

Le non-respect des distances minimales aux surfaces réfléchissantes risque d'entraîner des blessures graves !


Les surfaces réfléchissantes risquent de dévier les faisceaux de l'émetteur vers le récepteur. Une interruption du champ de protection n'est alors plus détectée.

- ♥ Déterminez la distance minimale a (voir figure ci-après).
- Assurez-vous que la distance minimale requise selon CEI 61496-2 est respectée entre toutes les surfaces réfléchissantes et le champ de protection (voir diagramme ci-après « Distance minimale aux surfaces réfléchissantes en fonction de la largeur du champ de protection »).
- Avant la mise en service, vérifiez à des intervalles appropriés que la capacité de détection du capteur de sécurité n'est pas altérée par des surfaces réfléchissantes.

- a Distance minimale requise aux surfaces réfléchissantes [mm]
- b Largeur du champ de protection [m]
- c Surface réfléchissante

Fig. 7.2: Distance minimale aux surfaces réfléchissantes selon la largeur du champ de protection

- a Distance minimale requise aux surfaces réfléchissantes [mm]
- b Largeur du champ de protection [m]

Fig. 7.3: Distance minimale aux surfaces réfléchissantes en fonction de la largeur du champ de protection

Tab. 7.2: Formule de calcul de la distance minimale aux surfaces réfléchissantes

Distance (b) émetteur-récepteur	Calcul de la distance minimale (a) aux surfaces réfléchissantes
b ≤ 3 m	a [mm] = 131
b > 3 m	a [mm] = tan(2,5°) × 1000 × b [m] = 43,66 × b [m]

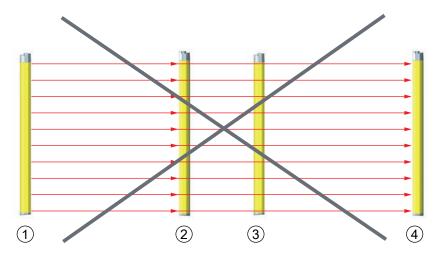
7.1.5 Résolution et distance de sécurité pour un blanking fixe

Lors du calcul de la distance de sécurité, il faut toujours prendre pour base la résolution effective. Si la résolution effective diffère de la résolution physique, ceci doit être documenté de manière durable et résistant à l'essuyage sur le panonceau fourni, à proximité du dispositif de protection.

Tab. 7.3: Résolution effective et supplément à la distance de sécurité pour un blanking fixe avec une tolérance de taille de ±1 faisceau pour les sécurisations d'accès selon ISO 13855 avec approche orthogonale au champ de protection

Résolution physique	Résolution effective aux bords de l'objet	Supplément à la distance de sécurité C = 8 × (d-14) ou 850 mm
14 mm	34 mm	160 mm
20 mm	45 mm	850 mm
30 mm	80 mm	850 mm
40 mm	83 mm	850 mm
90 mm	283 mm	850 mm

AVERTISSEMENT



Une mauvaise application des fonctions de blanking peut causer des blessures graves!

Veuillez noter que les suppléments à la distance de sécurité peuvent nécessiter des mesures supplémentaires afin d'empêcher l'accès par l'arrière. Montage Leuze

7.1.6 Prévention de l'interférence mutuelle avec les appareils voisins

La présence d'un récepteur sur la trajectoire du faisceau d'un émetteur voisin risque d'entraîner une diaphonie optique, causant des erreurs de commutation et la défaillance de la fonction de protection.

- 1 Émetteur 1 2 Récepteur 1 3 Émetteur 2 4 Récepteur 2
- Fig. 7.4: Diaphonie optique de capteurs de sécurité voisins (émetteur 1 interfère avec récepteur 2) due à un montage incorrect

AVIS

Altération possible de la disponibilité due à la proximité de systèmes montés côte à côte !

L'émetteur d'un système risque d'interférer avec le récepteur de l'autre système.

♥ Empêchez la diaphonie optique d'appareils voisins.

Montez les appareils voisins avec un blindage entre eux ou prévoyez une paroi de séparation afin d'éviter toute interférence mutuelle.

🖔 Montez les appareils voisins dans le sens opposé pour éviter toute interférence mutuelle.

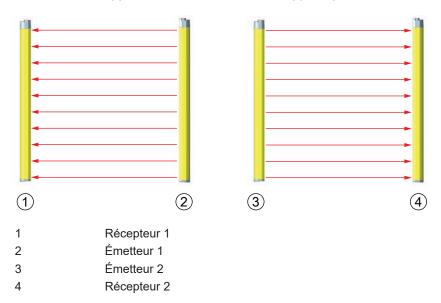


Fig. 7.5: Montage dans le sens opposé

7.2 Montage du capteur de sécurité

Procédez comme suit :

- Préparez les outils adaptés et montez le capteur de sécurité en respectant les consignes relatives aux emplacements de montage (voir chapitre 7.2.1 "Emplacements de montage adaptés").
- Le cas échéant, posez les autocollants de consignes de sécurité (inclus dans la livraison) sur le capteur de sécurité et sur le montant.

Après le montage, vous pouvez effectuer le raccordement électrique du capteur de sécurité (voir chapitre 8 "Raccordement électrique"), le mettre en service et l'aligner (voir chapitre 9 "Mise en service"), puis le contrôler (voir chapitre 10.1 "Avant la mise en service et après modification").

7.2.1 Emplacements de montage adaptés

Domaine d'application : Montage

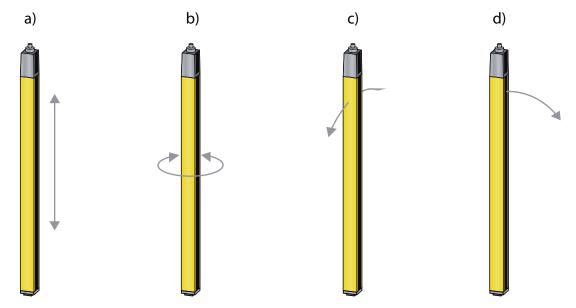
Contrôleur : Monteur du capteur de sécurité

Tab. 7.4: Liste de contrôle pour la préparation du montage

Question de contrôle :	oui	non
La hauteur et les dimensions du champ de protection satisfont-elles aux exigences de ISO 13855 ?		
La distance de sécurité au poste dangereux est-elle respectée (voir chapitre 7.1.1 "Calcul de la distance de sécurité S") ?		
La distance minimale aux surfaces réfléchissantes est-elle respectée (voir chapitre 7.1.4 "Distance minimale aux surfaces réfléchissantes") ?		
Est-il possible d'exclure toute interférence mutuelle entre les capteurs de sécurité montés à proximité les uns des autres (voir chapitre 7.1.6 "Prévention de l'interférence mutuelle avec les appareils voisins") ?		
L'accès au poste dangereux ou à la zone dangereuse est-il possible uniquement par le champ de protection ?		
Tout contournement du champ de protection par le bas ou par le haut est-il exclu ou le supplément correspondant C_{RO} selon ISO 13855 a-t-il été respecté ?		
L'accès au dispositif de protection par l'arrière est-il empêché ou existe-t-il une protection mécanique ?		
Les connexions de l'émetteur et du récepteur sont-elles orientées dans la même direction ?		
Est-il possible de fixer l'émetteur et le récepteur de manière à empêcher leur déplacement et leur rotation ?		
Le capteur de sécurité est-il accessible pour un contrôle et un remplacement ?		
L'activation de la touche de réinitialisation est-elle exclue à partir de la zone dangereuse ?		
La zone dangereuse est-elle entièrement visible depuis le lieu de montage de la touche de réinitialisation ?		
La réflexion due au lieu de montage peut-elle être exclue ?		

Tenez également compte des remarques supplémentaires concernant le Smart Process Gating (Smart Process Gating).

AVIS



Si vous répondez **non** à l'une des questions de contrôle ci-dessus, il convient de changer l'emplacement de montage.

Montage Leuze

7.2.2 Définition des sens de déplacement

Ci-après, les termes suivants sont utilisés pour les déplacements d'alignement du capteur de sécurité autour de l'un de ses axes :

a Déplacer : mouvement le long de l'axe longitudinalb Pivoter : mouvement autour de l'axe longitudinal

c Basculer : rotation latérale transversale par rapport à la vitre avant

d Incliner : rotation latérale dans le sens de la vitre avant

Fig. 7.6: Sens de déplacement pour l'alignement du capteur de sécurité

7.2.3 Fixation à l'aide d'écrous coulissants BT-NC60

L'émetteur et le récepteur sont toujours fournis avec 2 écrous coulissants BT-NC60 chacun dans la rainure latérale. Le capteur de sécurité peut ainsi être fixé facilement sur la machine ou l'installation à sécuriser grâce à quatre vis M6. Il est possible de décaler dans le sens de la rainure pour régler la hauteur, mais pas de tourner, basculer ni incliner.

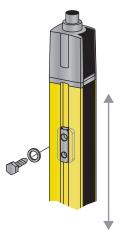


Fig. 7.7: Montage à l'aide d'écrous coulissants BT-NC60

Montage Leuze

7.2.4 Fixation à l'aide d'un support tournant BT-2HF

Le support tournant à commander séparément (voir chapitre 16 "Informations concernant la commande et accessoires") permet d'ajuster le capteur de sécurité de la manière suivante :

- · Déplacer à l'aide des trous oblongs verticaux dans la plaque murale du support tournant
- Tourner à 360° autour de l'axe longitudinal grâce à la fixation sur le cône vissable
- Incliner dans le sens du champ de protection à l'aide des trous oblongs horizontaux dans la fixation au mur
- · Basculer autour de l'axe principal

La fixation au mur à l'aide de trous oblongs permet de soulever le support une fois les vis desserrées audessus de la coiffe de raccordement. Il est donc inutile de retirer les supports du mur lors d'un remplacement de l'appareil. Il suffit de desserrer les vis.

Les supports sont également disponibles en version amortissant les vibrations pour l'emploi sous des contraintes mécaniques accrues (BT-2HF-S) (voir chapitre 16 "Informations concernant la commande et accessoires").

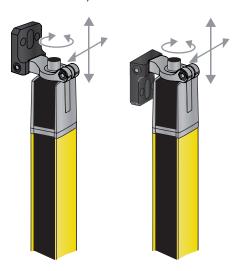


Fig. 7.8: Montage à l'aide d'un support tournant BT-2HF

7.2.5 Fixation à l'aide de supports pivotants BT-2SB10

Fig. 7.9: Montage à l'aide de supports pivotants BT-2SB10

65

L'utilisation de supports pivotants BT-2SB10 est recommandée dans les cas de hauteur du champ de protection plus grandes (> 900 mm) (voir chapitre 16 "Informations concernant la commande et accessoires"). Ceux-ci sont également disponibles en version amortissant les vibrations pour l'emploi sous des contraintes mécaniques accrues (BT-2SB10-S). En fonction de la situation d'installation, des conditions ambiantes et de la longueur du champ de protection (> 1200 mm), d'autres supports peuvent également être nécessaires.

