

사 용 설 명 서 원 본

MLC 510.1 안전 라이트 커튼

© 2022

Leuze electronic GmbH + Co. KG In der Braike 1 73277 Owen / Germany

전화: +49 7021 573-0 팩스: +49 7021 573-199

www.leuze.com info@leuze.com

1	이 실	설명서 관련	5
	1.1	사용된 표시 방법	5
	1.2	점검표	6
2	안전		7
	2.1	적합한 사용 및 예측 가능한 잘못된 사용	
	2.1.1		
	2.1.2	필요 자격	
	2.3	안전 책임	
	2.4	면책	
3	장치	설명	10
	3.1	MLC 계열의 장비 개요	
	3.2	연결 기술	
	3.3	 표시 장치	
	3.3.1		
	3.3.2	, = , , , , , , , , , , , , , , , , , ,	
4	기능		15
	4.1	전송 채널 전환	
	4.2	감지 범위 선택	15
5	적용	- 분야	16
	5.1	작업 영역 보호용 안전장치	16
	5.2	출입 통제 보호	17
	5.3	위험구역 안전	17
6	설치		18
			18
	6.1.1 6.1.2	, , ,=	19
	6.1.3		
	6.1.4	반사면과의 최소 간격	26
	6.1.5		
	6.2 6.2.1	안전 센서 설치 적절한 설치 위치	
	6.2.2		
	6.2.3		
	6.2.4 6.2.5		
	6.2.6		
	6.3	부속품 설치	32
	6.3.1	, , _ , _ , _ , _ , _ , _ , _ , _	
	6.3.2	보호 디스크 MLC-PS	33

7	전기 연결	34
	7.1 송신기와 수신기 커넥터 할당	35
	7.1.1 송신기 MLC 500	
	7.1.2 수신기 MLC 510.1	
	7.2 회로 예 7.2.1 스위칭 예 MLC 510.1	
8	작동	39
	8.1 켜짐	39
	8.2 센서 정렬	39
	8.3 레이저 조정 보조장치를 이용한 편향 미러 정렬	40
9	점검	41
	9.1 시운전 이전과 변경 이후	
	9.1.1 적분 회로 점검표 - 시운전 이전과 변경 후	
	9.2 자격을 갖춘 인력에 의해 정기적으로	
	9.3 조작자가 정기적으로 실행9.3.1 점검표 - 조작자가 정기적으로 실행	43 44
10	관리	
11	고장 제거하기	
	11.1 고장인 경우 조치 사항	
	11.2 발광 다이오드의 작동 표시	
12	폐기	47
13	서비스 및 지원	48
14	기술 데이터	49
	14.1 일반 데이터	49
	14.2 치수, 무게, 응답 시간	51
	14.3 액세서리 치수 도면	53
15	주문 정보 및 액세서리	55
16	EU/EC 준수선언서	61

1 이 설명서 관련

1.1 사용된 표시 방법

표 1.1: 경고 기호 및 신호어

<u> </u>	인명 위험 기호
0	물적 피해가 있을 수 있는 경우 기호
참고	물적 손상 위험에 대한 신호어
	위험 방지 조치를 준수하지 않을 경우 물품 파손을 일으킬 수 있는 위험을 표 시합니다.
주의	가벼운 부상 위험에 대한 신호어
	위험 방지 조치를 준수하지 않을 경우 가벼운 부상을 초래할 수 있는 위험을 표시합니다.
경고	중상 위험에 대한 신호어
	위험 방지 조치를 준수하지 않을 경우 치명적 부상을 초래할 수 있는 위험을 표시합니다.
위험	사망 위험에 대한 신호어
	위험 방지 조치를 준수하지 않을 경우 심각한 또는 치명적 부상을 당할 위험이매우 임박함을 표시합니다.

표 1.2: 그 밖의 다른 기호

A	도움말에 대한 기호
	이 기호가 있는 텍스트는 추가적인 정보를 제공합니다.
₩,	조치단계에 대한 기호
→	이 기호가 있는 텍스트는 취해야 할 조치를 설명합니다.
₽	처리 결과 기호
7	이 기호가 있는 텍스트는 이전에 실행한 처리 결과를 설명합니다.

표 1.3: 의미 및 약어

반응 시간	보호 장비의 반응 시간은 안전센서를 반응하게 하는 이벤트가 발생하는 시점과 보호 장비의 인터페이스에서 차단 신호를 내보내는 시점 사이의 최대 시간입니다(예: OSSD 세트의 꺼짐 상태).		
AOPD	능동광전자 보호장비		
	(Active Opto-electronic Protective Device)		
ESPE	전 자 감 응식 보 호 장비		
LED	LED, 송신기와 수신기의 디스플레이 유닛		
MLC	송신기과 수신기로 구성된 안전 센서의 약어		
MTTF _d	위험을 초래하는 고장이 발생하기까지의 평균 시간		
	(Mean Time To dangerous Failure)		
OSSD	안전 스위칭 출력부		
	(Output Signal Switching Device)		
PFH _d	시간당 위험을 불러올 고장 가능성		
	(Probability of dangerous Failure per Hour)		
PL	Performance Level		
스캔	처음부터 마지막 빔까지 보호 필드의 주사 사이클		
안전 센서 송신기와 수신기로 구성된 시스템			
SIL Safety Integrity Level			
상태	켜기: 장치 정상, OSSD 켜짐		
	켜기: 장치 정상, OSSD 꺼짐		
	잠금: 장치, 연결 장치, 또는 제어 장치/조작 장치 오류, OSSD 꺼짐(lock-out)		

1.2 점검표

(참조 장 9 "점검")이 점검표는 기계 제작업체 또는 장비 공급업체를 위해 추천하는 참고 자료입니다. 이 점 검표가 자격을 갖춘 인력에 의해 시행된 최초 시운전 이전의 전체 기계나 시스템 검사 또는 정기적 검사를 대체하지는 않습니다(참조 장 2.2 "필요 자격"). 이 점검표는 점검에 대한 최소 요구 사항을 포함합니다. 적 용 분야에 따라 다른 점검 항목이 필요할 수 있습니다.

2 안전

안전 센서를 사용하기 전에 유효한 규격에 맞게 위험성 평가를 시행해야 합니다(예: EN ISO 12100:2010, EN ISO 13849-1:2015, EN IEC 62061:2005+A1:2012). 위험성 평가 결과로 안전 센서의 필요한 안전등급을 결정합니다(안전과 관련된 기술 데이터).

설치, 작동, 검사를 위해서 이 문서 및 해당하는 모든 국내와 국제 규격, 규정, 규칙, 가이드라인을 준수해야 합니다. 함께 제공된 설명서를 준수해야 하며 해당 직원에게 전달해야 합니다.

↳ 안전 센서로 작업하기 전에 작업을 위한 해당 설명서를 숙지하고 준수해야 합니다.

특히 다음과 같은 국제 및 국내법 규정에 의해 시운전, 기술적인 점검 및 안전 센서 취급을 적용합니다:

- 지침 2006/42/EC
- 지침 2014/35/EU
- 지침 2014/30/EU
- 지침 89/655/EEC 보완판 95/63 EC
- OSHA 1910 Subpart O
- 안전 규정
- 안전 규정과 사고예방규정
- 안전운용규정 및 작업보호법
- 제품 안전법(ProdSG 및 9. ProdSV)

참고

안전기술적인 정보에 대해서는 지역기관(예: 고용산재보험조합, 산업감독기관, 노동안전감독기 관)에 문의하십시오.

2.1 적합한 사용 및 예측 가능한 잘못된 사용

작동하는 기계에 의한 심각한 부상 위험!

- 🕓 안전 센서가 정확하게 연결되어 있고 보호 장치의 보호 기능이 보장되는지 확인하십시오.
- 🦠 모든 장비의 개조, 유지 보수 작업, 검사 시에 장비가 꺼져 있고 재가동하지 않도록 확인하 십시오.

2.1.1 용도에 맞는 사용

- 안전 센서는 각 설명서와 해당 규정, 작업 안전 및 보호 지침 관련 규정에 맞게 선택하고 해당 자격을 간춘 인력이 기계에 조립, 연결, 작동, 시험한 다음에 사용할 수 있습니다(참조 장 2.2 "필요 자격"). 장 치는 실내에서만 사용하도록 설계되었습니다.
- 안전 센서를 선택할 때 안전 기술 성능이 위험성 평가에서 산출된 필요 성능 레벨 PL, 이상인 제품을 선택해야 합니다(참조 장 14.1 "일반 데이터").
- 안전 센서는 위험 지점, 위험 영역, 또는 기계 및 설비의 입구에서 사람 또는 신체를 보호하는 데 쓰입 니다.
- 안전 센서는 입구 안전장치의 기능에서 사람이 위험 영역에 들어가는지만 감지하며, 위험 영역 내에 사람이 있는지는 감지하지 못합니다. 따라서 이 경우에는 안전 체인에 시동/재시동 인터락 또는 적합 한 후방 보호 장치를 반드시 사용해야 합니다.
- 최대 허용 접근속도(ISO 13855 참조):
 - 접근 안전장치의 경우 1.6m/s
 - 위험 지점 안전장치의 경우 2.0m/s

- 안전 센서를 구조적으로 개조해서는 안 됩니다. 안전 센서를 개조하면 보호 기능이 보장되지 않습니다. 또한, 안전 센서를 개조할 경우 안전 센서 제조업체에서 품질 보증을 받을 수 없습니다.
- 보호 장비를 부적절하게 수리하면 보호 기능이 상실될 수 있습니다. 장치 부품에 대해 수리 작업을 수행하지 마십시오.
- 해당 자격을 갖춘 인력이 안전 센서의 올바른 통합 및 조립 상태를 정기적으로 점검해야 합니다(참조 장 2.2 "필요 자격").
- 안전 센서는 최대 20년 후에 교체해야 합니다. 마모 부품의 수리 또는 교체로 사용 기간이 늘어나지 않습니다.

2.1.2 예측 가능한 잘못된 사용

지정된 용도 이외의 사용 또는 용도를 벗어나는 사용은 부적절한 것으로 간주합니다.

안전 센서는 원칙적으로 다음과 같은 경우에는 보호 장비로 사용하는 것이 적합하지 않습니다.

- 위험 영역에서 뜨겁거나 위험한 액체가 분출되거나 물체가 튀어나올 위험성이 있을 때
- 폭발하거나 쉽게 불이 붙을 수 있는 환경에서 사용할 때

2.2 필요 자격

안전 센서는 각 작업에 적합한 인력이 계획, 구성, 조립, 연결, 작동, 정비하고 해당 애플리케이션으로 점검 해야 합니다. 적합한 작업자의 일반 전제조건:

- 적합한 기술 교육을 받습니다.
- 안전 센서의 사용 설명서 및 기계 조작 지침의 중요 부분을 알고 있어야 합니다.

전문가에 대한 작업별 최소 요구사항:

계획 및 구성

전문 지식과 기계의 보호장비 선택 및 사용과 기술 규정, 작업 안전, 보호 지침, 안전 기술 관련 해당 지역 규정 사용에 대한 경험.

EN ISO 13849-1에 따른 안전 관련 PLC 프로그래밍에 대한 전문 지식.

설치

기계와 관련하여 안전 센서를 올바르고 안전하게 조립 및 설정하기 위해 필요한 전문 지식 및 경험.

전기 시설

안전 센서의 안전하고 올바른 전기 연결 및 안전 관련 제어 시스템에 안전하게 통합하기 위해 필요한 전문 지식 및 기술.

조작 및 유지보수

책임자의 지시에 따라 안전 센서를 정기적으로 점검하고 청소하기 위해 필요한 전문 지식 및 경험.