7.2.6 Fixation unilatérale sur la table de machine

Le capteur de sécurité peut être monté directement sur la table de machine grâce à une vis M5 dans le trou borgne du capuchon d'embout. À l'autre extrémité, il est possible d'utiliser par exemple un support tournant BT-2HF, de manière à permettre des rotations pour l'ajustement malgré la fixation unilatérale. La résolution entière du capteur de sécurité est ainsi conservée à tous les emplacements du champ de protection jusqu'en bas sur la table de machine.

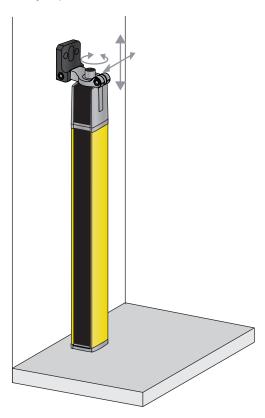


Fig. 7.10: Fixation directe sur la table de machine

AVERTISSEMENT

Perturbation de la fonction de protection en cas de réflexion sur la table de machine !

- ♥ Veillez à bien empêcher toute réflexion sur la table de machine.
- Après le montage et ensuite de manière quotidienne, contrôlez la capacité de détection du capteur de sécurité dans tout le champ de protection à l'aide d'un témoin de contrôle (voir chapitre 10.3.1 "Liste de contrôle À effectuer régulièrement par l'opérateur").

8 Raccordement électrique

AVERTISSEMENT

Un raccordement électrique défectueux ou une mauvaise sélection des fonctions risque de causer de graves accidents !

- Le raccordement électrique ne doit être réalisé que par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- ♥ Assurez-vous que le capteur de sécurité est bien protégé contre la surintensité de courant.
- Pour la sécurisation d'accès, activez le blocage démarrage/redémarrage et assurez-vous qu'il est impossible de le déverrouiller depuis la zone dangereuse.
- Sélectionnez les fonctions de manière à permettre une utilisation conforme du capteur de sécurité (voir chapitre 2.1 "Utilisation conforme et emplois inadéquats prévisibles").
- Sélectionnez les fonctions de sécurité pour le capteur de sécurité (voir chapitre 5 "Fonctions").
- Bouclez les deux sorties de commutation de sécurité OSSD1 et OSSD2 dans le circuit de fonctionnement de la machine.
- Use sorties de signalisation ne doivent pas être utilisées pour la commutation des signaux importants pour la sécurité.

AVIS

TBTS/TBTP!

Conformément à EN 60204-1, l'alimentation électrique externe doit être capable de compenser une panne de courant brève de 20 ms. Le bloc d'alimentation doit garantir une déconnexion sûre du réseau (TBTS/TBTP) et présenter une réserve de courant d'au moins 2 A.

AVIS

Pose des câbles!

- Posez tous les câbles de raccordement et les lignes de signaux à l'intérieur du logement d'installation électrique ou de façon permanente dans des caniveaux de câble.
- Posez les câbles de manière à ce qu'ils soient protégés contre tout endommagement extérieur.
- ♥ Pour plus d'informations, voir la norme EN ISO 13849-2, tableau D.4.

AVIS

Connexion de l'appareil!

♥ Pour le raccordement de l'appareil, utilisez des câbles blindés.

AVIS

RAZ!

La broche 1 du récepteur est une entrée/sortie temporisée. Il est donc impossible de coupler le signal de RAZ avec d'autres appareils. Cela peut entraîner un déclenchement automatique et erroné de la réinitialisation.

8.1 Brochage de l'émetteur et du récepteur

8.1.1 Émetteur MLC 500

Les émetteurs MLC 500 sont équipés d'un connecteur M12 à 5 pôles.

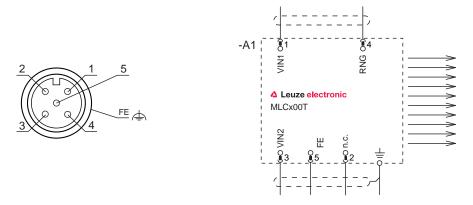


Fig. 8.1: Affectation des prises et schéma de raccordement de l'émetteur

Tab. 8.1: Brochage de l'émetteur

Broche	Couleur des brins (CB-M12-xx000E-5GF)	Émetteur
1	Brun	VIN1 - tension d'alimentation
2	Blanc	n.c.
3	Bleu	VIN2 - tension d'alimentation
4	Noir	RNG - portée
5	Gris	FE - terre de fonction, blindage
FE		FE - terre de fonction, blindage

La polarité de la tension d'alimentation détermine le canal de transmission de l'émetteur :

- VIN1 = +24 V, VIN2 = 0 V : canal de transmission C1
- VIN1 = 0 V, VIN2 = +24 V : canal de transmission C2

Le câblage de la broche 4 définit la puissance d'émission et ainsi la portée :

- Broche 4 = +24 V : portée standard
- Broche 4 = 0 V ou ouvert : portée réduite

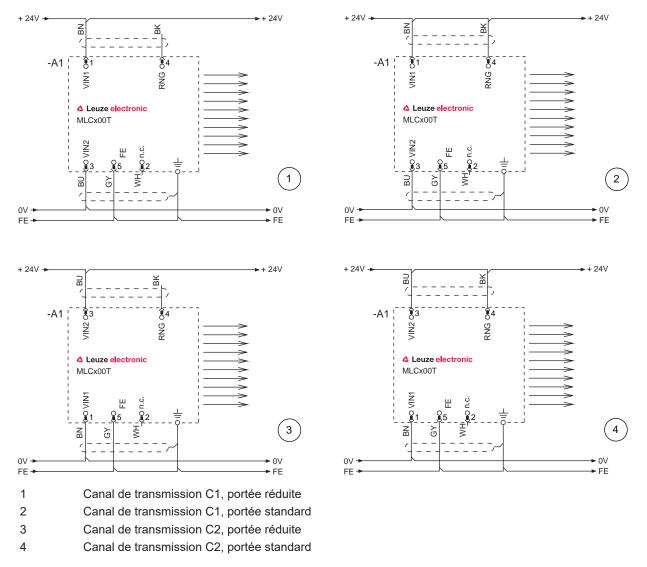


Fig. 8.2: Exemples de branchement de l'émetteur

8.1.2 Récepteur MLC 530 SPG

Les récepteurs MLC 530 SPG sont équipés d'un connecteur M12 à 8 pôles.

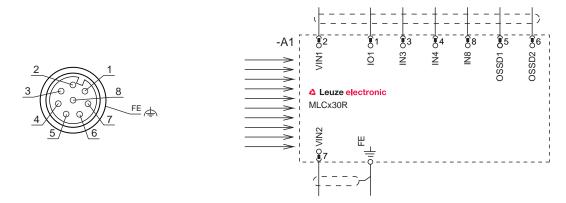


Fig. 8.3: Affectation des prises et schéma de raccordement du récepteur

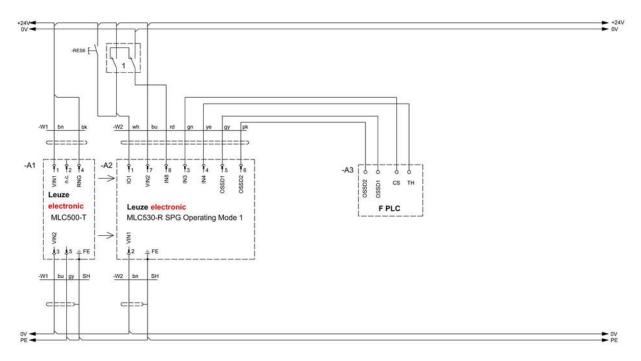
Tab. 8.2: Brochage du récepteur

Broche	Couleur des brins (CB-M12- xx000E-5GF)	Récepteur
1	Blanc	IO1 - entrée de commande de sélection des fonctions, entrée de commande de la touche de réinitialisation, sortie de signalisation
2	Brun	VIN1 - tension d'alimentation
3	Vert	IN3 - entrée de commande
4	Jaune	IN4 - entrée de commande
5	Gris	OSSD1 - sortie de commutation de sécurité
6	Rose	OSSD2 - sortie de commutation de sécurité
7	Bleu	VIN2 - tension d'alimentation
8	Rouge	IN8 - entrée de commande
FE		FE - terre de fonction, blindage

8.2 Mode de fonctionnement 1

SPG avec fonction d'arrêt qualifié (voir chapitre 4.4.1 "Mode de fonctionnement 1 - Arrêt qualifié")

Tab. 8.3: Brochage du mode de fonctionnement 1


Broche	Couleur	Dés. gén.	Câblage
1	Blanc	IO1/RES	Broche 8 (pont)
2	Brun	VIN1	0 V
3	Vert	IN3	CS
4	Jaune	IN4	TH
5	Gris	OSSD1	OSSD1
6	Rose	OSSD2	OSSD2
7	Bleu	VIN2	24 V
8	Rouge	IN8	Broche 1 (pont)
FE	-	FE	FE

AVIS

Programmez le blanking en ouvrant le pont entre la broche 1 et la broche 8 à l'aide d'un interrupteur à clé de programmation et en appliquant une tension de +24 V sur la broche 1 et de 0 V sur la broche 8.

1 Interrupteur à clé de programmation en option

Fig. 8.4: Mode de fonctionnement 1 : exemple de branchement avec Smart Process Gating (SPG)

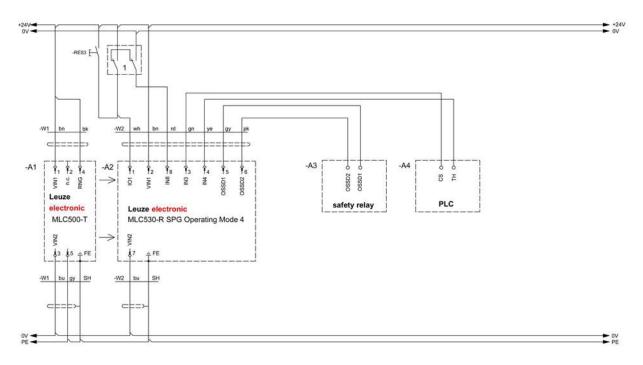
8.3 Mode de fonctionnement 4

voir chapitre 4.4.2 "Mode de fonctionnement 4 - standard avec temps de tolérance courts"

Tab. 8.4: Brochage du mode de fonctionnement 4

Broche	Couleur	Dés. gén.	Câblage
1	Blanc	IO1/RES	Broche 8 (pont)
2	Brun	VIN1	24 V
3	Vert	IN3	CS
4	Jaune	IN4	TH
5	Gris	OSSD1	OSSD1
6	Rose	OSSD2	OSSD2
7	Bleu	VIN2	0 V
8	Rouge	IN8	Broche 1 (pont)
FE	-	FE	FE

AVIS



Le dépassement de temps de 10 minutes peut être prolongé en option jusqu'à 100 heures au moyen d'un autre signal de commande (signal d'arrêt de temporisateur TH) provenant de la commande (voir chapitre 4.5.2 "Prolongation du time-out de Gating").

AVIS

Programmez le blanking en ouvrant le pont entre la broche 1 et la broche 4 à l'aide d'un interrupteur à clé de programmation et en appliquant une tension de +24 V sur la broche 1 et de 0 V sur la broche 4.

1 Interrupteur à clé de programmation en option

Fig. 8.5: Mode de fonctionnement 4 : exemple de câblage avec Smart Process Gating (SPG)

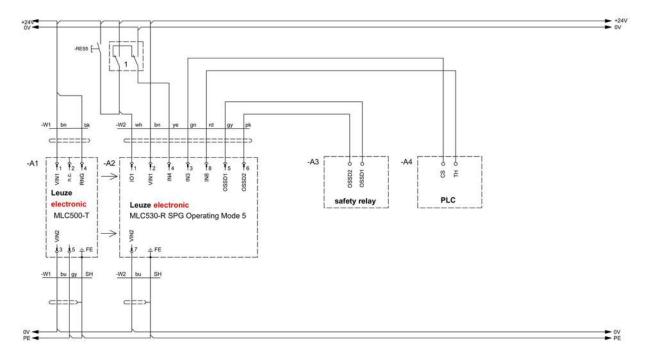
8.4 Mode de fonctionnement 5

voir chapitre 4.4.3 "Mode de fonctionnement 5 - Standard"

Tab. 8.5: Brochage du mode de fonctionnement 5

Broche	Couleur	Dés. gén.	Câblage
1	Blanc	IO1/RES	Broche 4 (pont)
2	Brun	VIN1	24 V
3	Vert	IN3	CS
4	Jaune	IN4	Broche 1 (pont)
5	Gris	OSSD1	OSSD1
6	Rose	OSSD2	OSSD2
7	Bleu	VIN2	0 V
8	Rouge	IN8	TH
FE	-	FE	FE

AVIS


Le dépassement de temps de 10 minutes peut être prolongé en option jusqu'à 100 heures au moyen d'un autre signal de commande (signal d'arrêt de temporisateur TH) provenant de la commande (voir chapitre 4.5.2 "Prolongation du time-out de Gating").

AVIS

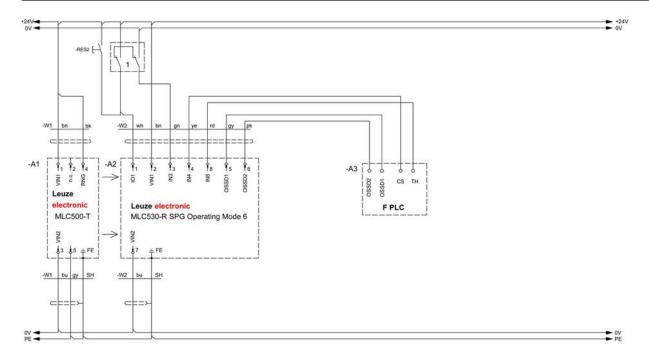
Programmez le blanking en ouvrant le pont entre la broche 1 et la broche 4 à l'aide d'un interrupteur à clé de programmation et en appliquant une tension de +24 V sur la broche 1 et de 0 V sur la broche 4.

1 Interrupteur à clé de programmation en option

Fig. 8.6: Mode de fonctionnement 5 : exemple de câblage avec Smart Process Gating (SPG)

8.5 Mode de fonctionnement 6

Gating partiel (voir chapitre 4.4.4 "Mode de fonctionnement 6 - Gating partiel")


Tab. 8.6: Brochage du mode de fonctionnement 6

Broche	Couleur	Dés. gén.	Câblage
1	Blanc	IO1	Broche 3 (pont)
2	Brun	VIN1	24 V
3	Vert	IN3	Broche 1 (pont)
4	Jaune	IN4	CS
5	Gris	OSSD1	OSSD1
6	Rose	OSSD2	OSSD2
7	Bleu	VIN2	0 V
8	Rouge	IN8	TH
FE	-	FE	FE

AVIS

Programmez le blanking en ouvrant le pont entre la broche 1 et la broche 3 à l'aide d'un interrupteur à clé de programmation et en appliquant une tension de +24 V sur la broche 1 et de 0 V sur la broche 3.

1 Interrupteur à clé de programmation en option

Fig. 8.7: Mode de fonctionnement 6 : exemple de câblage avec Smart Process Gating (SPG)

9 Mise en service

AVERTISSEMENT

Une utilisation non conforme du capteur de sécurité risque d'entraîner des blessures graves !

- Assurez-vous que toute l'installation et l'intégration du dispositif de protection optoélectronique ont été contrôlées par des personnes mandatées à cet effet et dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- Veillez à ce qu'un processus dangereux ne puisse être démarré que lorsque le capteur de sécurité est mis en route.

Conditions:

- Le capteur de sécurité est correctement monté (voir chapitre 7 "Montage") et raccordé (voir chapitre 8 "Raccordement électrique")
- · Le personnel opérateur a été instruit concernant l'utilisation correcte
- Le processus dangereux est désactivé, les sorties du capteur de sécurité sont déconnectées et l'installation ne peut pas se remettre en route
- Après la mise en service, vérifiez le fonctionnement du capteur de sécurité (voir chapitre 10.1 "Avant la mise en service et après modification").

9.1 Mise en route

Exigences relatives à la tension d'alimentation (bloc d'alimentation) :

- Une déconnexion sûre du réseau est garantie.
- Une réserve de courant d'au moins 2 A est disponible.
- La fonction RES est activée dans le capteur de sécurité ou dans la commande suivante.
- ☼ Mettez le capteur de sécurité en route.
- ⇒ Le capteur de sécurité effectue un autotest, puis affiche le temps de réaction du récepteur.

Contrôle de l'état prêt à l'emploi du capteur

- ♦ Vérifiez que la LED2 brille en jaune permanent (voir chapitre 3.3.2 "Témoins de fonctionnement sur le récepteur MLC 530 SPG").
- ⇒ Le capteur de sécurité est prêt au déverrouillage.

9.2 Alignement du capteur

AVIS

Un alignement incorrect ou insuffisant entraîne un dysfonctionnement!

- U'alignement lors de la mise en service ne doit être réalisé que par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- \$\text{\psi} Respectez les fiches techniques et les instructions de montage des différents composants.

Préalignement

Fixez l'émetteur et le récepteur en position verticale ou horizontale et à la même hauteur, de manière à satisfaire aux conditions suivantes :

- · Les vitres avant sont orientées l'une vers l'autre.
- Les connexions de l'émetteur et du récepteur sont orientées dans la même direction.
- L'émetteur et le récepteur sont disposés parallèlement, c.-à-d. qu'une distance identique sépare le début et la fin des appareils.

L'alignement peut être réalisé lorsque le champ de protection est libre, en observant les témoins lumineux et l'affichage à 7 segments (voir chapitre 3.3 "Éléments d'affichage").

♥ Desserrez les vis des supports ou des montants.

AVIS

Desserrez les vis seulement jusqu'à ce que les appareils puissent tout juste être déplacés.

- ♥ Faites pivoter l'émetteur et le récepteur l'un vers l'autre de manière à ce que la LED2 du récepteur soit encore jaune ou qu'elle ne s'éteigne pas (voir chapitre 3.3.2 "Témoins de fonctionnement sur le récepteur MLC 530 SPG").
 - ⇒ Le récepteur avec affichage d'alignement activé présente des segments clignotants dans l'affichage à 7 segments.
- Serrez les vis de fixation sur les supports et les montants.

AVIS

Des aides à l'alignement séparées comme AC-ALM sont également disponibles comme accessoires.

9.3 Touche d'acquittement

AVIS

RAZ!

La broche 1 du récepteur est une entrée/sortie temporisée. Il est donc impossible de coupler le signal de RAZ avec d'autres appareils. Cela peut entraîner un déclenchement automatique et erroné de la réinitialisation.

9.3.1 Déverrouiller le blocage démarrage/redémarrage

La touche d'acquittement permet de déverrouiller le blocage démarrage/redémarrage ou de déclencher un redémarrage du Gating ou une neutralisation. Après des interruptions de processus (par déclenchement de la fonction de protection, coupure de l'alimentation en tension, erreur de Gating), la personne responsable peut ainsi rétablir l'état ACTIF du capteur de sécurité (voir chapitre 4.5.4 "Redémarrage du Gating", voir chapitre 4.5.5 "Neutralisation").

AVERTISSEMENT

Le déverrouillage prématuré du blocage démarrage/redémarrage risque d'entraîner des blessures graves !

Quand le blocage démarrage/redémarrage est déverrouillé, l'installation peut démarrer automatiquement.

Avant de déverrouiller le blocage démarrage/redémarrage, assurez-vous que personne ne se trouve dans la zone dangereuse.

La LED rouge du récepteur est allumée tant que le redémarrage est bloqué (OSSD inactives). La LED jaune est allumée si RES est activé et que le champ de protection est libre (prêt au déverrouillage).

- ♥ Veillez à ce que le champ de protection actif soit bien libre.
- Assurez-vous que personne ne se trouve dans la zone dangereuse.
- Appuyez sur la touche de réinitialisation et relâchez-la au bout de 0,15 à 4 s. Le récepteur passe à l'état ACTIF.

Si vous maintenez la touche de réinitialisation enfoncée pendant plus de 4 s :

- À partir de 4 s : la demande de réinitialisation est ignorée.
- À partir de 30 s : un court-circuit par rapport à +24 V sur l'entrée de réinitialisation est supposé et le récepteur passe à l'état de verrouillage (voir chapitre 12.1 "Que faire en cas d'erreur ?").

AVIS

Une unité d'acquittement est à prévoir pour chaque récepteur MLC 530.

9.3.2 Redémarrage du Gating et neutralisation

En cas d'erreur de la séquence de Gating (p. ex. dépassement de temps, coupure de la tension d'alimentation, erreur de séquence, etc.), il est possible de déclencher manuellement la fonction de Gating et de démarrer l'installation même en cas d'interruption d'axes lumineux du capteur de sécurité. Cela permet de dégager des objets gênants, à condition qu'un signal de commutation CS soit présent. Dans les modes de fonctionnement MF1 et MF6, le signal d'arrêt de temporisateur TH doit par ailleurs être ambivalent par rapport au signal de commutation CS.

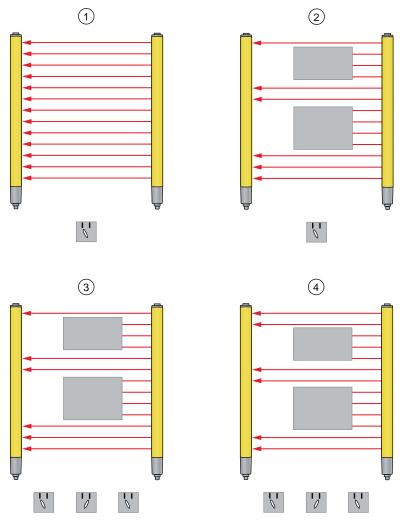
AVERTISSEMENT

Le déverrouillage prématuré du blocage démarrage/redémarrage risque d'entraîner des blessures graves !

Quand le blocage démarrage/redémarrage est déverrouillé, l'installation peut démarrer automatiquement.