유지보수

상기 설명된 요건에 따라 안전 센서를 정비, 조작, 전기 설치, 조립하기 위해 필요한 전문 지식 및 경험.

시운전 및 점검

- 기계 안전 및 안전 센서 평가를 위해 필요한 작업 안전, 보호 지침, 안전 기술 관련 규정 및 규칙에 대한 전문 지식 및 경험 이를 위해 필요한 측정 기술 장비.
- 또한, 현재 시험 대상과 관련된 작업을 수행하고 지속적인 교육으로 최신 기술에 대한 지식을 갖추고 있어야 합니다. 독일 안전운용규정 및 기타 국가 법규정에 따른 자격을 갖춘 작업자.

2.3 안전 책임

제조업체와 장비 운용자는 기계와 설치된 안전 센서가 규정에 맞게 작동하고 모든 관련자에게 충분히 알리고 교육해야 하는 책임이 있습니다.

전달되는 정보의 유형 및 내용으로 이용자의 안전이 위협받아서는 안 됩니다.

기계 제조업체는 다음 사항을 책임집니다:

- 기계의 안전한 구조 및 잠재적인 잔여 위험에 관한 참고 사항
- 안전 센서의 안전한 실행, 해당 자격을 갖춘 인력의 최초 검사를 통해 입증됨(참조 장 2.2 "필요 자격")
- 운용자에게 모든 주요 정보의 전달
- 기계의 안전한 가동을 위한 모든 규정과 지침의 준수

기계 운용자는 다음 사항을 책임집니다:

- 조작자 교육
- 기계의 안전한 작동 유지
- 작업보호 및 안전 작업을 위한 모든 규정과 지침의 준수
- 해당 자격을 갖춘 인력에 의한 정기적인 검사(참조 장 2.2 "필요 자격")

2.4 면책

Leuze electronic GmbH + Co. KG는 다음 경우에 책임을 지지 않습니다:

- 안전 센서를 규정에 맞게 사용하지 않을 경우.
- 안전 지침을 지키지 않은 경우.
- 예측 가능한 사용 오류를 고려하지 않은 경우.
- 설치 및 전기연결을 전문적으로 시행하지 않은 경우.
- 기능에 결함이 없음이 검사되지 않은 경우(참조 장 9 "점검").
- 안전 센서에 구조적 개조가 이루어진 경우.

3 장치 설명

안전 센서 시리즈 MLC 500은 능동광전자 보호장비입니다. 이러한 장치는 다음과 같은 규범 및 표준에 부합합니다:

	MLC 500
EN IEC 61496에 따른 Type	4
EN ISO 13849에 따른 카테고리	4
EN ISO 13849-1:2015에 따른 퍼포먼스 레벨(PL)	е
IEC 61508에 따른 안전 무결성 기준(SIL) 또는 EN IEC 62061에 따른 SILCL	3

안전 센서는 한 개의 송신기와 한 개의 수신기(참조 장 3.1 "MLC 계열의 장비 개요")로 구성되어 있습니다. 이 장치는 IEC 60204-1(보호 등급 3)에 따라 과전압 및 과전류로부터 보호되고 있습니다. 안전 센서는 위험하게 주위 빛(예: 용접 스파크, 경고등)에 영향을 받지 않습니다.

3.1 MLC 계열의 장비 개요

이 시리즈는 특정 특성 및 기능에 따라 네 종류의 수신기 등급(기본, 표준, 확장, SPG)으로 구분됩니다(다음 표 참조).

표 3.1: 시리즈에서 특정한 특성 및 기능을 가진 장치 사양

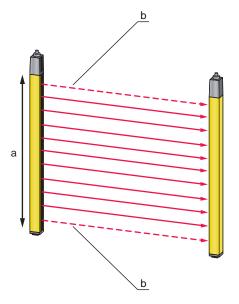
장치 종류		송신기		수신기					
기능 패키지			기본		기본형 확장		SPG		
종류	MLC 500 MLC 501	MLC 500/A	MLC 502	MLC 510 MLC 511	MLC 510/A	MLC 520	MLC 530	MLC 530 SPG	
OSSD(2x)									
AS-i									
전송 채널 전 환								•	
LED 표시등									
7 세그먼트 디스플레이									
자동 시동/재 시동									
RES									
EDM									
인터링크									
블랭킹									
뮤팅									
SPG									
다중 스캔									
범위 축소									
시험 입력부									

보호 필드 특징

빔 간격과 빔 숫자는 해상도와 보호 필드 높이에 따라 달라집니다.

참고

해상도에 따라 유효 보호 필드 높이가 황색으로 덮인 안전 센서(참조 장 3.1 "MLC 계열의 장비개요"와참조 장 14.1 "일반 데이터")의 시각적으로 활성화된 영역보다 클 수도 있습니다.


장치 동기화

작동하는 보호 필드 생성을 위한 수신기와 송신기의 동기화는 광학적, 즉 무선으로 두 개의 특수 코딩된 동기화 빔을 통해 수행됩니다. 한 사이클(즉, 첫 번째 빔에서 마지막 빔까지 한 번 지나가는 것)을 스캔이라고 합니다. 스캔에 걸리는 시간은 응답 시간의 길이에 따라 달라지며 안전거리 계산에 영향을 줍니다(참조 장 6.1.1 "안전거리 계산 S").

참고

안전 센서의 올바른 동기화 및 기능을 위해서는 동기화 중과 작동 중에 최소 두 개의 동기화 빔중 하나는 중단되지 않은 상태여야 합니다.

- a 시각적 활성화 영역, 황색으로 덮여 있음
- b 동기화 빔

그림 3.1: 송수신기 시스템

QR 코드

안전 센서에는 QR 코드와 그에 속하는 웹 주소가 표기되어 있습니다.

휴대용 단말기로 QR 코드를 스캔하거나, 웹 주소를 입력하면 해당 웹 주소에서 기계 정보와 오류 메시지를 확인할 수 있습니다.

휴대용 단말기를 사용하는 경우에는 통신료가 부과될 수 있습니다.

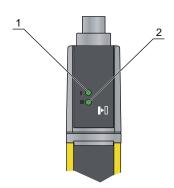
www.mobile.leuze.com/mlc/

그림 3.2: 안전 센서에 표시되어 있는 QR 코드와 그에 속하는 웹 주소(URL)

3.2 연결 기술

송신기와 수신기는 기계 제어용 인터페이스로 다음과 같은 핀(Pin) 숫자를 가진 M12 원형 커넥터를 사용할 수 있습니다:

장치 사양	장치 종류	장치 커넥터
MLC 500	송신기	5핀
MLC 510.1	수신기 기본	5핀


장치 설명 Leuze

3.3 표시 장치

안전 센서의 디스플레이 장치로 오류 분석과 시운전을 수월하게 할 수 있습니다.

3.3.1 송신기 MLC 500 작동 표시기

송신기의 캡에는 기능을 표시하기 위한 발광 다이오드가 2개 있습니다:

1 LED1, 녹색/적색

2 LED2, 녹색

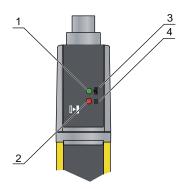

그림 3.3: 송신기 MLC 500 표시기

표 3.2: 송신기 발광 다이오드 의미

	상태	설명
LED1	LED2	
꺼짐	꺼짐	장치 꺼짐
녹색	꺼짐	채널 1 일반 모드
녹색	녹색	채널 2 일반 모드
녹색 깜빡임	꺼짐	채널 1 감소된 감지 범위
녹색 깜빡임	녹색 깜빡임	채널 2 감소된 감지 범위
적색	꺼짐	장치 오류
녹색	적색 깜빡임	외부 테스트 (MLC 502만 해당)

3.3.2 수신기에서의 작동 표시기 MLC 510.1

수신기에는 작동상태 표시를 위한 2개의 LED가 있습니다:

1 LED1, 적색/녹색

2 LED2, 적색

3 OSSD 기호

4 전송 채널 C2 기호

그림 3.4: 수신기 디스플레이 MLC 510.1

표 3.3: 수신기의 발광 다이오드 의미

LED	색상	상태	설명
1	녹색/적색	꺼짐	장치 꺼짐
		적 색	OSSD 꺼짐
		적색 천천히 깜빡임(약 1Hz)	외부 오류
		적색 빠르게 깜빡임(약 10Hz)	내부 오류
		녹색 천천히 깜빡임(약 1Hz)	OSSD 켜짐, 약한 신호
		녹색	OSSD 켜짐
2	적색	꺼짐	전송 채널 C1
		켜짐	OSSD 꺼짐, 전송 채널 C2

4 기능

안전 센서의 특징과 기능에 대한 개요는 장치 설명 장에서 찾아볼 수 있습니다(참조 장 3.1 "MLC 계열의 장비 개요").

기능 개요

- 범위 축소
- 전송 채널 전화

4.1 전송 채널 전환

전송 채널에 의해 촘촘하게 나란히 배열된 안전 센서가 서로 영향을 미치지 않습니다.

참고

안정적인 작동을 보장하기 위해 적외선 빔이 주변 광원에서 분리되도록 변조되었습니다. 이를 통해 용접 불꽃이나 통과하는 스테이플러에 의한 경고등이 보호 필드에 영향을 주지 않습니다.

공장 설정에서 안전 센서는 모든 작동 모드에서 전송 채널 C1로 작동합니다.

송신기의 전송 채널은 전원의 극성 전환을 통해 변경할 수 있습니다(참조 장 7.1.1 "송신기 MLC 500"). 수신기의 전송 채널은 전원의 극성 전환을 통해 변경할 수 있습니다(참조 장 7.1.2 "수신기 MLC 510.1").

참고

잘못된 전송 채널을 통한 기능 오류!

송신기와 그에 속하는 수신기에 각각 같은 전송 채널을 선택하십시오.

감지 범위 선택 4.2

적합한 전송 채널 선택(참조 장 4.1 "전송 채널 전환") 외에 감지 범위 선택 또한 인접한 안전 센서의 상호 간섭을 막기 위한 것입니다. 감지 범위가 줄어들 때, 센서의 광출력이 축소되어 감지 범위가 정상의 절반이 됩니다.

감지 범위 선택:

- ♥ 핀 4를 연결하십시오(참조 장 7.1 "송신기와 수신기 커넥터 할당").
- ⇨ 핀 4 연결은 송신 출력과 작동 범위를 고정합니다.

🤼 경고

잘못된 송신 출력으로 인해 보호 기능에 영향을 미침!

송신기에서 방출되는 광출력의 감소는 단일 채널에서 안전 모니터링 없이 실시됩니다.

- ♥ 이 조절 기능을 안전 기능과 관련해서 사용하지 마십시오.
- ♥ 최대 송신 출력에서도 반사 우회가 발생하지 않도록 반사되는 영역과의 간격을 선택해야 합 니다(참조 장 6.1.4 "반사면과의 최소 간격").

5 적용 분야

안전 센서는 오직 사각형 보호 필드만 형성합니다.

참고

높은 기계 수준을 요구하는 경우 사용하기 위해 MLC.../V 버전의 장치를 구입할 수 있습니다(참조 장 15 "주문 정보 및 액세서리").

5.1 작업 영역 보호용 안전장치

손 및 손가락 보호를 위한 위험 지점 안전 장치는 보통 이 안전 센서에서 가장 많이 사용합니다. EN ISO 13855에 따르면 여기에서는 14 ~ 40mm 해상도가 적당합니다. 이를 통해 일차적으로 필요한 안전거리를 확보합니다(참조 장 6.1.1 "안전거리 계산 S").

그림 5.1: 위험 지점 안전 장치는 예를 들어 포장 기계나 주입장치에서 위험 지역에 개입해야 하는 경우에 보호합니다

그림 5.2: 위험 지점 안전 장치는 예를 들어 집기 및 놓기 로봇 애플리케이션에서 위험 영역에 개입해야 하는 경우에 보호합니다

5.2 출입 통제 보호

최대 90mm 화소의 안전 센서는 위험 구역으로 들어가는 입구 안전 장치에서 사용합니다. 이 장치는 사람이 위험 구역에 진입하는지만 인식하고, 사람의 일부 또는 사람이 위험 구역 내에 있는지는 인식하지 못합니다.

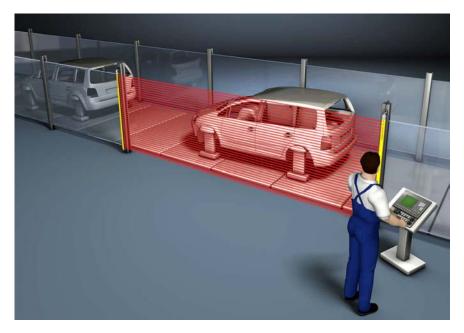


그림 5.3: 이송로의 접근 안전장치

5.3 위험구역 안전

안전 라이트 커튼은 위험 구역 안전 장치에서 수평 배열로 사용할 수 있습니다. 예를 들어 수직으로 배열된 안전 센서와 연결하여 존재 여부 모니터링을 위한 후방 보호 장치나 독립형 장치로서 사용이 가능합니다. 설치 높이에 따라 40 또는 90mm의 분해능을 사용합니다().



그림 5.4: 로봇에서의 위험 지역 안전 조치

6 설치

<u>^</u>

경고

규정에 따르지 않은 설치로 인한 중상 위험!

안전 센서의 보호 기능은 지정된 사용 범위에 적합하고 적절하게 장착되는 경우에 한해 보장합니다.

- ♥ 안전 센서는 필요 자격을 갖춘 인력(참조 장 2.2 "필요 자격")만 설치할 수 있습니다.
- ♥ 필수 안전거리를 준수하십시오(참조 장 6.1.1 "안전거리 계산 S").
- ♥ 보호 장치의 뒤에서 들어오거나, 기어서 들어오거나, 위로 넘어오는 것을 확실히 방지하고, 아래, 위, 옆의 안전거리 확보가 필요한 경우 ISO 13855에 따라 추가 거리 C_{RO}를 고려하도록 주의하십시오.
- ♥ 예를 들어 안전 센서를 위험 영역에 걸어가거나 기어올라 도달하기 위한 입구로 사용되지 않도록 조처를 하십시오.
- ♥ 관련 규격, 규정 및 이 설명서에 유의하십시오.
- ♥ 송신기과 수신기를 주기적으로 청소하십시오. 환경 조건(참조 장 14 "기술 데이터"), 관리(참조 장 10 "관리").
- ♥ 설치 후에 안전 센서가 완벽하게 기능하는지 점검하십시오.

6.1 송신기와 수신기의 배치

광학적 보호 장치는 충분한 안전거리를 확보하여 설치했을 때 보호 효과를 발휘합니다. 이때 안전 센서와 제어 부품의 응답 시간 및 장치의 애프터런 시간을 비롯한 모든 지연 시간을 고려해야 합니다.

다음과 같은 기준에서 계산 공식을 얻을 수 있습니다:

- IEC 61496-2, "액티브 광전자 보호장치": 반사면/편향 미러의 간격
- ISO 13855, "기계 안전 신체 부위의 접근 속도에 따른 보호 장치 배치": 설치 상황 및 안전거리

참고

ISO 13855에 따라 수직 보호 필드에서 300mm 위의 빔은 아래로 기어서 들어갈 수 있고, 900mm 아래의 빔은 위로 넘어갈 수 있습니다. 수평 보호 필드에서는 적절한 설치 또는 커버를 통해 안전 센서 위로 올라가는 것을 방지합니다.

6.1.1 안전거리 계산 S

설치

ISO 13855에 의거한 광전자 보호장치 안전거리 S 계산을 위한 일반적인 수식

 $S = K \cdot T + C$

S [mm] = 안전거리 K [mm/s] = 접근 속도

T [s] = 전체 지연 시간, 합산($t_a + t_i + t_m$)

t_a [s] = 보호 장치의 응답 시간

 t_{i} [s] = 안전 스위칭 장치의 응답 시간

t_m [s] = 기계 애프터런 시간

C [mm] = 안전거리에 추가되는 간격

참고

정기적인 검사에서 긴 지연시간이 발생하면 그에 따른 적당한 시간 t㎜를 더해야 합니다.

6.1.2 접근 방향에 직교로 작용하는 보호 필드의 경우 안전거리 계산

ISO 13855는 수직 보호 필드에서 다음을 구분합니다.

- S_{RT}: 보호 필드를 **통한** 접근에 연계된 안전거리
- S_{RO}: 보호 필드 상단 접근과 연계된 안전거리

두 값은 추가거리 C를 산정하는 방식에 따라 달라집니다.

- C_{RT}: 수식으로부터 또는 상수(참조 장 6.1.1 "안전거리 계산 S")
- C_{RO} : 다음의 표 "무접촉 작동식 보호장치의 수직 보호 필드 위로 건너서 도달(ISO 13855에서 발췌)" S_{RT} 와 S_{RO} 두 값 중 각각 더 큰 값을 사용.

보호 필드를 통해 접근할 때 ISO 13855에 의한 안전거리 S_{RT} 계산:

위험 지점 안전 장치에서 안전거리 S_{RT} 계산

$$S_{RT} = K \cdot T + C_{RT}$$

 S_{RT} [mm] = 안전거리

K [mm/s] = 보호 필드로의 일반 접근 반응과 접근 방향이 적용된 위험 지점 안전장치용 접근 속도(해당도

14 ~ 40mm): 2000mm/s 또는 1600mm/s, S_{RT} > 500mm인 경우

T [s] = 전체 지연 시간, 합산($t_a + t_i + t_m$)

t_a [s] = 보호 장치의 응답 시간

 t_{i} [s] = 안전 스위칭 장치의 응답 시간

t_m [s] = 기계 애프터런 시간

 C_{RT} [mm] = 해상도 14 ~ 40mm에서의 접근 반응을 포함한 위험 지점 안전장치용 추가거리, d = 보호 장

치의 해상도 $C_{RT} = 8 \times (d - 14)$ mm

계산 예

애프터런 시간이 190ms인 프레스 안전 제어장치가 포함된 프레스의 투입 영역에 해상도 20mm에 보호 필드 높이가 1,200mm인 안전 라이트 커튼을 장착하여 안전 조치를 취합니다. 안전 라이트 커튼의 응답 시간은 22ms입니다.

♥ ISO 13855의 수식에 따라 안전거리 S_∞를 산출하십시오.

$$S_{RT} = K \cdot T + C_{RT}$$

K = [mm/s] = 2000

T [s] = (0.022 + 0.190) C_{RT} [mm] = $8 \times (20 - 14)$

 S_{RT} [mm] = 2000 mm/s × 0.212 s + 48 mm

 S_{RT} [mm] = 472

S_{RT}가 500mm보다 작으므로 계산을 1,600mm/s로 반복해서는 **안 됩니다**.

참고

여기에서 필요한 후방 보호 장치를, 예를 들어 구역 안전 조치용 추가 안전 센서 또는 캐스케이드 안전 센서를 사용하여 구현하십시오.

입구 안전장치에서 안전거리 S_{RT} 계산

$$S_{RT} = K \cdot T + C_{RT}$$

S_{RT} [mm] = 안전거리

K [mm/s] = 보호 필드로의 접근 방향이 직교인 입구 안전장치의 접근 속도: 2,000mm/s 또는 1,600mm/s,

S_{RT} > 500mm인 경우

T [s] = 전체 지연 시간, 합산 $(t_a + t_i + t_m)$

t_a [s] = 보호 장치의 응답 시간

t_i [s] = 안전 스위칭 장치의 응답 시간

t_m [s] = 기계 애프터런 시간

 C_{RT} [mm] = 해상도 14 ~ 40mm에서의 접근 반응을 포함한 입구 안전장치용 추가거리, d = 보호 장치의

해상도 $C_{RT} = 8 \times (d - 14)$ mm 해상도 > 40 mm에서의 입구 안전장치용 추가거리:

C_{RT} = 850 mm(팔길이용 기본값)

계산 예

애프터런이 250ms인 로봇 입구를 해상도 90mm, 보호 필드 높이 1,500mm, 반응시간이 6ms인 라이트 커튼으로 안전조치를 취합니다. 안전 라이트 커튼은 응답시간이 250ms인 컨택터에서 직접 전환합니다. 그러므로 추가 인터페이스를 고려할 필요는 없습니다.

♥ ISO 13855의 수식에 따라 안전거리 S_∞를 산출하십시오.

$$S_{RT} = K \cdot T + C_{RT}$$

K = [mm/s] = 1600

 $T \qquad [s] \qquad = (0.006 + 0.250)$

 C_{RT} [mm] = 850

 S_{RT} [mm] = 1600mm/s × 0.256s + 850mm

 S_{RT} [mm] = 1260

이 안전거리는 애플리케이션에서 제공하지 않습니다. 그러므로 새로 해상도 40mm의 안전 라이트 커튼으로 계산합니다(응답시간 = 14ms).

♥ 안전거리 S_{RT}를 ISO 13855의 수식에 따라 다시 한 번 산출하십시오.

$$S_{RT} = K \cdot T + C_{RT}$$

K = [mm/s] = 1600

T [s] = (0.014 + 0.250) C_{RT} [mm] = $8 \times \sim (40 - 14)$

 S_{RT} [mm] = 1600mm/s × 0.264s + 208mm

 S_{RT} [mm] = 631

이로써 해상도 40mm의 안전 라이트 커튼은 이 애플리케이션에 적합합니다.

참고

K = 2,000mm/s으로 계산했을 때 안전거리 S_{RT} 는 736mm입니다. 그러므로 접근 속도 K = 1,600mm/s 가정을 허용합니다.

보호 필드 위로 접근 시 ISO 13855에 의한 안전거리 S_{RO} 계산: 위험 지점 안전 장치에서 안전거리 S_{RT} 계산

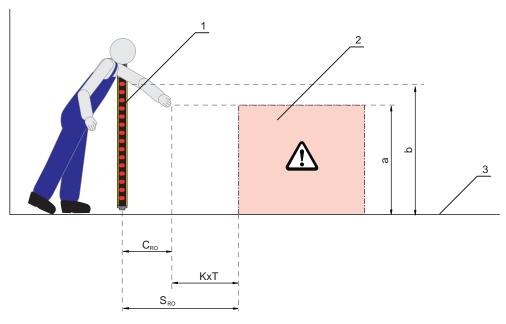
$$S_{RO} = K \cdot T + C_{RO}$$

S_{RO} [mm] = 안전거리

K [mm/s] = 보호 필드로의 일반적인 접근 반응과 접근 방향이 적용된 위험 지점 안전장치용 접근 속도(해

상도 14 ~ 40mm): 2,000mm/s 또는 1,600mm/s, S_{RO} > 500mm인 경우

T [s] = 전체 지연 시간, 합산($t_a + t_i + t_m$)


t_a [s] = 보호 장치의 응답 시간

 t_i [s] = 안전 스위칭 장치의 응답 시간

t_m [s] = 기계 애프터런 시간

 C_{RO} [mm] = 보호 장치가 작동하기 전에 신체 부위를 보호 장치 쪽으로 움직일 수 있는 추가거리: 값(아래

표 참조 "무접촉 작동식 보호장치의 수직 보호 필드 위로 건너서 도달(ISO 13855에서 발췌)").