- Avant de déverrouiller le blocage démarrage/redémarrage, assurez-vous que la cause du verrouillage (p. ex. une erreur de séquence) est éliminée.
- Avant de déverrouiller le blocage démarrage/redémarrage, assurez-vous que personne ne se trouve dans la zone dangereuse.

En fonction de l'occupation ou non des faisceaux de synchronisation, il convient de réaliser un redémarrage du Gating (voir chapitre 4.5.4 "Redémarrage du Gating") ou une neutralisation (voir chapitre 4.5.5 "Neutralisation").



9.4 Programmation de zones de blanking fixe

Pendant la programmation, les objets pour le blanking fixe ne doivent pas changer de position. L'objet doit présenter une taille minimale correspondant à la résolution physique de l'EPE. La programmation est effectuée selon les étapes suivantes :

- · Lancement en actionnant et relâchant l'interrupteur à clé de programmation
- · Acceptation en actionnant et relâchant l'interrupteur à clé de programmation après 60 s max.

Une nouvelle programmation efface l'état programmé au préalable. Il est possible de désélectionner la fonction Blanking fixe en programmant un champ de protection libre.

- 1 Situation de départ
- 2 Placement d'objets dans le champ de protection
- 3 Démarrer et terminer l'apprentissage Appuyer et relâcher deux fois l'interrupteur à clé
- 4 Fonctionnement les objets peuvent se déplacer d'un rayon par rapport à la position programmée

Fig. 9.1: Programmation de zones de blanking fixe

10 Contrôle

AVIS

- Les capteurs de sécurité doivent être remplacés au bout de leur durée d'utilisation (voir chapitre 15 "Caractéristiques techniques").
- ♥ Remplacez toujours les capteurs de sécurité complets.
- ♥ Observez le cas échéant les prescriptions nationales applicables relatives aux contrôles.
- Documentez tous les contrôles de façon à en permettre la traçabilité et joignez à ces documents la configuration du capteur de sécurité avec les données sur les distances minimales et de sécurité.

10.1 Avant la mise en service et après modification

AVERTISSEMENT

Un comportement imprévisible de la machine lors de la mise en service risque d'entraîner des blessures graves !

♦ Assurez-vous que personne ne se trouve dans la zone dangereuse.

- ☼ Faites instruire l'opérateur avant le début de l'activité. L'instruction fait partie des responsabilités de l'exploitant de la machine.
- Placez à des emplacements bien visibles de la machine, des consignes concernant le contrôle quotidien dans la langue de l'opérateur, par exemple une version imprimée du chapitre correspondant (voir chapitre 10.3 "À effectuer régulièrement par l'opérateur").
- \$\text{Contrôlez le bon fonctionnement et l'installation électriques conformément à ce document.}

Conformément à CEI 62046 et aux prescriptions nationales (p. ex. directive européenne 2009/104/CE), des contrôles doivent être effectués par une personne qualifiée (voir chapitre 2.2 "Qualifications nécessaires") dans les situations suivantes :

- · Avant la mise en service
- · Après des modifications de la machine
- · Après un arrêt prolongé de la machine
- Après un rééquipement ou une reconfiguration de la machine
- ☼ Lors de la préparation, contrôlez les principaux critères adaptés au capteur de sécurité conformément à la liste de contrôle suivante (voir chapitre 10.1.1 "Liste de contrôle pour l'intégrateur – Avant la mise en service et après des modifications"). Le traitement de la liste de contrôle ne remplace pas le contrôle par des personnes qualifiées (voir chapitre 2.2 "Qualifications nécessaires")!
- ⇒ Le capteur de sécurité ne peut être intégré au circuit de commande de l'installation qu'une fois son fonctionnement correct constaté.

10.1.1 Liste de contrôle pour l'intégrateur - Avant la mise en service et après des modifications

AVIS

Le traitement de la liste de contrôle ne remplace pas le contrôle par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires")!

- Si vous répondez par **non** à l'une des questions de contrôle ci-après, il convient de ne plus faire fonctionner la machine.
- La norme CEI 62046 contient des recommandations complémentaires pour le contrôle de dispositifs de protection.

Tab. 10.1: Liste de contrôle pour l'intégrateur – Avant la première mise en service et après des modifications

		1	
Question de contrôle :	oui	non	non ap- plicable
Le capteur de sécurité est-il exploité dans les conditions ambiantes spécifiques (voir chapitre 15 "Caractéristiques techniques") ?			
Le capteur de sécurité est-il correctement aligné, toutes les vis de fixation et connecteurs sont-ils bien fixés ?			
Le capteur de sécurité, les câbles de raccordement, les connecteurs, les capuchons et les appareils de commande sont-ils intacts et sans aucun signe de manipulation ?			
Le capteur de sécurité satisfait-il au niveau de sécurité requis (PL, SIL, catégorie) ?			
Les deux sorties de commutation de sécurité (OSSD) sont-elles reliées à la commande machine suivante conformément à la catégorie de sécurité requise ?			
Les organes de commutation commandés par le capteur de sécurité sont-ils contrôlés conformément au niveau de sécurité requis (PL, SIL, catégorie) (p. ex. contacteur par EDM) ?			
Tous les postes dangereux autour du capteur de sécurité sont-ils accessibles uniquement en passant par le champ de protection du capteur de sécurité ?			
Les dispositifs de protection supplémentaires nécessaires à proximité (p. ex. grille de protection) sont-ils montés correctement et protégés contre la manipulation ?			
Si un passage non détecté entre capteur de sécurité et poste dange- reux est possible : un blocage démarrage/redémarrage affecté est-il fonctionnel ?			
L'appareil de commande pour le déverrouillage du blocage démarrage/ redémarrage est-il placé de manière à être inaccessible depuis la zone dangereuse et à permettre une vue d'ensemble de toute la zone dan- gereuse depuis le lieu de l'installation ?			
Le temps d'arrêt maximal de la machine a-t-il été mesuré et documenté ?			
La distance de sécurité requise est-elle respectée ?			
L'interruption à l'aide d'un objet de test prévu à cet effet entraîne-t-elle l'arrêt du ou des mouvement(s) dangereux ?			
Dans le cas de champs de protection de résolutions différentes :			
Les zones de différentes résolutions ont-elles été chacune testées avec un objet de test adapté ?			
Le capteur de sécurité reste-t-il efficace tant que le ou les mouve- ment(s) dangereux ne sont pas arrêtés ?			
Le capteur de sécurité est-il efficace dans tous les modes de fonction- nement importants de la machine ?			
Le démarrage de mouvements dangereux est-il évité de façon sûre si un faisceau lumineux actif ou le champ de protection est interrompu à l'aide d'un objet de test prévu à cet effet ?			
La capacité de détection du capteur (voir chapitre 10.3.1 "Liste de contrôle – À effectuer régulièrement par l'opérateur") a-t-elle été contrôlée, est-elle correcte ?			
Les distances à des surfaces réfléchissantes ont-elles été prises en compte lors de la configuration, toute réflexion est-elle exclue ?			

Question de contrôle :	oui	non	non applicable
Les consignes relatives au contrôle régulier du capteur de sécurité sont-elles compréhensibles et bien visibles pour l'opérateur ?			
La manipulation simple des fonctions de sécurité (p. ex. : blanking, commutation de champ de protection) est-elle exclue ?			
Les réglages pouvant mener à un état insécurisé sont-ils possibles uniquement avec une clé, un mot de passe ou un outil ?			
Y a-t-il des signes laissant prévoir une incitation à la manipulation ?			
Les opérateurs ont-ils été instruits avant le début de l'activité ?			
En mode SPG, il n'est pas possible de traverser ni de se déplacer sur ni à côté de la marchandise transportée ou du système de transport.			
Le signal de commutation CS n'est pas appliqué à plus de 200 mm devant le champ de protection ?			
Le signal de commutation CS n'est plus appliqué à plus de 200 mm après la libération du champ de protection ?			
Les faisceaux le plus haut et le plus bas ne sont pas interrompus en permanence ?			
Le signal de commutation CS et, le cas échéant, le signal d'arrêt de temporisateur TH sont générés par la commande à partir de la séquence automatique ?			
Les signaux ne sont en aucun cas dérivés des capteurs directement, c'est-à-dire sans autre traitement ou combinaison avec d'autres signaux ou états ?			
Le signal de commutation CS n'est pas facilement manipulable ?			
Le clapet pendulaire empêche-t-il l'accès (voir chapitre 4.4.4 "MF6") ?			

10.2 À effectuer par des personnes qualifiées à intervalles réguliers

Des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires") doivent contrôler régulièrement l'interaction sûre entre le capteur de sécurité et la machine afin de détecter toute modification éventuelle de la machine ou toute manipulation non autorisée du capteur de sécurité.

Conformément à CEI 62046 et aux prescriptions nationales (p. ex. directive européenne 2009/104/CE), des contrôles des éléments sujets à l'usure doivent être effectués à intervalles réguliers par des personnes dotées des qualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires"). Les intervalles de contrôle sont définis le cas échéant par les prescriptions nationales applicables (recommandation selon CEI 62046 : tous les 6 mois).

- Usualifications nécessaires (voir chapitre 2.2 "Qualifications nécessaires").
- 🕏 Respectez les prescriptions nationales applicables et les délais qu'elles indiquent.
- Pour vous préparer, tenez compte de la liste de contrôle (voir chapitre 10.1 "Avant la mise en service et après modification").

10.3 À effectuer régulièrement par l'opérateur

Afin de découvrir les éventuels endommagements ou manipulations non autorisées, selon les risques, le fonctionnement du capteur de sécurité doit être contrôlé conformément à la liste de contrôle ci-après.

Le cycle de contrôle (par exemple tous les jours ou lors du changement de poste) doit être défini par l'intégrateur ou l'exploitant selon l'évaluation des risques ou bien il est imposé par des dispositions nationales ou prises par les caisses mutuelles professionnelles d'assurance contre les accidents, le cas échéant en fonction du type de machine.

En raison de la complexité des machines et des processus, il peut s'avérer judicieux de contrôler certains points à des intervalles plus longs. Veuillez donc également tenir compte de la répartition « Contrôlez au moins » / « Contrôlez selon les possibilités ».

AVIS

En cas de grandes distances entre émetteur et récepteur ou en cas d'utilisation de miroirs de renvoi, vous aurez éventuellement besoin de l'aide d'une deuxième personne.

AVERTISSEMENT

Un comportement imprévisible de la machine lors du contrôle risque d'entraîner des blessures graves !

- Assurez-vous que personne ne se trouve dans la zone dangereuse.
- Faites instruire l'opérateur avant le début de l'activité et mettez à sa disposition des objets de test et des instructions de contrôle adaptés.

10.3.1 Liste de contrôle - À effectuer régulièrement par l'opérateur

AVIS

Si vous répondez par **non** à l'une des questions de contrôle ci-après, il convient de ne plus faire fonctionner la machine.

Contrôle régulier du fonctionnement sur la base de l'évaluation des risques

Tab. 10.2: Liste de contrôle – Contrôle par des opérateurs/personnes instruits

Contrôlez au moins :	oui	non
Les capteurs de sécurité et connecteurs sont-ils bien montés et fixes, sont-ils manifestement exempts de signes d'endommagement, de modification ou de manipulation ?		
Les voies d'accès et d'entrée n'ont-elles manifestement fait l'objet d'aucune modification ?		
Contrôlez l'efficacité du capteur de sécurité :		
 La LED 1 sur le capteur de sécurité doit briller en vert (voir chapitre 3.3.2 "Témoins de fonctionnement sur le récepteur MLC 530 SPG"). 		
 Interrompez le faisceau actif ou le champ de protection (conformément à la figure) à l'aide d'un objet de test opaque adapté : 		
Contrôle du fonctionnement du chemp de protection à l'aide du témain de contrôle (uni		
Contrôle du fonctionnement du champ de protection à l'aide du témoin de contrôle (uniquement pour les barrières immatérielles de sécurité de résolution comprise entre 14 40 mm).		
Pour les barrières immatérielles avec différentes plages de résolution, ce contrôle doit être effectué séparément pour chaque plage de résolution.		
 La LED2 (champ de protection dégagé) sur le récepteur est-elle jaune en continu quand le champ de protection est interrompu ? 		

Contrôlez selon les possibilités pendant le fonctionnement :	oui	non
Dispositif de protection avec fonction d'approche : le fonctionnement de la machine étant initié, le champ de protection est interrompu par un objet de test – les pièces de la machine qui vont manifestement être dangereuses sont-elles stoppées sans délai notoire ?		
Dispositif de protection avec détection de présence : le champ de protection est interrom- pu par un objet de test – le fonctionnement de pièces de la machine qui vont manifeste- ment être dangereuses est-il empêché ?		

11 Entretien

AVIS

Dysfonctionnement en cas d'encrassement de l'émetteur et du récepteur !

La surface de la vitre avant aux emplacements d'entrée et de sortie du faisceau de l'émetteur, du récepteur et, le cas échéant, du miroir de renvoi, ne doit présenter aucune rayure ni rugosité.

⋄ N'utilisez pas de produit nettoyant chimique.

Conditions pour le nettoyage :

- L'installation est arrêtée en toute sécurité et ne peut pas se remettre en route.
- 🔖 Selon l'encrassement, nettoyez régulièrement le capteur de sécurité.

AVIS

Évitez les charges électrostatiques sur les vitres avant !

Pour nettoyer les vitres avant de l'émetteur et du récepteur, utilisez exclusivement des chiffons humides.

12 Résolution des erreurs

12.1 Que faire en cas d'erreur?

Après la mise en route du capteur de sécurité, les éléments d'affichage (voir chapitre 3.3 "Éléments d'affichage") facilitent le contrôle du fonctionnement correct et la recherche d'erreurs.

En cas d'erreur, les témoins lumineux vous permettent de reconnaître l'erreur et l'affichage à 7 segments vous présente un message. Grâce à ce message, vous pouvez déterminer la cause de l'erreur et prendre les mesures nécessaires à sa résolution.

AVIS

Lorsque le capteur de sécurité émet un message d'erreur, vous avez souvent la possibilité de résoudre le problème vous-même.

- ♥ Coupez la machine et laissez-la arrêtée.
- ♦ Analysez la cause de l'erreur à l'aide des tableaux ci-après et éliminez l'erreur.
- Si vous n'arrivez pas à éliminer l'erreur, contactez la filiale de Leuze electronic compétente ou le service clientèle de Leuze electronic (voir chapitre 14 "Service et assistance").

12.2 Affichage des témoins lumineux

Tab. 12.1: LED de signalisation de l'émetteur - causes et mesures

LED	État	Cause	Mesure
LED1	Éteinte	Émetteur sans tension d'ali- mentation	Contrôlez le bloc d'alimentation et le rac- cordement électrique. Le cas échéant, remplacez le bloc d'alimentation.
	Rouge	Appareil en panne	Remplacez l'appareil.

Tab. 12.2: LED de signalisation du récepteur - causes et mesures

LED	État	Cause	Mesure
LED1	Éteinte	Appareil en panne	Remplacez l'appareil.
	Rouge (affichage à 7 seg- ments à l'initialisa- tion : C1 ou C2 selon le nombre de LED vertes sur l'émetteur)	Alignement incorrect ou champ de protection interrompu	Retirez tous les objets du champ de pro- tection. Alignez l'émetteur et le récepteur entre eux ou positionnez des objets mas- qués correctement selon leurs taille et po- sition.
	Rouge (affichage à 7 seg- ments à l'initialisa- tion : C1. LED sur l'émetteur : vertes toutes les deux)	Récepteur réglé sur C1 et émetteur sur C2	Réglez l'émetteur et le récepteur sur le même canal de transmission et alignez-les correctement.
	Rouge (affichage à 7 segments à l'initialisation : C2. LED1 sur l'émetteur : verte)	Récepteur réglé sur C2 et émetteur sur C1	Réglez l'émetteur et le récepteur sur le même canal de transmission et alignez-les correctement.
	Rouge, clignotant lentement, env. 1 Hz (affichage à 7 seg- ments E x y)	Erreur externe	Contrôlez le raccordement des câbles et les signaux de commande.
	Rouge, clignotant rapidement, env. 10 Hz (affichage à 7 segments F x y)	Erreur interne	En cas d'échec du redémarrage, rempla- cez l'appareil.
LED2	Jaune, OSSD inactive	Blocage démarrage/redé- marrage verrouillé et champ de protection libre - prêt au déverrouillage	Si personne ne se trouve dans la zone dangereuse, appuyez sur la touche de réinitialisation.
LED3	Bleue, clignotant ra- pidement	Erreur de programmation ou violation de condition de SPG	Reprogrammez les zones de blanking ou vérifiez les conditions de SPG.
	Bleue, éclairs	Programmation de blanking encore activée	Actionnez à nouveau le bouton de programmation.

12.3 Messages d'erreur de l'affichage à 7 segments

Tab. 12.3: Messages de l'afficheur 7-segments (F : erreur interne de l'appareil, E : erreur externe, U : information d'usage pour les erreurs d'application)

Erreur	Cause/description	Mesures	Comportement du capteur
F[n° 0-255]	Erreur interne	En cas d'échec au redémarrage, contactez le service clientèle.	
OFF	Très forte surtension (± 40 V)	Alimentez l'appareil avec une tension correcte.	
Clignotant	Signal faible	Contrôlez l'alignement ou nettoyez les vitres avant.	
E01	Court-circuit transversal entre OSSD1 et OSSD2	Contrôlez le câblage entre OSSD1 et OSSD2.	L'OSSD se désactive
E02	Surcharge sur OSSD1	Contrôlez le câblage ou remplacez les composants raccordés (réduire la charge).	L'OSSD se désactive
E03	Surcharge sur OSSD2	Contrôlez le câblage ou remplacez les composants raccordés (réduire la charge).	L'OSSD se désactive
E04	Court-circuit de haute impé- dance vers VCC sur OSSD1	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désac- tive
E05	Court-circuit de haute impé- dance vers VCC sur OSSD2	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désac- tive
E06	Court-circuit par rapport à GND sur OSSD1	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désactive
E07	Court-circuit par rapport à +24 V sur OSSD1	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désactive
E08	Court-circuit par rapport à GND sur OSSD2	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désactive
E09	Court-circuit par rapport à +24 V sur OSSD2	Contrôlez le câblage. Le cas échéant, remplacez le câble.	L'OSSD se désactive
E10, E11	Erreur d'OSSD, cause incon- nue	Contrôlez le câblage. Remplacez le câble et, le cas échéant, le récepteur.	L'OSSD se désactive
E14	Sous-tension (< +15 V)	Alimentez l'appareil avec une tension correcte.	L'OSSD se désactive
E15	Surtension (> +32 V)	Alimentez l'appareil avec une tension correcte.	L'OSSD se désactive
E16	Surtension (> +40 V)	Alimentez l'appareil avec une tension correcte.	Verrouillage
E18	Température ambiante trop élevée	Veillez à des conditions ambiantes adéquates	L'OSSD se désactive
E19	Température ambiante trop basse	Veillez à des conditions ambiantes adéquates	L'OSSD se désactive
E22	Incident détecté sur le connecteur, broche 3. Émission de signal : signal de sortie différent de la valeur de relecture d'entrée signal : commutation simultanée avec autre ligne signaux.	Contrôlez le câblage.	L'OSSD se désactive

Erreur	Cause/description	Mesures	Comportement du capteur
E23	Incident détecté sur le connecteur, broche 4. Émission de signal : signal de sortie différent de la valeur de relecture d'entrée signal : commutation simultanée avec autre ligne signaux.	Contrôlez le câblage.	L'OSSD se désactive
E24	Incident détecté sur le connecteur, broche 8. Émission de signal : signal de sortie différent de la valeur de relecture d'entrée signal : commutation simultanée avec autre ligne signaux.	Contrôlez le câblage.	L'OSSD se désactive
E39	Dépassement de la durée d'actionnement (2,5 min) pour la touche de réinitialisation ou court-circuit du câble	Appuyez sur la touche de réinitiali- sation. En cas d'échec au redé- marrage, contrôlez le câblage de la touche de réinitialisation.	L'OSSD se désactive
E41	Changement de mode de fonctionnement non valable par inversion de la polarité de la tension d'alimentation en fonctionnement	Contrôlez le câblage et la pro- grammation de l'appareil qui com- mande ce signal.	Verrouillage
E60	Erreur de paramétrage de faisceau	Répétez l'apprentissage.	L'OSSD se désactive
E61	Temps de réaction dépassé	Redémarrage. En cas de répétition, remplacer l'appareil.	L'OSSD se désactive
E62	Les zones de blanking se chevauchent (erreur d'apprentissage)	Répétez l'apprentissage.	L'OSSD se désactive
E64	Après l'initiation de la séquence de Gating, le champ de protection a été interrompu trop tard (plus de 2 secondes ou 4 secondes)	Appuyer sur la touche RES	L'OSSD se désactive.
E65	Expiration du temps imparti d'1 heure en mode P (aucune interruption du champ de pro- tection après application du si- gnal CS), CS encore high après expiration	Appuyer sur la touche RES	L'OSSD se désactive.
E66	Disparition du signal CS avant la libération du champ de protection lors de la neutralisation	Vérifier la séquence des signaux CS	L'OSSD se désactive.
E67	Disparition du signal TH avant la libération du champ de pro- tection lors de la neutralisation (MF1 ou MF6)	Vérifier la séquence des signaux TH	L'OSSD se désactive.