- 1 안전 센서
- 2 위험 영역
- 3 바닥
- a 위험 지점의 높이
- b 안전 센서의 최상단 빔 높이

그림 6.1: 상단 및 하단 개입 시 안전거리의 추가거리

표 6.1: 무접촉 작동식 보호장치의 수직 보호 필드 위로 건너서 도달(ISO 13855에서 발췌)

위험 지	무접촉	작동식	보호 장	치의 보	호 필드 상단 가장자리 높이 b							
점의 높 이 a	900	1000	1100	1200	1300	1400	1600	1800	2000	2200	2400	2600
[mm]	위험 영역에 대한 추가적인 간격 C _{RO} [mm]											
2600	0	0	0	0	0	0	0	0	0	0	0	0
2500	400	400	350	300	300	300	300	300	250	150	100	0
2400	550	550	550	500	450	450	400	400	300	250	100	0
2200	800	750	750	700	650	650	600	550	400	250	0	0
2000	950	950	850	850	800	750	700	550	400	0	0	0
1800	1100	1100	950	950	850	800	750	550	0	0	0	0
1600	1150	1150	1100	1000	900	850	750	450	0	0	0	0
1400	1200	1200	1100	1000	900	850	650	0	0	0	0	0
1200	1200	1200	1100	1000	850	800	0	0	0	0	0	0
1000	1200	1150	1050	950	750	700	0	0	0	0	0	0
800	1150	1050	950	800	500	450	0	0	0	0	0	0
600	1050	950	750	550	0	0	0	0	0	0	0	0
400	900	700	0	0	0	0	0	0	0	0	0	0
200	600	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

위의 도표()로 주어진 값에 따라 세 가지 방식으로 계산할 수 있습니다:

1. 주어진 값:

- 위험 지점의 높이 a
- 위험 지점에서 안전 센서까지의 거리 S, 이로써 추가거리 C_{RO}

구하는 값은 필요한 안전 센서의 최상단 빔 높이 b와 이를 통한 보호 필드 높이.

- ♥ 왼쪽 열에서 위험 지점의 높이가 나와 있는 줄을 찾으십시오.
- ♥ 이 줄에서 추가거리 C_{RO}와 가장 근사하지만 더 높은 값이 있는 열을 찾으십시오.
- ⇒ 요구되는 안전 센서의 최상단 빔 높이는 상단 열 머리글에 있습니다.

2. 주어진 값:

- 위험 지점의 높이 a
- 안전 센서의 최상단 빔의 높이 b

구하는 값은 필요한 안전 센서와 위험 지점 간의 간격 S와 추가거리 C_{RO}.

- ♥ 열 머리글에서 안전 센서의 최상단 빔 높이와 가장 가깝지만 더 낮은 값의 열을 찾으십시오.
- ♥ 이 열에서 위험 지점의 높이 a와 가장 근사하지만 더 높은 값이 있는 줄을 찾으십시오.
- ⇒ 줄과 열의 교차 지점에서 추가 거리 C_{RO}를 찾을 수 있습니다.

3. 주어진 값:

- 위험 지점에서 안전 센서까지의 거리 S, 이로써 추가거리 C_{RO}
- 안전 센서의 최상단 빔의 높이 b

구하는 값은 허용되는 위험 지점 높이 a.

- ♥ 열 머리글에서 안전 센서의 최상단 빔 높이와 가장 가깝지만 더 낮은 값의 열을 찾으십시오.
- ♥ 이 열에서 실제 추가거리 C₂₀와 가장 가깝지만 더 낮은 값을 찾으십시오.
- ⇒ 이 줄에서 왼쪽으로 왼쪽 열로 가십시오. 위험 지점의 허용 높이를 찾아 볼 수 있습니다.
- Ს 이제 ISO 13855의 일반 수식에 따라 안전거리 S를 산출하십시오(참조 장 6.1.1 "안전거리 계산 S").
- \Rightarrow 값 S_{RT} 또는 S_{RO} 중 더 큰 값을 사용해야 합니다.

계산 예

애프터런 시간이 130ms인 프레스의 투입 영역에 해상도 20mm에 보호 필드 높이가 600mm인 안전 라이트 커튼을 장착하여 안전 조치를 취하여야 합니다. 안전 라이트 커튼의 응답 시간은 12ms, 프레스 안전 제어 장치의 응답 시간은 40ms입니다.

안전 라이트 커튼을 교차할 수 있습니다. 보호 필드의 상단 가장자리의 높이는 1,400mm, 위험 지점의 높이는 1,000mm입니다

위험 지점과의 추가 거리 C_{RO} 는 700mm입니다(표 "무접촉 작동식 보호장치의 수직 보호 필드 위로 건너서 도달(ISO 13855에서 발췌)" 참조).

♥ ISO 13855의 수식에 따라 안전거리 S_{RT}를 산출하십시오.

$$S_{RO} = K \cdot T + C_{RO}$$

K = [mm/s] = 2000

T [s] = (0.012 + 0.040 + 0.130)

 C_{RO} [mm] = 700

 S_{RO} [mm] = 2000mm/s × 0.182s + 700mm

 S_{RO} [mm] = 1064

S_{RO}가 500mm보다 크므로 계산을 접근 속도 1,600mm/s로 반복해도 됩니다:

$$S_{RO} = K \cdot T + C_{RO}$$

K = [mm/s] = 1600

T [s] = (0.012 + 0.040 + 0.130)

 C_{RO} [mm = 700

 S_{RO} [mm] = 1600mm/s × 0.182s + 700mm

 S_{RO} [mm] = 992

참고

각 기계 구조에 따라 후방 보호 장치는 예를 들어 수평으로 배치된 두 번째 안전 라이트 커튼의 도움이 필요합니다. 더 좋은 것은 추가 거리 C_{RO}를 0으로 만드는 긴 안전 라이트 커튼을 선택하는 것입니다.

6.1.3 보호 필드로 병렬 접근 시 안전거리 S 계산 위험 구역 안전 장치에서 안전거리 S 계산

$$S = K \cdot T + C$$

S [mm] = 안전거리

K [mm/s] = 보호 필드로의 접근 방향이 평행할 때 위험 영역 안전장치용 접근 속도(해상도 최대 90mm):

1,600mm/s

T [s] = 전체 지연 시간, 합산($t_a + t_i + t_m$)

t_a [s] = 보호 장치의 응답 시간

t_i [s] = 안전 스위칭 장치의 응답 시간

t_m [s] = 기계 애프터런 시간

C [mm] = 접근 반응을 포함한 위험 영역 안전장치의 추가 거리 $H = 보호 필드의 높이, H_{min} = 최소 허용$

장착 높이, 하지만 절대로 0 이하는 아님, d = 보호 장치의 해상도 C = 1,200mm - 0.4 × H,

 $H_{min} = 15 \times (d - 50)$

계산 예

정지 시간이 140ms인 장치 앞의 위험 영역에 수평 안전 라이트 커튼을 발판 대신으로 가능한 바닥 높이에 설치해 안전 조치를 취하여야 합니다. 장착 높이 H_{min} = 0이 가능합니다. 그러면 안전거리에 대한 추가거리 C는 1,200mm입니다. 가능한 안전 센서 중 가장 짧은 모델을 사용해야 합니다. 처음에 선택된 모델은 1,350mm입니다.

해상도 40mm의 수신기와 1,350mm의 보호 필드 높이는 응답 시간이 13ms이고, 추가 릴레이 인터페이스의 응답 시간은 10ms입니다.

♥ ISO 13855의 수식에 따라 안전거리 S_{RT}를 산출하십시오.

$$S = K \cdot T + C$$

K = [mm/s] = 1600

T [s] = (0.140 + 0.013 + 0.010)

C [mm] = 1200

 $S = [mm] = 1600 \text{mm/s} \times 0.163 \text{s} + 1200 \text{mm}$

S [mm] = 1461

안전거리 1,350mm는 충분하지 않습니다. 1,460mm가 필요합니다.

그러므로 보호 필드 높이 계산을 1,500mm으로 반복합니다. 이제 응답시간은 14ms입니다.

♥ ISO 13855의 수식에 따라 안전거리 S_{RT}를 산출하십시오.

$$S \ = \ K \cdot T + C$$

K = [mm/s] = 1600

T [s] = (0.140 + 0.014 + 0.010)

C [mm] = 1200

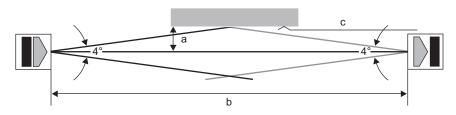
S [mm] = 1600mm/s × 0.164s + 1200mm

S [mm] = 1463

이제 적합한 안전 센서를 찾았습니다. 센서의 보호 필드 높이는 1,500mm입니다.

6.1.4 반사면과의 최소 간격

⚠ 경고

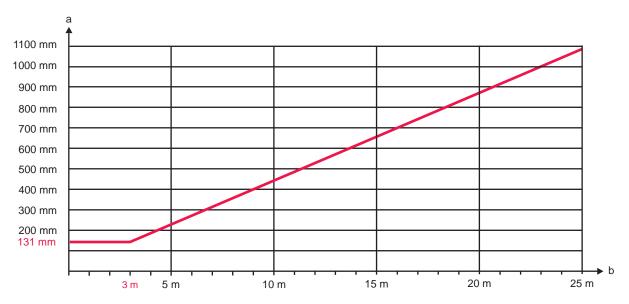


반사면과의 최소 간격 유지를 하지 않아 발생하는 심각한 부상의 위험!

반사면은 송신기의 빔을 수신기 쪽으로 우회할 수 있습니다. 이 경우 보호 필드의 중단은 인식 하지 않습니다.

♥ 최소 간격 a를 정하십시오(아래 그림 참조).

- ♥ 모든 반사면이 보호 필드와 IEC 61496-2에 따른 최소 간격을 유지하고 있는지 확인하십시 오(아래 도표 참조 "보호 필드 너비에 따른 반사면과의 최소 간격").
- ♥ 시운전 전과 그리고 적합한 시간 간격으로 반사면이 안전 센서의 탐지 능력에 영향을 주지 않는지 검사하십시오.



a 반사면과의 최소 간격[mm]

b 보호 필드 너비[m]

c 반사면

그림 6.2: 보호 필드 너비에 따른 반사면의 최소 간격

a 반사면과의 최소 간격[mm]

b 보호 필드 너비[m]

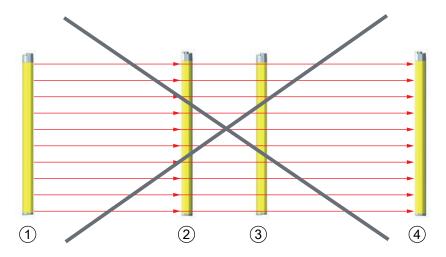
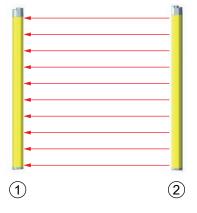

그림 6.3: 보호 필드 너비에 따른 반사면까지의 최소 간격

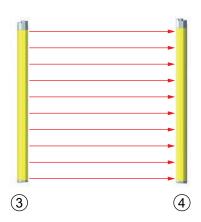
표 6.2: 반사면까지의 최소 거리 계산 수식

거리(b) 송신기-수신기	반사면까지의 최소 거리(a) 계산				
b ≤ 3m	a [mm] = 131				
b > 3m	a [mm] = tan(2.5°) × 1000 × b [m] = 43.66 × b [m]				

6.1.5 인접한 장치가 서로 영향을 미치는 것을 방지

수신기가 인접한 송신기의 빔 경로에 위치하면, 광학적 누화가 발생하여 잘못 작동되거나 보호 기능이 꺼질 수도 있습니다.


- 1송신기 12수신기 13송신기 24수신기 2
- 그림 6.4: 잘못된 설치로 인한 인접한 안전 센서들의 광학적 누화(송신기 1이 수신기 2에 영향을 미침)


참고

공간적으로 가까운 곳에 인접하여 설치된 시스템으로 인해 가용성에 영향을 미칠 가능성! 한 시스템의 송신기가 다른 시스템의 수신기에 간섭할 수 있습니다. ♥ 인접한 장치의 광학적 누화를 방지하십시오.

♥ 인접한 장치와의 사이에 차단 조치를 취하거나 상호 간섭을 방지하기 위해 분리벽을 설치하십시오.♥ 인접한 장치는 상호 간섭을 방지하기 위해 정반대 방향으로 설치하십시오.

- 1수신기 12송신기 13송신기 24수신기 2
- 그림 6.5: 정반대 방향 설치

6.2 안전 센서 설치

다음과 같이 진행하십시오:

- 고정 방법을 선택하십시오. 예: 슬롯 너트(참조 장 6.2.3 "슬롯 너트 BT-NC60을 이용한 고정").
- 적합한 공구를 준비하고, 안전 센서를 주의사항에 유의하면서, 설치 위치에 설치하십시오(참조 장 6.2.1 "적절한 설치 위치").
- 설치된 안전 센서 또는 경우에 따라 장치 포스트에 안전 주의사항 스티커를 붙이십시오(배송 구성물에 포함).

설치 후 안전 센서를 전원에 연결하고(참조 장 7 "전기 연결"), 작동, 정렬(참조 장 8 "작동") 및 점검(참조 장 9.1 "시운전 이전과 변경 이후")할 수 있습니다.

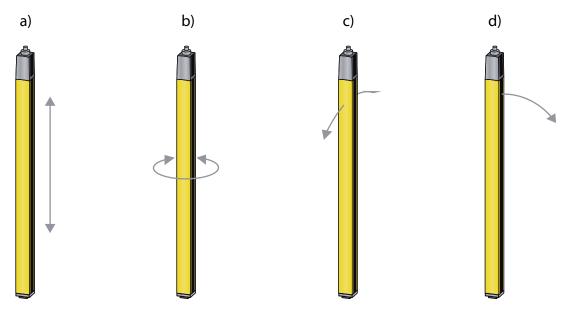
6.2.1 적절한 설치 위치

사용처: 설치

검사자: 안전 센서의 설치자

표 6.3: 설치 준비를 위한 점검표

다음을 점검하십시오:	예	아니 요
보호 필드 높이와 치수가 ISO 13855에 부합합니까?		
위험 지점과 안전거리를 확보하고 있습니까(참조 장 6.1.1 "안전거리 계산 S")?		
반사면과 최소 간격을 확보하고 있습니까(참조 장 6.1.4 "반사면과의 최소 간격")?		
나란히 설치된 안전 센서가 상호 간섭할 가능성이 있습니까(참조 장 6.1.5 "인접한 장치가 서로 영향을 미치는 것을 방지")?		
위험 지점 또는 위험구역으로의 접근(또는 입구)이 오직 보호 필드를 통해서만 가능합니까?		
보호 필드에 아래로 기어 들어가거나, 위로 닿을 수 있거나, 뛰어넘어 갈 수 있는 가능성을 방지했습니까? 또는 ISO 13855에 따른 적절한 추가거리 C _{RO} 를 준수하고 있습니까?		
보호 장치의 후방 진입을 방지했거나 기계적 보호 장치를 설치했습니까?		
송신기와 수신기의 연결부가 같은 방향을 가리키고 있습니까?		
송신기와 수신기가 밀리거나 돌아가지 않도록 고정할 수 있었습니까?		
점검과 교체를 위해 안전 센서에 접근할 수 있습니까?		
위험 영역에서 리셋 버튼을 작동하는 것이 불가능합니까?		
리셋 버튼의 장착 위치에서 위험 지역 전체를 볼 수 있습니까?		
장착 위치로 인한 반사 우회의 가능성이 있습니까?		


참고

점검표의 항목 중 **아니요**라고 대답해야 하는 항목이 있으면 설치 위치를 변경해야 합니다.

6.2.2 움직임 방향 정의

이후 다음과 같은 개념이 안전 센서의 축 방향 정렬 이동에서 사용합니다.

a 밀기: 세로축을 따라 이동 b 회전: 세로축을 중심으로 이동

c 기울이기: 프런트 디스크 방향으로 측면 사선으로 회전 이동

d 젖히기: 프런트 디스크 방향으로 측면 회전 이동

그림 6.6: 안전 센서 정렬 시 움직임 방향

6.2.3 슬롯 너트 BT-NC60을 이용한 고정

기본적으로 송신기와 수신기는 각각 2개의 측면 슬롯이 있는 슬롯 너트 BT-NC60과 함께 배송됩니다. 이를 사용하여 안전 센서를 간단하게 네 개의 M6 나사로 안전 조치를 취해야 하는 기계 또는 장치에 고정할 수 있습니다. 높이 조절을 위해 너트 방향으로 미는 것은 가능하지만, 반면에 돌리거나 기울이거나 젖히는 것은 불가능합니다.

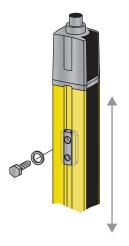


그림 6.7: 슬롯 너트 BT-NC60을 이용한 설치

6.2.4 회전식 고정 장치 BT-2HF을 사용한 고정

별도로 주문해야 하는 회전식 고정 장치(참조 장 15 "주문 정보 및 액세서리")로 안전 센서를 다음과 같이 조정할 수 있습니다:

- 회전식 고정 장치의 벽판에 있는 수직 방향 긴 슬롯을 통해 밀기
- 나사 조임이 가능한 콘 고정을 통한 세로축 360° 회전
- 벽 고정 장치에 있는 수평 방향 긴 슬롯을 통해 보호 필드 방향으로 젖히기
- 깊이 축을 중심으로 기울이기

긴 슬롯을 통해 벽에 고정함으로, 나사를 푼 뒤 마운트를 연결캡 위로 올릴 수 있습니다. 그러므로 장치를 교체할 때 마운트는 벽에서 제거할 필요가 없습니다. 나사를 푸는 것 만으로 충분합니다.

기계 부하가 높은 경우 진동 흡수 버전으로도 고정장치를 구입할 수 있습니다(BT-2HF-S)(참조 장 15 "주문 정보 및 액세서리").

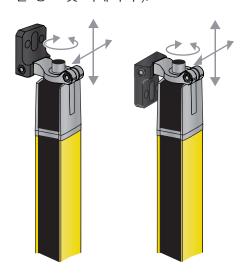


그림 6.8: 회전식 고정장치 BT-2HF을 사용한 설치

6.2.5 회전식 브래킷 BT-2SB10을 이용하여 고정

그림 6.9: 회전식 브래킷 BT-2SB10을 이용하여 설치

보호 필드 높이가 900mm 이상으로 높은 경우에는 회전식 브래킷 BT-2SB10의 사용을 권장합니다(참조장 15 "주문 정보 및 액세서리"). 높은 기계 수준을 요구하는 경우 진동 흡수 버전으로도 구입할 수 있습니다(BT-2SB10-S). 설치 상태, 주변 조건, 보호 필드 길이(>1200mm)에 따라 더 큰 고정장치가 필요할 수도 있습니다.

6.2.6 기계 테이블에 한쪽 면 고정

안전 센서는 M5 나사로 엔드캡의 막힌 구멍에 직접 기계 테이블에서 고정할 수 있습니다. 다른쪽 끝에는 예를 들어 회전식 고정 장치 BT-2HF을 사용하여 한쪽을 고정하더라도, 조절을 위한 회전 움직임을 가능하게 할 수도 있습니다. 이를 통해 안전 센서의 풀 해상도는 아래쪽 기계 테이블까지 보호 필드의 모든 곳을 유지합니다.

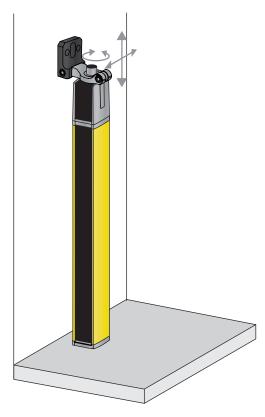


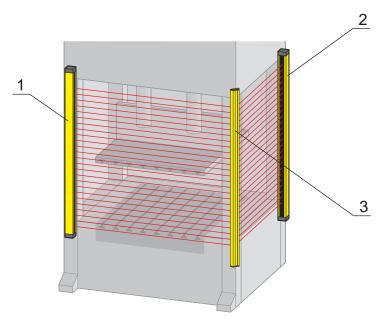
그림 6.10: 기계 테이블에 직접 고정

♠ 경고

기계 테이블의 반사 우회로 보호 기능에 영향을 미칠 위험 있음!

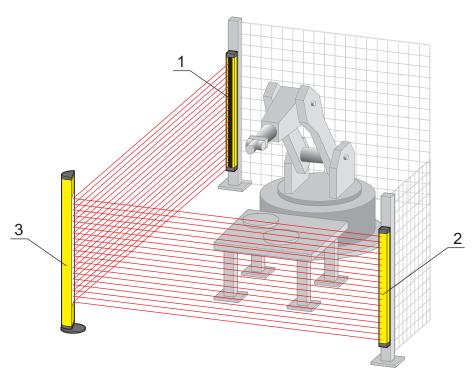
- ♥ 기계 테이블에서 반사 우회가 발생하지 않도록 조치를 취하십시오.
- ♥ 설치 직후 및 이후 매일 전체 보호 필드에서의 안전 센서의 감지 성능을 시험 막대기를 사용하여 검사하십시오(참조 장 9.3.1 "점검표 조작자가 정기적으로 실행").

6.3 부속품 설치


6.3.1 다면 안전 조치를 위한 편향 미러

다면 안전 조치를 위해서는 보호 필드를 하나 또는 두 개의 편향 미러를 사용하여 방향을 전환하는 것이 경제적입니다. Leuze electronic 제공 항목:

- 다양한 길이의 기계 고정용 편향 미러 UM60(참조 장 15 "주문 정보 및 액세서리")
- 적합한 회전식 고정장치 BT-2UM60
- 편향 미러 포스트 UMC-1000-S2 ~ UMC-1900-S2 독립형 바닥 장착을 위한 스프링 감쇠 밑받침


전환을 할 때마다 작동 범위가 약 10% 감소합니다. 송신기와 수신기의 정렬을 위해서는 적외선 레이저 조정 보조장치를 사용하는 것을 추천합니다(참조 장 8.3 "레이저 조정 보조장치를 이용한 편향 미러 정렬").

♥ 송신기와 첫 번째 편향미러 사이의 간격이 3m 이상이 되지 않도록 주의하십시오.

- 1 송신기
- 2 수신기
- 3 편향 미러 UM60

그림 6.11: 위험 지점의 2면 안전 조치를 위한 편항 미러 배열

- 1 송신기
- 2 수신기
- 3 편향 미러 포스트 UMC

그림 6.12: 위험 지점의 2면 안전 조치를 위한 편향 미러 배열

6.3.2 보호 디스크 MLC-PS

용접 불꽃으로 인해 안전 센서의 플라스틱 보호 스크린이 손상될 위험이 있을 때는, 보호 센서 앞에 설치하는 쉽게 교체할 수 있는 추가 보호 스크린 MLC-PS로 장치의 보호 스크린을 보호하고, 안전 센서의 가용성을 매우 높일 수 있습니다. 고정은 측면의 길이 방향 홈에 고정하는 특수 클램프 고정 장치를 이용하여 각각 전면에서 접근이 가능한 한 개의 소켓 헤드 나사로 이루어집니다. 안전 센서의 작동 범위가 약5% 감소하며, 송신기와 수신기에 보호 디스크를 사용했을 때는 약 10% 감소합니다. 2개와 3개의 클램프고정 장치가 포함된 고정 장치 세트를 구입할 수 있습니다.