Erreur	Cause/description	Mesures	Comportement du capteur
E68	Dépassement du temps imparti de 120 secondes pour la neutralisation. Passage à l'état de verrouillage au bout de 150 secondes (> 150 s)	Vérifier le câblage ou l'unité d'acquittement	Désactivation de l'OSSD au bout de 120 secondes, ver- rouillage au bout de 150 secondes, mise hors tension nécessaire du ré- cepteur au bout d'env. 3 min.
E69	Violation de simultanéité de TH et CS (> 0,5 s) (MF1 ou MF6)	Vérifier la séquence des signaux CS/TH	L'OSSD se désactive.
E70	En cas de champ de protection interrompu, CS n'est plus actif ou les faisceaux de synchronisation ont été interrompus pendant plus d'1 minute	Vérifier la séquence des signaux CS et éliminer l'interruption des faisceaux de synchronisation	L'OSSD se désactive.
E71	Interruption du champ de pro- tection avant la réinitialisation de la séquence de Gating	Appuyer sur la touche RES	L'OSSD se désactive.
E72	Erreur de signal : violation d'ambivalence CS/TH lors de l'achèvement de séquence (MF1 ou MF6)	Vérifier la séquence des signaux CS/TH	L'OSSD se désactive.
E73	Erreur de signal : violation d'ambivalence CS/TH lors de l'arrêt qualifié (MF1 ou MF6)	Vérifier la séquence des signaux CS/TH	L'OSSD se désactive.
E74	Blocage au redémarrage ver- rouillé (OSSD inactive) avant démarrage de SPG (CS de- vient high)	Déverrouiller le blocage au redé- marrage	L'OSSD se désactive.
E75	CS appliqué plus de 20 s après la fin de la séquence de SPG	Vérifier la séquence des signaux CS	L'OSSD se désactive.
E76	CS terminé avant l'écoulement des 4 secondes (MF5)	Vérifier la séquence des signaux CS	L'OSSD se désactive.
E77	Aucune interruption du champ de protection après l'activation du signal CS et expiration du temps imparti (1 heure) après passage au mode de protec- tion et désactivation du signal CS	Vérifier la séquence des signaux CS	L'OSSD se désactive.
E78	Erreur de signal : violation d'ambivalence CS/TH lors de l'initiation/du redémarrage avec possibilité de prolonga- tion du time-out de Gating (MF1 ou MF6)	Vérifier la séquence des signaux CS	L'OSSD se désactive.
E79	Time-out de SPG dépassé	Utiliser le signal TH ou le time-out	L'OSSD se désactive.

Erreur	Cause/description	Mesures	Comportement du capteur
E80 E86	Mode de fonctionnement non valable suite à une erreur de réglage, changement général de mode de fonctionnement	P. ex. touche de réinitialisation actionnée lors de la mise en route. Contrôlez le schéma des connexions et le câblage, puis redémarrez.	Verrouillage
E87	Mode de fonctionnement modi- fié	Contrôlez le câblage. Redémarrez le capteur.	Verrouillage
E90	Erreur dans la cascade	En cas d'échec du redémarrage de l'appareil, contactez le service clientèle	Verrouillage
E92, E93	Erreur dans le canal de trans- mission enregistré	Commutez à nouveau le canal.	Réinitialisation automatique
U53	Le champ de protection n'a pas été interrompu dans les 4 secondes (2 secondes en MF4) suivant l'activation du si- gnal de commande CS (MLC en mode P)	Appuyer sur la touche RES et démarrer une nouvelle séquence	Mode de protection
U54	Expiration du temps imparti d'1 heure en mode P (aucune interruption du champ de protection après l'application du signal CS) et recommutation de CS sur low avant l'expiration de cette heure	Contrôlez le traitement ultérieur des signaux d'OSSD et la disposi- tion de l'installation.	L'OSSD se désactive.
U61	Pas d'achèvement ou achèvement incorrect de la programmation	Répétez l'apprentissage. Blanking fixe : interrompre les faisceaux de manière univoque ou les dégager.	L'OSSD reste inactive.
U62	Erreur de simultanéité des si- gnaux du bouton de program- mation (interrupteur à clé). Dif- férence temporelle > 4 s	Remplacez le bouton de programmation (interrupteur à clé).	L'OSSD reste inactive.
U63	Dépassement du time-out de programmation de 2,5 min	Respectez la suite chronologique correcte lors de la programmation.	L'OSSD reste inactive.
U69	Temps de réaction après la programmation du blanking flottant trop long (> 99 ms)	Utilisez un appareil disposant de moins de faisceaux.	L'OSSD reste inactive.
U71	Plausibilité des données d'ap- prentissage non donnée	Répétez l'apprentissage.	L'OSSD reste inactive.
U74	L'entrée de réinitialisation a commuté en même temps qu'une ligne de signaux (court- circuit transversal avec l'entrée RES).	Éliminez le court-circuit transversal entre les lignes des signaux et ac- tionnez à nouveau la touche de ré- initialisation.	L'OSSD reste inac- tive. Pas de réini- tialisation du blo- cage au redémar- rage.
U75	Données d'apprentissage inco- hérentes	Répétez l'apprentissage.	L'OSSD reste inactive.
U76	Erreur d'apprentissage	Répétez l'apprentissage. Vérifiez si la LED 1 de l'émetteur brille en vert.	L'OSSD reste inactive.
U80	Signal CS déjà actif au démarrage de l'appareil	Aucun acquittement, seulement affichage	L'OSSD reste inactive.

Erreur	Cause/description	Mesures	Comportement du capteur
U82	Signaux inattendus lors de l'appui sur la touche d'acquittement (un faisceau de synchronisation dégagé au moins): • MF1 ou MF6 : CS n'est pas actif ou TH est actif • MF4 ou MF5 : CS n'est pas actif	Aucun acquittement, seulement affichage Avant l'acquittement réussi, définir CS ou TH en fonction du mode de fonctionnement.	L'OSSD reste inactive.
U83	Signaux inattendus lors de l'appui sur la touche d'acquittement (aucun faisceau de synchronisation dégagé): • MF1 ou MF6 : CS n'est pas actif ou TH est actif • MF4 ou MF5 : CS n'est pas actif	Aucun acquittement, seulement affichage Avant l'acquittement réussi, définir CS ou TH en fonction du mode de fonctionnement.	L'OSSD reste inactive.
U84	Champ de protection libre trop longtemps	Vérifier la séquence des signaux CS, réduire l'espace dans la mar- chandise transportée	L'OSSD se désactive.
U85	Disparition du signal CS sans interruption du champ de protection	Vérifier la séquence des signaux CS	L'OSSD reste active.
U86	Dans le MF6, l'un des 4 fais- ceaux supérieurs a été inter- rompu	Éloigner l'objet du champ de pro- tection et redémarrer le récepteur	L'OSSD se désactive.

Élimination

13 Élimination

Lors de l'élimination, respectez les dispositions nationales en vigueur concernant les composants électroniques.

Service et assistance

14 Service et assistance

Numéro de téléphone de notre permanence 24h/24 : +49 7021 573-0

Hotline:

+49 7021 573-123

eMail:

service.protect@leuze.de

Adresse de retour pour les réparations : Centre de service clientèle Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen/Germany

15 Caractéristiques techniques

15.1 Caractéristiques générales

Tab. 15.1: Données du champ de protection

Résolution phy-	Portée [m]		Hauteur du champ de protection [mm]	
sique [mm]	min.	max.	min.	max.
14	0	6	150	3000
20	0	15	150	3000
30	0	10	150	3000
40	0	20	150	3000
90	0	20	450	3000

Tab. 15.2: Caractéristiques techniques de sécurité

Type selon CEI 61496	Type 4
SIL selon CEI 61508	SIL 3
SIL maximal selon EN CEI 62061	SIL 3
Niveau de performance (PL) selon EN ISO 13849-1:2015	PL e
Catégorie selon EN ISO 13849-1:2015	Cat. 4
Probabilité moyenne de défaillance dangereuse par heure (PFH _d)	7,73x10 ⁻⁹ 1/h
Durée d'utilisation (T _M)	20 ans

Tab. 15.3: Caractéristiques système générales

Connectique	M12, 5 pôles (émetteur)	
	M12, 8 pôles (récepteur)	
Tension d'alimentation U _v , émetteur et récepteur	+24 V, ± 20 %, compensation nécessaire en cas de chute de tension de 20 ms, 250 mA min. (+ charge OSSD)	
Ondulation résiduelle de la tension d'alimentation	± 5 % dans les limites d'U _v	
Consommation de l'émetteur	50 mA	
Consommation du récepteur	150 mA (sans charge)	
Valeur commune pour un fusible ext. dans le câble d'alimentation pour l'émetteur et le récepteur	2 A à action semi-retardée	
Synchronisation	Optique entre l'émetteur et le récepteur	
Classe de protection	III	
Indice de protection	IP 65	
Température ambiante, service	-30 55 °C	
Température ambiante, stockage	-30 70 °C	
Température ambiante, service MLCxxx/V	0 +55 °C	
Humidité relative de l'air (sans condensation)	0 95 %	
Résistance aux vibrations	Accélération de 50 m/s², 10 - 55 Hz selon CEI 60068-2-6 ; amplitude 0,35 mm	
Résistance aux chocs	Accélération de 100 m/s², 16 ms selon CEI 60068-2-6	

Coupe transversale du profil	29 mm x 35,4 mm	
Dimensions	voir chapitre 15.2 "Dimensions et poids"	
Poids	voir chapitre 15.2 "Dimensions et poids"	

Tab. 15.4: Données système de l'émetteur

Source lumineuse	LED ; groupe exempt de risque selon CEI 62471	
Longueur d'onde	940 nm	
Durée d'impulsion	800 ns	
Pause d'impulsion	1,9 µs (min.)	
Puissance moyenne	<50 μW	
Courant d'entrée broche 4 (portée)	Par rapport à +24 V : 10 mA	
	Par rapport à +0 V : 10 mA	

Tab. 15.5: Données système du récepteur, signaux de commande et d'état

Broche	Signal	Туре	Données électriques
1	RES/STATE	Entrée :	Par rapport à +24 V : 10 mA
		Sortie :	Par rapport à 0 V : 80 mA
		Temps de réaction :	100 ms
3, 4, 8	Selon le mode de fonc-	Entrée :	Par rapport à 0 V : 4 mA
	tionnement		Par rapport à +24 V : 4 mA

Tab. 15.6: Caractéristiques techniques des sorties de commutation électroniques de sécurité (OSSD) sur le récepteur

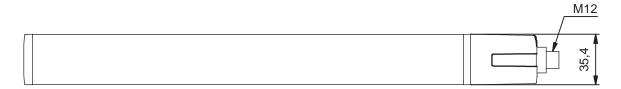
Sorties à transistor PNP relatives à la sécuri- té (courts-circuits surveillés, courts-circuits transversaux surveillés)	min.	typ.	max.
Tension de commutation état haut (U _v - 1,5V)	18 V	22,5 V	27 V
Tension de commutation, état bas		0 V	+2,5 V
Courant de commutation		300 mA	380 mA
Courant résiduel		<2 µA	200 μΑ
			En cas d'erreur (interruption de la ligne 0 V), les sorties se comportent comme une résistance de 120 kΩ après U _v . Un automate programmable de sécurité monté en aval ne doit pas détecter ici de 1 logique.
Capacité de charge			0,3 μF
Inductance de charge			2 H

Sorties à transistor PNP relatives à la sécuri- té (courts-circuits surveillés, courts-circuits transversaux surveillés)	min.	typ.	max.
Résistance de ligne admissible vers la charge			<200 Ω
			Veuillez tenir compte des autres restric- tions liées à la longueur de câble et au cou- rant sous charge.
Section de conducteur autorisée		0,25 mm ²	
Longueur de câble autorisée entre l'émetteur et la charge			100 m
Largeur d'impulsion test		60 µs	340 µs
Intervalle entre deux impulsions test	(5 ms)	60 ms	
Temps de réaction		100 ms	

AVIS

Les sorties à transistor relatives à la sécurité assurent la fonction de pare-étincelles. Avec les sorties à transistor, il n'est donc pas utile ni autorisé d'utiliser les pare-étincelles (circuits RC, varistances ou diodes de roue libre) recommandés par les fabricants de contacteurs ou de valves, car ils prolongent considérablement les temps de relâchement des organes de commutation inductifs.