참고

설치 길이 1,200mm부터는 3개의 클램프 고정 장치를 사용할 것을 권고합니다.

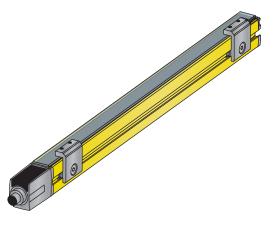


그림 6.13: MLC-2PSF 클램프 고정장치로 고정된 MLC-PS 보호 스크린

7 전기 연결

<u>^</u>

경고

결함있는 전기 연결 또는 잘못된 기능 선택으로 인한 심각한 사고 발생 위험!

- ♥ 전기 연결은 필요 자격을 갖춘 인력(참조 장 2.2 "필요 자격")만 시행하도록 합니다.
- ♥ 안전 센서에 과전류가 흐르지 않도록 반드시 안전 조치를 취하십시오.
- ♥ 접근 안전장치에서 시동/재시동 인터로크를 활성화하고, 위험 구역으로부터 해제하지 않도록 주의하십시오.
- ♥ 안전 센서가 규정에 맞게 사용되도록 기능을 선택하십시오(참조 장 2.1 "적합한 사용 및 예측 가능한 잘못된 사용").
- ♥ 안전 센서를 사용하기 위해 안전 관련 기능을 선택하십시오(참조 장 4 "기능").
- ♥ 원칙적으로 두 안전 스위치 출력부 OSSD1와 OSSD2를 기계의 워킹 그룹에 연결하십시오.
- ♥ 스위치 출력부는 안전 관련 신호를 켜기 위해 사용해서는 안 됩니다.

참고

SELV/PELV!

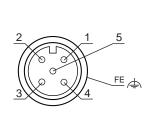
♥ 외부 전원 공급장치는 EN 60204-1에 따라 20ms 동안 정전을 잠시 바이패스해야 합니다. 전원 공급 장치는 전원에서 안전하게 분리할 수 있어야 하며(SELV/PELV), 최소 2A의 예비 전류를 사용할 수 있어야 합니다.

참고

라인 배치!

- ♥ 모든 연결 라인 및 신호 라인을 전기장치함 내에 배치하거나 케이블 덕트에 계속 배치하십시오.
- ♥ 외피가 손상되지 않도록 라인을 배치하십시오.
- ♥ 상세 정보: EN ISO 13849-2, 표 D.4 참조.

참고

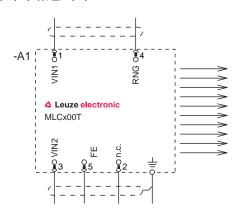


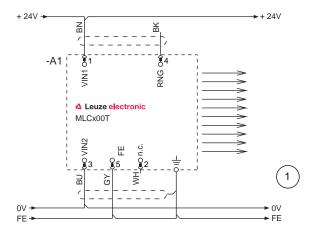
특수한 EMC 부하가 있는 상황에서는 절연 케이블을 사용하는 것을 추천합니다.

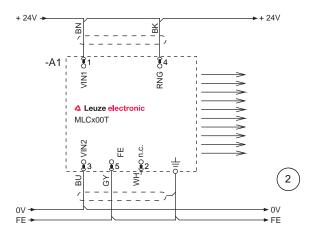
7.1 송신기와 수신기 커넥터 할당

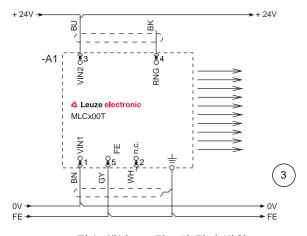
7.1.1 송신기 MLC 500

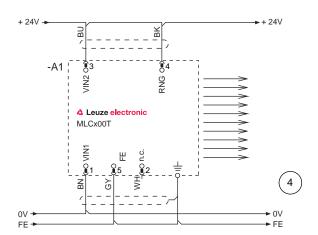
송신기 MLC 500에는 5핀 M12 원형 커넥터가 장착되어 있습니다.




그림 7.1: 송신기 플러그 배열 및 연결도


표 7.1: 송신기 커넥터 할당 MLC 500


핀	와이어 색상(CB-M12-xx000E-5GF)	송신기
1	갈색	VIN1 - 공급 전압
2	흰색	n.c.
3	청색	VIN2 - 공급 전압
4	흑색	RNG - 감지 범위 (+24V 기본 감지 범위, 0V 축소된 감지 범위)
5	회색	FE - 기능 접지, 차폐
FE		FE - 기능 접지, 차폐


공급 전압의 극성이 송신기의 전송 채널을 선택합니다:

- VIN1 = +24V, VIN2 = 0V: 전송 채널 C1
- VIN1 = 0V, VIN2 = +24V: 전송 채널 C2

- 1 전송 채널 C1, 감소된 감지 범위
- 2 전송 채널 C1, 표준 감지 범위
- 3 전송 채널 C2, 감소된 감지 범위
- 4 전송 채널 C2, 표준 감지 범위

그림 7.2: 송신기 연결 사례

7.1.2 수신기 MLC 510.1

수신기 MLC 510.1은 5핀 M12 원형 커넥터가 장착되어 있습니다.

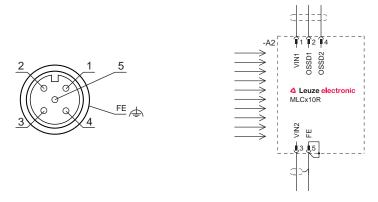


그림 7.3: 수신기 플러그 배열 및 연결도

표 7.2: 수신기 커넥터 할당

핀	와이어 색상(CB-M12-xx000E-5GF)	수신기
1	갈색	VIN1 - 공급 전압
2	흰색	OSSD1 - 안전 스위치 출력부
3	청색	VIN2 - 공급 전압
4	흑색	OSSD2 - 안전 스위치 출력부
5	회색	FE - 기능 접지, 차폐
		장치 내부적으로 하우징에 배선 연결
FE		FE - 기능 접지, 차폐

공급 전압의 극성이 수신기의 전송 채널을 선택합니다:

- VIN1 = +24V, VIN2 = 0V: 전송 채널 C1
- VIN1 = 0V, VIN2 = +24V: 전송 채널 C2

전기 연결 Leuze

7.2 회로 예

7.2.1 스위칭 예 MLC 510.1

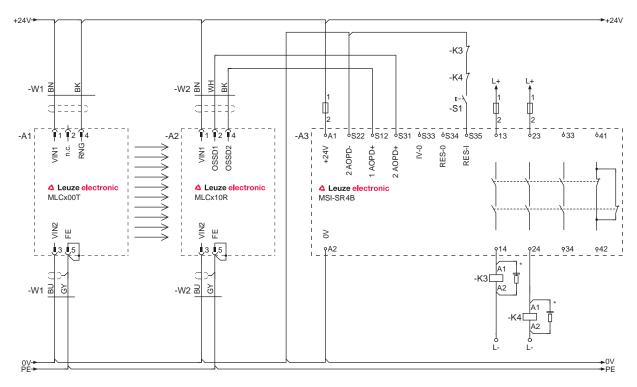


그림 7.4: 후속 작동하는 안전 스위칭 장치 MSI-SR4B 회로 예

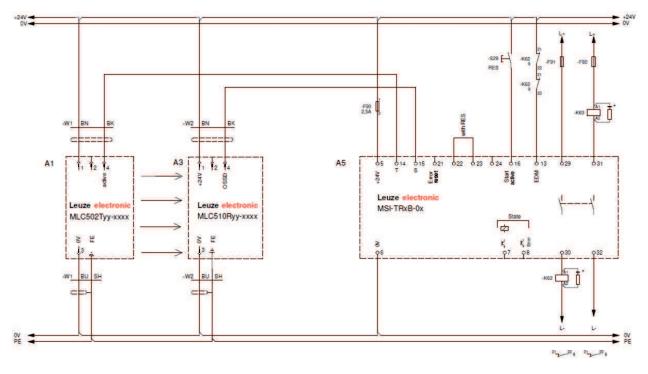


그림 7.5: EDM 기능이 있는 외부 테스트 장치 MSI-TRxB-0x 회로 예

8 작동

⚠ 경고

규정에 맞지 않게 적용된 안전 센서로 인한 심각한 부상 위험!

- ♥ 모든 기기와 광전자 보호 장치의 통합이 필요 자격을 갖추고 작업을 위임받은 인력(참조 장 2.2 "필요 자격")이 검사했는지 확인하십시오.
- ♥ 위험을 초래할 수 있는 공정은 반드시 안전 센서가 켜진 경우에 한해 시작할 수 있는지 확인하십시오.

전제조건:

- 안전 센서를 올바르게 설치하고(참조 장 6 "설치") 연결합니다(참조 장 7 "전기 연결")
- 조작자는 정확하게 사용하도록 교육받았습니다
- 위험을 초래하는 공정에 전원을 차단하고, 안전 센서의 출력 단자를 분리하고 장치가 다시 켜지지 않 도록 안전 조치를 취했습니다
- ♥ 시운전 후에 안전 센서의 기능을 점검하십시오(참조 장 9.1 "시운전 이전과 변경 이후").

8.1 켜짐

공급 전압(전원)에 대한 요구 사항:

- 안전한 전원 분리를 보장해야 합니다.
- 최소 2A의 예비 전류를 사용할 수 있어야 합니다.
- ♥ 안전 센서를 켜십시오.
- ⇨ 안전 센서가 자가 테스트를 실행합니다.

센서 사용 준비 여부를 검사하십시오

- ♥ LED1에 지속적으로 녹색불 또는 적색불이 들어오는지 검사하십시오(참조 장 3.3.2 "수신기에서의 작동 표시기 MLC 510.1").
- ⇒ 안전 센서 사용 준비가 완료되었습니다.

8.2 센서 정렬

참고

잘못되거나 불완전한 정렬로 인한 작동 장애!

- ♥ 정렬은 시운전의 일부로 반드시 필요 자격을 갖춘 인력(참조 장 2.2 "필요 자격")이 실행해 야 합니다.
- ♥ 개별 부품의 데이터 서류와 설치 설명서에 유의하십시오.

사전 조정

송신기와 수신기를 수직 또는 수평 상태로 같은 높이에 고정하여

- 프런트 디스크가 서로를 향하도록 하십시오.
- 송신기와 수신기의 연결부가 같은 방향을 가리키게 하십시오.
- 송신기와 수신기는 서로 병행으로 배치하십시오. 즉 기계의 처음과 끝에서 서로 같은 간격을 가지게 하십시오.

보호 필드가 비어 있는 경우 LED를 지켜보면서 설정할 수 있습니다(참조 장 3.3 "표시 장치").

♥ 고정 장치 또는 장치 포스트의 나사를 푸십시오.

참고

나사를 장치가 움직일 수 있을 정도로만 느슨하게 하십시오.

- ♥ 수신기를 LED 1에 아직 녹색불이 깜박일 때까지 또는 적색 불이 들어오지 않을 때까지 왼쪽으로 돌리십시오. 필요한 경우 사전에 송신기도 돌려야 합니다.
- ♥ 회전각의 값을 기록하십시오.
- ♥ 수신기를 LED 1에 아직 녹색불이 깜박일 때까지 또는 적색 불이 들어오지 않을 때까지 오른쪽으로 돌리십시오.
- ♥ 회전각의 값을 기록하십시오.
- Ს 수신기의 최적 위치를 설정하십시오. 이 위치는 왼쪽과 오른쪽 두 회전각의 중간입니다.
- ♥ 수신기 고정 나사를 단단히 조이십시오.
- ♥ 이제 송신기도 같은 방법을 사용하여 정렬하고, 이때 수신기의 디스플레이 유닛에 주의를 기울이십시오(참조 장 3.3.2 "수신기에서의 작동 표시기 MLC 510.1").