Tab. 15.7: Brevets


Brevets américains	US 6,418,546 B
--------------------	----------------

15.2 Dimensions et poids

Les dimensions et le poids dépendent des éléments suivants :

- · Résolution
- · Longueur de la structure

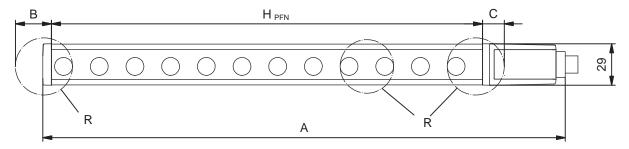


Fig. 15.1: Dimensions de l'émetteur et du récepteur

La hauteur effective du champ de protection H_{PFE} va au-delà des dimensions de la zone optique jusqu'aux arêtes extérieures des cercles signalés par la lettre « R ».

Calcul de la hauteur effective du champ de protection

$$H_{PFE} = H_{PFN} + B + C$$

H_{PFE}	mm	Hauteur effective du champ de protection
H_{PFN}	mm	Hauteur nominale du champ de protection, elle correspond à la longueur de la partie jaune du boîtier (voir tableaux ci-après)
Α	mm	Hauteur totale
В	mm	Dimension supplémentaire pour le calcul de la hauteur effective du champ de protection (voir tableaux ci-après)
С	mm	Valeur pour le calcul de la hauteur effective du champ de protection (voir tableau ci-après)

Tab. 15.8: Dimension supplémentaire pour le calcul de la hauteur effective du champ de protection

R = résolution	В	С
30 mm	19 mm	9 mm
40 mm	25 mm	15 mm
90 mm	50 mm	40 mm

Tab. 15.9: Dimensions (hauteurs nominales des champs de protection) et poids

Type d'appareil	Émetteur et récepteur			
	Dimensions [mm]		Poids [kg]	
Туре	H _{PFN} A			
MLC150	150	216	0,30	
MLC225	225	291	0,37	
MLC300	300	366	0,45	
MLC450	450	516	0,60	
MLC600	600	666	0,75	
MLC750	750	816	0,90	
MLC900	900	966	1,05	
MLC1050	1050	1116	1,20	
MLC1200	1200	1266	1,35	
MLC1350	1350	1416	1,50	
MLC1500	1500	1566	1,65	
MLC1650	1650	1716	1,80	
MLC1800	1800	1866	1,95	
MLC1950	1950	2016	2,10	
MLC2100	2100	2166	2,25	
MLC2250	2250	2316	2,40	
MLC2400	2400	2466	2,55	
MLC2550	2550	2616	2,70	
MLC2700	2700	2766	2,85	
MLC2850	2850	2916	3,00	
MLC3000	3000	3066	3,15	

Appareils avec différentes plages de résolution

Outre les modèles d'appareil, des variantes avec différentes plages de résolution sont également disponibles.

Une zone longue de 300 mm avec une résolution de 14 mm ou autre est ici intégrée au champ de protection.

Tab. 15.10: Dimensions et poids (variantes avec différentes plages de résolution	Tab. 15.10:	Dimensions et poids	(variantes avec différentes p	plages de résolutio
--	-------------	---------------------	-------------------------------	---------------------

Type d'appareil	Émetteur et récepteur		
	Dimensions [mm]		Poids [kg]
Туре	H _{PFN}	A	
MLC14300/301800	2100	2166	2,25
MLC14300/901800	2100	2166	2,25
MLC14300/902250	2550	2316	2,4

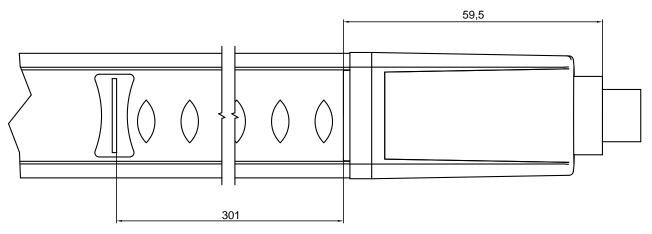


Fig. 15.2: Position des limites de la résolution, le changement de résolution a lieu à la position indiquée.

15.3 Encombrement des accessoires

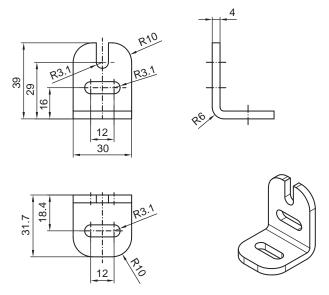


Fig. 15.3: Support équerre BT-L

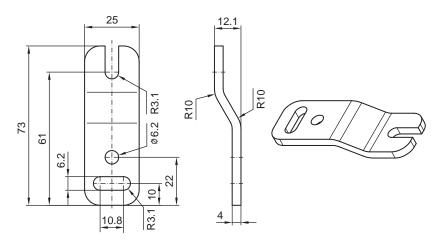


Fig. 15.4: Support parallèle BT-Z

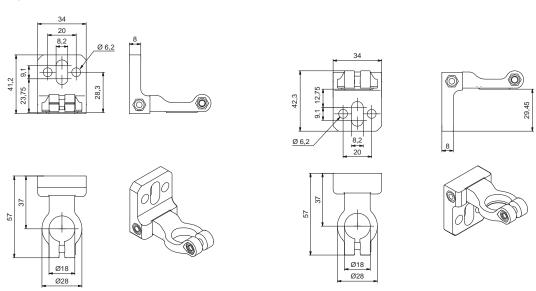


Fig. 15.5: Support tournant BT-2HF

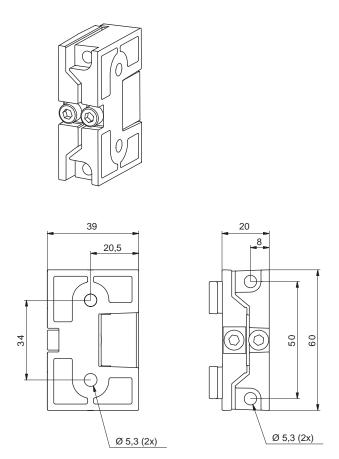


Fig. 15.6: Support pivotant BT-2SB10

16 Informations concernant la commande et accessoires

Nomenclature

Désignation d'article :

MLCxyy-za-hhhhei-ooo

Désignation d'article pour les appareils avec différentes plages de résolution

MLC5yyzahhh/ahhhh-ooo

Tab. 16.1: Code d'article

MLC	Capteur de sécurité		
x	Série : 3 pour MLC 300		
х	Série : 5 pour MLC 500		
уу	Classes fonctionnelles :		
	00 : émetteur		
	01 : émetteur (AIDA)		
	02 : émetteur avec entrée test		
	10 : récepteur Basic - redémarrage automatique		
	11 : récepteur Basic - redémarrage automatique (AIDA)		
	20 : récepteur Standard - EDM/RES sélectionnable		
	30 : récepteur Extended - blanking/inhibition		
z	Type d'appareil :		
	T : émetteur		
	R : récepteur		
а	Résolution :		
	14 : 14 mm		
	20 : 20 mm		
	30 : 30 mm		
	40 : 40 mm		
	90 : 90 mm		
hhhh	Hauteur du champ de protection :		
	150 3000 : de 150 mm à 3000 mm		
е	Host/Guest (en option) :		
	H: Host		
	MG : Middle Guest		
	G : Guest		
i	Interface (en option):		
	/A : AS-i		
000	Option:		
	EX2 : protection contre les explosions (zones 2 + 22)		
	/V : haute résistance aux vibrations		
	SPG : Smart Process Gating		

Tab. 16.2: Désignations d'articles, exemples

Exemples de désignation d'article	Propriétés
MLC500T14-600	Émetteur type 4, PL e, SIL 3, résolution 14 mm, hauteur du champ de protection 600 mm
MLC500T30-900	Émetteur type 4, PL e, SIL 3, résolution 30 mm, hauteur du champ de protection 900 mm
MLC530R90-1500-SPG	Récepteur Extended, Smart Process Gating, type 4, PL e, SIL 3, résolution 90 mm, hauteur du champ de protection 1500 mm
MLC530R14300/901800- SPG	Récepteur Extended, Smart Process Gating. Type 4, PL e, SIL 3, résolution 14 mm, hauteur du champ de protection 300 mm et résolution 90 mm, hauteur du champ de protection 1800 mm

Contenu de la livraison

- Émetteur avec 2 écrous coulissants, 1 notice
- Émetteur avec 2 écrous coulissants, 1 plaque indicatrice autocollante Consignes importantes et remarques pour les opérateurs de machines, 1 notice de branchement et de fonctionnement (fichier PDF sur CD-ROM)

Tab. 16.3: Numéros d'article des émetteurs MLC 500 en fonction de la résolution et de la hauteur du champ de protection

Hauteur du champ de	30 mm	40 mm	90 mm
protection hhhh [mm]	MLC500T30-hhhh	MLC500T40-hhhh	MLC500T90-hhhh
150	68000301	68000401	-
225	68000302	68000402	-
300	68000303	68000403	-
450	68000304	68000404	68000904
600	68000306	68000406	68000906
750	68000307	68000407	68000907
900	68000309	68000409	68000909
1050	68000310	68000410	68000910
1200	68000312	68000412	68000912
1350	68000313	68000413	68000913
1500	68000315	68000415	68000915
1650	68000316	68000416	68000916
1800	68000318	68000418	68000918
1950	68000319	68000419	68000919
2100	68000321	68000421	68000921
2250	68000322	68000422	68000922
2400	68000324	68000424	68000924
2550	68000325	68000425	68000925
2700	68000327	68000427	68000927
2850	68000328	68000428	68000928
3000	68000330	68000430	68000930

Tab. 16.4: Exemples de numéros d'articles d'émetteurs avec différentes plages de résolution

Numéro d'article	Désignation	Résolution 1	Résolution 2	Longueur du champ de protection 2
68096002	MLC500T14300/30 1800	14	30	1800
68096005	MLC500T14300/90 1800	14	90	1800
68096003	MLC500T14300/90 2250	14	90	2250

Tab. 16.5: Numéros d'article des récepteurs MLC 530 SPG en fonction de la résolution et de la hauteur du champ de protection

Hauteur du champ de	30 mm	40 mm	90 mm
protection hhhh [mm]	MLC530R30-hhhh-SPG	MLC530R40-hhhh-SPG	MLC530R90-hhhh-SPG
150	68009301	68009401	-
225	68009302	68009402	-
300	68009303	68009403	-
450	68009304	68009404	68009904
600	68009306	68009406	68009906
750	68009307	68009407	68009907
900	68009309	68009409	68009909
1050	68009310	68009410	68009910
1200	68009312	68009412	68009912
1350	68009313	68009413	68009913
1500	68009315	68009415	68009915
1650	68009316	68009416	68009916
1800	68009318	68009418	68009918
1950	68009319	68009419	68009919
2100	68009321	68009421	68009921
2250	68009322	68009422	68009922
2400	68009324	68009424	68009924
2550	68009325	68009425	68009925
2700	68009327	68009427	68009927
2850	68009328	68009428	68009928
3000	68009330	68009430	68009930

Tab. 16.6: Exemples de numéros d'articles de récepteurs avec différentes plages de résolution

Numéro d'article	Désignation	Résolution 1	Résolution 2	Longueur du champ de protec- tion 2
68096000	MLC530R14300/30 1800-SPG	14	30	1800
68096004	MLC530R14300/90 1800-SPG	14	90	1800
68096001	MLC530R14300/90 2250S-SPG	14	90	2250

Tab. 16.7: Accessoires

Art. n°	Article	Description			
Câbles de raccor	Câbles de raccordement pour émetteurs MLC 500, blindés				
50133860	KD S-M12-5A-P1-050	Câble de raccordement, 5 pôles, longueur 5 m			
50133861	KD S-M12-5A-P1-100	Câble de raccordement, 5 pôles, longueur 10 m			
50137013	KD S-M12-5A-P1-500	Câble de raccordement, 5 pôles, longueur 50 m			
Câbles de raccor	Câbles de raccordement pour récepteurs MLC 530 SPG, blindés				
50135128	KD S-M12-8A-P1-050	Câble de raccordement, 8 pôles, longueur 5 m			
50135129	KD S-M12-8A-P1-100	Câble de raccordement, 8 pôles, longueur 10 m			
50135130	KD S-M12-8A-P1-150	Câble de raccordement, 8 pôles, longueur 15 m			
50135131	KD S-M12-8A-P1-250	Câble de raccordement, 8 pôles, longueur 25 m			
50135132	KD S-M12-8A-P1-500	Câble de raccordement, 8 pôles, longueur 50 m			
Connecteurs confectionnables pour émetteurs MLC 500					
429175	CB-M12-5GF	Prise de câble, 5 pôles, boîtier métallique, blindage sur le boîtier			
Connecteurs confectionnables pour récepteurs MLC 530 SPG					
429178	CB-M12-8GF	Prise de câble, 8 pôles, boîtier métallique, blindage sur le boîtier			
Unités d'affichage et d'acquittement					
426296	AC-ABF70	Unité d'affichage et d'acquittement, 2x câble de raccordement M12			
Techniques de fix	xation				
429056	BT-2L	Équerre de fixation L, 2x			
429057	BT-2Z	Support en Z, 2x			
429393	BT-2HF	Support tournant 360°, 2x, 1 cylindre MLC inclus			
429394	BT-2HF-S	Support tournant 360°, amortissant les vibrations, 2x, 1 cylindre MLC inclus			
424422	BT-2SB10	Support pivotant pour montage en rainure, ± 8°, 2x			
424423	BT-2SB10-S	Support pivotant pour montage en rainure, ± 8°, amortissant les vibrations, 2x			
425740	BT-10NC60	Écrous coulissants avec filetage M6, 10x			
425741	BT-10NC64	Écrous coulissants avec filetages M6 et M4, 10x			
425742	BT-10NC65	Écrous coulissants avec filetages M6 et M5, 10x			

Art. n°	Article	Description			
Montants	Montants				
549855	UDC-900-S2	Montant, en U, hauteur de profil 900 mm			
549856	UDC-1000-S2	Montant, en U, hauteur de profil 1000 mm			
549852	UDC-1300-S2	Montant, en U, hauteur de profil 1300 mm			
549853	UDC-1600-S2	Montant, en U, hauteur de profil 1600 mm			
549854	UDC-1900-S2	Montant, en U, hauteur de profil 1900 mm			
549857	UDC-2500-S2	Montant, en U, hauteur de profil 2500 mm			
Colonnes à m	iroirs de renvoi				
549780	UMC-1000-S2	Colonne à miroir de renvoi continu 1000 mm			
549781	UMC-1300-S2	Colonne à miroir de renvoi continu 1300 mm			
549782	UMC-1600-S2	Colonne à miroir de renvoi continu 1600 mm			
549783	UMC-1900-S2	Colonne à miroir de renvoi continu 1900 mm			
Miroirs de renvoi					
529601	UM60-150	Miroir de renvoi, longueur du miroir 210 mm			
529603	UM60-300	Miroir de renvoi, longueur du miroir 360 mm			
529604	UM60-450	Miroir de renvoi, longueur du miroir 510 mm			
529606	UM60-600	Miroir de renvoi, longueur du miroir 660 mm			
529607	UM60-750	Miroir de renvoi, longueur du miroir 810 mm			
529609	UM60-900	Miroir de renvoi, longueur du miroir 960 mm			
529610	UM60-1050	Miroir de renvoi, longueur du miroir 1110 mm			
529612	UM60-1200	Miroir de renvoi, longueur du miroir 1260 mm			
529613	UM60-1350	Miroir de renvoi, longueur du miroir 1410 mm			
529615	UM60-1500	Miroir de renvoi, longueur du miroir 1560 mm			
529616	UM60-1650	Miroir de renvoi, longueur du miroir 1710 mm			
529618	UM60-1800	Miroir de renvoi, longueur du miroir 1860 mm			
430105	BT-2UM60	Support pour UM60, 2x			
Vitres de prot	ection				
347070	MLC-PS150	Vitre de protection, longueur 148 mm			
347071	MLC-PS225	Vitre de protection, longueur 223 mm			
347072	MLC-PS300	Vitre de protection, longueur 298 mm			
347073	MLC-PS450	Vitre de protection, longueur 448 mm			

Art. n°	Article	Description	
347074	MLC-PS600	Vitre de protection, longueur 598 mm	
347075	MLC-PS750	Vitre de protection, longueur 748 mm	
347076	MLC-PS900	Vitre de protection, longueur 898 mm	
347077	MLC-PS1050	Vitre de protection, longueur 1048 mm	
347078	MLC-PS1200	Vitre de protection, longueur 1198 mm	
347079	MLC-PS1350	Vitre de protection, longueur 1348 mm	
347080	MLC-PS1500	Vitre de protection, longueur 1498 mm	
347081	MLC-PS1650	Vitre de protection, longueur 1648 mm	
347082	MLC-PS1800	Vitre de protection, longueur 1798 mm	
429038	MLC-2PSF	Pièce de fixation pour vitre de protection MLC, 2x	
429039	MLC-3PSF	Pièce de fixation pour vitre de protection MLC, 3x	
Aides à l'alignement			
560020	LA-78U	Aide à l'alignement laser externe	
520004	LA-78UDC	Aide à l'alignement laser externe pour fixation dans montant	
520101	AC-ALM-M	Aide à l'alignement	
Témoins de contrôle			
349945	AC-TR14/30	Témoin de contrôle 14/30 mm	
349939	AC-TR20/40	Témoin de contrôle 20/40 mm	

17 Déclaration de conformité UE/CE

Leuze electronic

the sensor people

EU-/EG-KONFORMITÄTS-**ERKLÄRUNG**

EU/EC **DECLARATION OF** CONFORMITY

DECLARATION **UE/CE DE CONFORMITE**

Hersteller:

Manufacturer:

Constructeur:

seule

fabricant.

Leuze electronic GmbH + Co. KG In der Braike 1, PO Box 1111 73277 Owen, Germany

Safety Light Curtain.

Active opto-electronic

Description of product:

Produktbeschreibung:

Sicherheits- Lichtvorhang, Berührungslos wirkende Schutzeinrichtung, Sicherheitsbauteil nach 2006/42/EG Anhang IV MLC 300, MLC 500 Seriennummer siehe Typschild

protective device, safety component in acc. with 2006/42/EC annex IV MLC 300, MLC 500 Serial no. see name plates

Description de produit: Barrière immatérielle de sécurité. Equipement de protection électrosensible. Elément de sécurité selon 2006/42/CE annexe IV MLC 300, MLC 500 Nº série voir plaques signalétiques

La présente déclaration de

conformité est établie sous la

responsabilité

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung der Hersteller.

Der oben beschriebene Gegenstand der Erklärung einschlägigen erfüllt die Harmonisierungsrechtsvorschriften der Union:

is issued under the sole responsibility of manufacturer The object of the declaration described above is

conformity with the relevant

This declaration of conformity

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable:

Angewandte EU-/EG-Richtlinie(n): 2006/42/EG (*1) 2014/30/EÙ

Applied EU/EC Directive(s):

harmonisation

Directive(s) UE/CE appliquées: 2006/42/CE (*1) 2014/30/UE

Angewandte harmonisierte Normen / Applied harmonized standards / Normes harmonisées appliquées: EN 61496-1:2013 (Type2/4) EN 62061:2005+A2:2015 (SILCL1/3) EN 55011:2009+A1:2010 EN ISO 13849-1:2015 (Cat 2/4,PLc/e)

2006/42/EC (*1) 2014/30/EU

Angewandte technische Spezifikationen / Applied technical specifications / Spécifications techniques appliquées:

IEC 61496-2:2013 (Type2/4)

EN 50178:1997

EN 61508-1/-2/-3/-4:2010 (SIL1/3)

Notified Body

(*1) TUEV-SUED Product Service GmbH, Zertifizierstelle, Ridlerstraße 65, D-80339 Munich, NB0123, Z10 17 08 68636 029 Dokumentationsbevollmächtigter ist der genannte Hersteller, Kontakt quality@leuze.de. Authorized for documentation is the stated manufacturer, contact: quality@leuze.de. Autorisé pour documentation est le constructeur déclarér, contact: quality@leuze.de

Union

legislation:

2014/30/EU veröffentlicht: 29.03.2014, EU-Amtsblatt Nr. L 96/79-106; 2014/30/EU published: 29.03.2014, EU-Journal No. L 96/79-106; 2014/30/UE publié: Journal EU n° L 96/79-106; 2014/30/EU published: 29.03.2014, EU-Journal No. L 96/79-106; 2014/30/E

23.01. 2818 Datum / Date / Date

Virich Balbach

Geschäftsführer / Managing Director / Gérant

i.A. Fabien Zelenda

Quality Management Central Functions

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen Telefon +49 (0) 7021 573-0 Telefax +49 (0) 7021 573-199 www.leuze.com

LEO-ZQM-148-07-FO

Leuze electronic GmbH + Co. KG, Sitz Owen, Registergericht Stuttgart, HRA 230712 Persönlich harfende Gesellschafterin Leuze electronic Geschäftsführungs-GmbH, Sitz Owen, Registergericht Stuttgart, HRB 230550

Geschäftsführer: Ulrich Balbach USt.-idNr. DE 145912521 | Zollnummer 2554232

Es gelten ausschließlich unsere aktuellen Verkaufs- und Lieferbedingungen Only our current Terms and Conditions of Sale and Delivery shall apply