참고

AC-ALM과 같은 별도의 정렬 보조 장치도 액세서리로 구매할 수 있습니다.

8.3 레이저 조정 보조장치를 이용한 편향 미러 정렬

다방면 위험 지점 안전 조치 및 입구 안전 조치에 편향 미러를 사용할 때, 외부 레이저 조정 보조장치 사용을 권고합니다(참조 장 15 "주문 정보 및 액세서리").

참고

외부 레이저 조정 보조장치는 명확하게 눈에 보이는 적색 광점을 통해 송신기와 수신기는 물론, 편향 미러도 정확하게 설정할 수 있도록 도와줍니다.

- ♥ 레이저 조정 보조장치를 송신기의 측면 홈 위쪽에 고정하십시오. 설치 설명서는 액세서리에 동봉되어 전달됩니다.
- ♥ 레이저를 켜십시오. 레이저 조정 보조장치의 사용 설명서의 안전 지침과 레이저 조정 보조장치 활성화 내용에 주의를 기울이십시오.
- ♥ 송신기의 고정 장치를 푼 뒤 장치를 돌리고/기울이고/젖혀서 레이저 포인트가 첫 번째 편향 미러의 위쪽에 닿도록 하십시오(참조 장 6.2.2 "움직임 방향 정의").
- 🕓 이제 레이저를 아래쪽 송신기에 설치하고, 레이저 포인트가 아래쪽 편향 미러에 닿도록 하십시오.
- ♥ 레이저를 다시 위쪽 송신기에 설치하고, 레이저 포인트 점이 여전히 위쪽 편향 미러에 닿는지 점검하십시오. 그러지 않으면, 경우에 따라 송신기의 설치 높이를 변경해야 합니다.
- ♥ 레이저가 아래쪽에서도 위쪽에서도 모두 편향 미러의 해당 포인트에 닿을 때까지 이 과정을 반복하십시오.
- ♥ 편향 미러를 돌리고 기울이고 젖혀서 양쪽 위치의 레이저 포인트가 다음 편향 미러 또는 수신기에 닿도록 정렬하십시오.
- ▶ 위쪽과 아래쪽 수신기에 레이저 조정 보조장치를 장착한 뒤 같은 과정을 반대로 반복하십시오. 레이저 빔은 정확하게 방향이 설정된 수신기에서 두 가지 경우에 송신기에 수신되어야 합니다.
- ♥ 레이저 조정 보조장치를 안전 센서에서 제거하십시오.
- ⇒ 보호 필드가 비어 있습니다. 수신기의 LED1에 녹색불이 지속적으로 들어옵니다. OSSD가 켜집니다.

9 점검

참고

- ♥ 안전 센서는 사용 기간에 따라 교체해야 합니다(참조 장 14 "기술 데이터").
- ♥ 안전 센서는 항상 전체를 교체하십시오.
- ♥ 필요한 경우 점검에 적용되는 국가별 규정을 준수하십시오.
- 🦠 모든 점검을 이해할 수 있는 방법으로 기록하고, 안전 거리와 최소 거리에 관한 정보를 포함 한 안전 센서 구성 내역을 서류에 첨부하십시오.

9.1 시운전 이전과 변경 이후

⚠ 경고

시운전 시 예상할 수 없는 기계의 동작에 의한 중상 위험!

♥ 위험 구역에 사람이 없는지 확인하십시오.

- ♥ 조작자가 작업하기 전 교육을 시행십시오. 교육 책임자는 기계 운용자입니다.
- 🦠 예를 들어 해당 장을 복사하는 것과 같은 방법으로 일일 검사에 대한 주의사항을 조작자의 모국어로 잘 알아볼 수 있도록 써서 기계에 붙이십시오(참조 장 9.3 "조작자가 정기적으로 실행").
- ♥ 이 문서를 참조하여 전기적 기능 및 설치를 점검하십시오.

IEC 62046 및 국내 규정(예: EU 가이드라인 2009/104/EC)에 따라 점검은 자격을 갖춘 인력(참조 장 2.2 "필 요 자격")이 다음과 같은 상황에서 실시하도록 규정되어 있습니다.

- 시운전 전
- 기계 변경 후
- 장비를 오랫동안 정지한 후
- 기계를 변환하거나 재구성한 후
- ♥ 준비 시 다음 점검표를 참조하여 안전 센서에 대한 중요 기준을 확인하십시오(참조 장 9.1.1 "적분 회로 점검표 - 시운전 이전과 변경 후"). 점검표 확인은 자격을 갖춘 인력이 실행하는 점검을 대체할 수 없습 니다(참조 장 2.2 "필요 자격")!
- ⇒ 안전 센서가 올바르게 작동하는지 확인한 후에만 안전 센서를 장치의 제어 회로에 연결해야 합니다.

9.1.1 적분 회로 점검표 - 시운전 이전과 변경 후

참고

점검표를 확인했다고 해서 자격을 필요 갖춘 인력(참조 장 2.2 "필요 자격")이 실행해야 하는 점검을 하지 않아도 되는 것은 아닙니다!

- ♥ 점검표의 항목 중 **아니요**라고 대답해야 하는 항목이 있는 경우에는 기계를 더 작동해서는 안 됩니다.
- ♥ 보호장비 점검에 대한 추가 권장 사항은 IEC 62046을 참조하십시오

丑 9.1: 적분 회로 점검표 - 최초 시운전 이전과 변경 후

다음을 점검하십시오:	예	아니요	사용 불가
안전 센서가 규정된 특별 환경 조건에 맞게 작동합니까(참조 장 14 "기술 데이터")?			
안전 센서가 올바르게 정렬되고 모든 고정 나사와 커넥터가 단단히 고정되어 있습니까?			

다음을 점검하십시오:	예	아니요	사용 불가
안전 센서, 연결 케이블, 커넥터, 보호 캡 및 명령장치가 손상되어 있지 않고 부적절하게 변경된 징후가 없습니까?			
안전 센서가 요구되는 안전 등급(PL, SIL, 범주)에 부합합니까?			
두 안전 스위치 출력부(OSSD)가 필요한 안전 범주에 따라 다음의 기계 제어장치에 연결되어 있습니까?			
안전 센서에 의해 제어되는 스위칭 소자가 요구되는 안전 등급(PL, SIL, 범주)에 따라 모니터링되고 있습니까(예:EDM에 의한 컨택터 모니터링).?			
안전 센서의 보호 필드를 통해서만 안전 센서 주변의 모든 위험 영역에 접근할 수 있습니까?			
필요한 추가 보호장비(예: 보호 난간)가 주변에 올바르게 설치되어 있고 부적절하게 변경하지 못하도록 보호되어 있습니까?			
안전 센서와 위험 영역 사이에 사람이 있는 것이 감지되지 않을 수 있는 경우: 설치된 시동/재시동 인터로크가 올바르게 작동합니까?			
위험 영역에서 접근할 수 없고 설치 위치에서 위험 영역 전체를 감시할 수 있도록 시동/재시동 인터로크 잠금 해제 명령 장치가 부착되어 있습니까?			
기계의 최대 애프터런 시간을 측정하고 기록하였습니까?			
필수 안전 거리를 준수합니까?			
시험용으로 준비된 대상물을 이용하여 중단하면 위험을 초래하는 동 작이 중단됩니까?			
위험을 초래하는 동작이 있는 동안 안전 센서가 정상적으로 작동합니까?			
기계의 모든 관련 작동 모드에서 안전 센서가 정상적으로 작동합니까?			
시험용으로 준비된 대상물을 이용하여 활성화된 빔 또는 보호 필드를 차단하면 위험을 초래하는 동작의 시작이 확실하게 방지됩니까?			
센서 감지 성능(참조 장 9.3.1 "점검표 - 조작자가 정기적으로 실행")의 점검이 성공적으로 실행되었습니까?			
기획 도중 반사면과의 간격을 준수하였으며 반사 우회가 발견되지 않았습니까?			
조작자를 위한 안전 센서의 정기 검사에 대한 참고 사항이 잘 보이도록 부착되어 있습니까?			
보호 기능(예: SPG, 블랭킹, 보호필드 전환) 변경을 간단한 방식으로 조작할 수 없습니까?			
안전하지 않은 상태가 발생할 수 있는 설정을 키, 암호, 공구를 이용해 서만 실행할 수 있습니까?			
부적절한 변경이 발생할 수 있는 징후가 있습니까?			
조작자가 작업을 실행하기 전에 교육을 받았습니까?			

9.2 자격을 갖춘 인력에 의해 정기적으로

기계의 변경 또는 안전 센서의 허용되지 않은 부적절한 변경을 발견할 수 있도록, 필요 자격을 갖춘 인력 (참조 장 2.2 "필요 자격")이 안전 센서와 기계가 안전하게 상호 작용하는지 정기적으로 검사해야 합니다.

IEC 62046 및 국가 규정(예: EU 지침 2009/104/EC)에 따라 마모 부품 점검은 필요 자격을 갖춘 인력(참조 장 2.2 "필요 자격")이 정기적으로 실행하도록 규정되어 있습니다. 국가 규정에는 경우에 따라 점검 주기가 규정되어 있습니다(IEC 62046에 따른 권장 검사 주기: 6개월).

- 🏷 모든 점검은 필요 자격을 갖춘 인력(참조 장 2.2 "필요 자격")이 시행하도록 합니다.
- ♥ 국가별 관련 법률과 그 법률에 규정된 기한을 고려하십시오.
- Ს 준비 절차로 점검표를 확인하십시오(참조 장 9.1 "시운전 이전과 변경 이후").

9.3 조작자가 정기적으로 실행

안전 센서의 기능은 위험도에 따라 다음의 점검표를 참조하여 점검해야 합니다. 이를 통해 손상 또는 허용 되지 않은 부적절한 변경을 확인할 수 있습니다.

점검 주기는 위험성 평가에 따라 통합자 또는 운용자가 결정해야 합니다(예: 매일, 근무 교대 시). 또는 국 가 규정이나 노동 조합 규정에 따라 기계 유형별로 규정되어 있습니다.

복합 기계와 프로세스로 인해 경우에 따라 일부 항목은 긴 주기로 점검해야 할 수 있습니다. 그러므로 "최 소 점검 사항" 및 "경우에 따라 점검"으로 구분됨에 주의하십시오.

참고

송신기와 수신기 사이의 간격이 넓고 편향 미러를 사용하는 경우에는 보조자가 필요할 수 있습 니다.

검사 시에 예상할 수 없는 장비의 동작에 의한 중상 위험!

- ♥ 위험 구역에 사람이 없는지 확인하십시오.
- ♥ 작업을 시작하기 전에 조작자가 교육을 받도록 하고 적합한 시험용 대상물과 점검 지침을 전달하십시오.

9.3.1 점검표 - 조작자가 정기적으로 실행

참고

♥ 점검표의 항목 중 **아니요**라고 대답해야 하는 항목이 있는 경우에는 기계를 더 작동해서는 안 됩니다.

표 9.2: 점검표 - 교육을 받은 조작자/사람이 기능 정기 점검

최소 점검 사항:	예	아니 요
안전 센서 및 커넥터가 단단히 조립되어 있으며, 명백하게 손상, 변경 또는 조작된 부분이 없습니까?		
접근 또는 출입 방법에 명백한 변동 사항이 발생하지 않았습니까?		
안전 센서의 올바른 작동 여부를 점검하십시오:		
• 안전 센서의 LED 1가 녹색으로 켜져야 합니다(참조 장 3.3.2 "수신기에서의 작동 표 시기 MLC 510.1").		
• 적합한 빛 비투과성 시험용 대상물로 활성화된 빔 또는 보호 필드를 중단하십시오 (그림 참조).		
시험 막대기로 보호필드 기능을 점검하십시오(해상도가 14 ~ 40mm인 안전 라이트 커튼에만 해당) 분해능 범위가 서로 다른 라이트 커튼의 경우 각 분해능 범위에 대한 점검을 별도로 진행해야 합니다.		
• 보호 필드 중단 시 수신기의 OSSD LED가 계속 적색으로 점등되어 있습니까?		

작동 중 경우에 따라 점검:	예	아니 요
접근 기능이 있는 보호장비: 기계 작동이 시작되면 시험용 대상물에 의해 보호 필드가 차 단됩니다. 이때 위험을 초래하는 기계 부품이 즉시 정지합니까?		
존재 여부 감지 기능이 있는 보호장비: 시험용 대상물에 의해 보호 필드가 차단됩니다. 이때 위험을 초래하는 기계 부품이 작동하지 않습니까?		

관리 Leuze

10 관리

참고

수신기와 송신기 오염 시 작동 장애!

송신기와 수신기, 편향 리플렉터의 광선 입출구 위치에 전면 디스크의 표면이 긁히거나 거칠어져 있지 않아야 합니다.

♥ 화학 세제를 사용하지 마십시오.

청소를 위한 전제조건:

- 설비가 제대로 정지해 있거나 다시 켜지지 않도록 해야 합니다.
- ♥ 오염도에 따라 정기적으로 안전 센서를 청소하십시오.

참고

프런트 디스크의 정전하 발생 방지!

♥ 젖은 헝겊으로만 송신기 및 수신기의 프런트 디스크를 청소하십시오.

11 고장 제거하기

11.1 고장인 경우 조치 사항

디스플레이 장치(참조 장 3.3 "표시 장치")를 통해 안전 센서가 켜진 후에 정상적인 기능과 고장 발견을 쉽게 할 수 있습니다.

고장인 경우에는 LED 디스플레이에서 고장을 감지하거나 7 세그먼트 디스플레이에서 메시지를 판독할 수 있습니다. 오류 메시지에 따라 오류 원인을 확인하고 고장 제거를 위한 조치를 취합니다.

참고

안전 센서가 오류 메시지를 보내올 경우, 고장 원인을 스스로 해결할 수 있는 경우가 자주 있습니다!

- ♥ 기계의 전원을 끄고 끈 상태로 놓아두십시오.
- ♥ 다음 표를 이용하여 고장 원인을 분석하고 고장을 제거하십시오.
- ♥ 고장을 제거할 수 없는 경우에는 담당 Leuze electronic 대리점이나 Leuze electronic 고객 서비스에 연락하십시오(참조 장 13 "서비스 및 지원").

11.2 발광 다이오드의 작동 표시

표 11.1: LED 표시등 송신기 원인과 조치

LED	상태	원인	조치
LED1	꺼짐	전원이 연결되지 않은 송신 기	전원 및 전기 연결을 점검하십시오. 필요 한 경우 전원을 교환하십시오.
	적색	장치 고장	장치를 교체하십시오.

표 11.2: LED 표시등 수신기 원인과 조치

LED	상태	원인	조치
LED1	꺼짐	장치 고장	장치를 교체하십시오.
	적 색	방향이 올바르지 않거나 보 호 필드가 중단	보호 필드에서 모든 대상물을 제거하십시 오. 송신기와 수신기를 서로 정렬하거나 블랭킹되는 대상물을 크기와 위치가 정확 하게 위치하게 하십시오.
	적색	수신기는 C1,	송신기와 수신기를 같은 전송 채널로 설정
	(송신기 LED는 둘 다 녹색)	송신기는 C2에 설치되었습니 다	하고, 양쪽을 정확하게 정렬하십시오.
	적 색	수신기는 C2,	보호 필드에서 모든 대상물을 제거하십시
	(송신기 LED1은 녹 색)	송신기는 C1에 설치되었습니 다	오. 송신기와 수신기를 서로 정렬하거나 블랭킹되는 대상물을 크기와 위치가 정확 하게 위치하게 하십시오.
	적색 천천히 깜빡임 (약 1Hz)	외부 오류	전선과 제어 신호의 연결을 점검하십시오.
	적색 빠르게 깜빡임 (약 10Hz)	내부 오류	새로 시작해도 소용이 없으면 장치를 교체 하십시오.
	녹색 천천히 깜빡임 (약 1Hz)	오염 또는 잘못된 방향으로 인한 신호 미약	프런트 디스크를 청소하고, 송신기와 수신 기의 방향을 점검하십시오.

폐기 Leuze

12 폐기

♥ 페기 시 전기 부품에 대한 국가별 유효 규정을 준수하십시오.

서비스 및 지원

13 서비스 및 지원

24시간 서비스 전화번호: +49 7021 573-0

서비스 핫라인: +49 7021 573-123

이메일: service.protect@leuze.de

수리 제품 반송 주소: Leuze electronic GmbH + Co. KG 서비스 센터 In der Braike 1 D-73277 Owen / Germany

14 기술 데이터

14.1 일반 데이터

표 14.1: 보호필드 데이터

물리적 해상도	감지 범위 [m]		보호 필드 높이 [mm]	
[mm]	최소	최대	최소	최대
14	0	6	150	3000
30	0	10	150	3000

표 14.2: 안전과 관련된 기술 데이터

IEC 61496에 따른 Type	Type 4
IEC 61508 기준에 따른 SIL	SIL 3
IEC 62061 기준에 따른 SILCL	SILCL 3
ISO 13849-1에 따른 퍼포먼스 레벨(PL)	PL e
ISO 13849-1에 따른 카테고리	범주 4
시간당 위험한 고장의 평균 발생 확률(PFH _d)	7.73x10 ⁻⁹ 1/h
사용 기간(T _M)	20년

표 14.3: 일반 시스템 데이터

연결 기술	M12, 5핀
전원 U _v 송신기와 수신기	+24V, ± 20%, 20ms 전압 강하 시 보정 필요, 최소 250mA(+ OSSD 부하)
전원의 리플	U,의 한계 내에서 ±5%
송신기 소비 전력	50mA
수신기 소비 전력	150mA(무부하)
송신기와 수신기 공급 라인의 퓨즈 공통 값	2A 시간 지연
동기화	송신기와 수신기 사이 시각적
보호 등급	III
보호 등급	IP 65
작동 시 주변 온도	-30° ~ 55 °C
	온도 범위는 변할 수 있으며, 각 명판이 결정적인 역 할을 합니다.
보관 시 주변 온도	-30° ~ 70 °C
MLCxxx/V 작동 시 주변 온도	0 ~ 55°C
상대 습도(응축되지 않음)	0 ~ 95%

진동 내성	50m/s² 가속, 10 - 55Hz, IEC 60068-2-6에 따름; 0.35mm 진폭
진동 내성 MLCxxx/V	IEC 60068-2-6에 따라 55~2000Hz
	• 55-116Hz: ±0.75mm 진폭
	• 116-2000Hz: 200m/s² 가속(또는 진동 응답 < 400m/s²)
	• 활성화 축: 모든 3개 공간축
	• 주파수 변경: 1Okt/min
	• 주파수 스위프 횟수: 축당 100 스위프(50 주기)
충격 내성	100m/s² 가속, 16ms, IEC 60068-2-6에 따름
프로파일 단면	29mm x 35.4mm
치수	치수, 무게, 응답 시간
무게	치수, 무게, 응답 시간

표 14.4: 시스템 데이터 송신기

광원	LED, 면제 그룹(IEC 62471에 따름)
파장 길이	940nm
펄스 지속 시간	800ns
펄스 중단 시간	1.9µs(최소)
중간 출력	<50 μW
입력 전류 핀 4(범위)	+24V에 대해: 10mA
	0V에 대해: 10mA

표 14.5: 수신기에 있는 전자 안전 스위치 출력부(OSSD)의 기술 데이터

안전 관련 pnp 트랜지스터 출력(단락 모 니터링, 교차 단락 모니터링)	최소	보통	최대
스위칭 전압 높음 활성(U _v - 1.5V)	18V	22.5V	27V
스위칭 전압 낮음		0V	+2.5V
스위칭 전류		300mA	380mA
잔여 전류		<2 μΑ	200 μA 오류가 있는 경우(0V 케이블의 단선) 출력부는 Uv에 따라 각각 120kΩ 저항처럼 처리됩니다. 후 속 작동하는 안전 PLC가 이를 논 리적 "1"로 인식해서는 안 됩니 다.
부하 용량			0.3 μF
부하 인덕턴스			2H
부하에 허용되는 부하 저항			<200 Ω 전선 길이와 부하 전류로 인한 다른 제한에 유의하십시오.
허용되는 코어 단면 길이		0.25mm ²	

안전 관련 pnp 트랜지스터 출력(단락 모 니터링, 교차 단락 모니터링)	최소	보통	최대
허용되는 수신기와 부하 사이의 전선 길이			100m
테스트 펄스폭		60 µs	340 μs
테스트 펄스 간격	(5ms)	60ms	
빔 중단 후 OSSD 재시작 시간		100ms	

참고

안전 관련 트랜지스터 출력부가 서지 전압 억제를 수행합니다. 이 때문에 트랜지스터 출력부에는 보호 장치 제조업체 또는 밸브 제조업체가 권고하는 스파크 억제기(RC 몸체, 배리스터 또는 플라이백 다이오드)가 필요하지도 않고, 허용하지 않습니다. 이 제품은 유도 스위칭 요소의 강압시간을 훨씬 연장합니다.

표 14.6: 특허

미국 특허	US 6,418,546 B
-------	----------------

14.2 치수, 무게, 응답 시간

치수, 무게, 응답 시간은 다음 사항에 따라 달라집니다

- 해상도
- 장치 길이

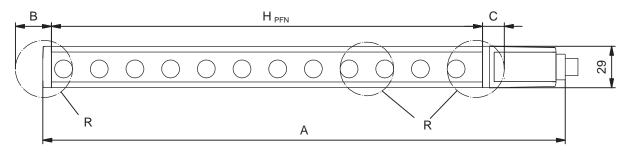


그림 14.1: 송신기와 수신기의 치수

효과적인 보호 필드 높이 H_{PFE}는 광학 영역의 치수를 넘어 R로 표시된 원의 외부 가장자리까지입니다.

효과적인 보호 필드 높이 계산

 $H_{PFE} = H_{PFN} + B + C$

H_{PFE} [mm] = 효과적으로 작용하는 보호 필드 높이

H_{PFN} [mm] = 공칭 보호 필드 높이, 황색 하우징 부분의 길이에 따름(아래 표 참조)

A [mm] = 전체 높이

B [mm] = 효과적으로 작용하는 보호 필드 높이를 계산하기 위해 추가적으로 필요한 치수(아래 표 참조)

C [mm] = 효과적으로 작용하는 보호 필드 높이를 계산하기 위해 필요한 값(아래 표 참조)

표 14.7: 지수(공칭 보호 필드 높이), 무게 및 응답 시간

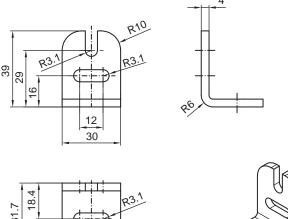

장치 종류	류 송신기 및 수신기		수신기		
	치수 [m	m]	무게 [kg]	해상도에 따른 응답 시간 [ms]	
유형	H _{PFN}	Α		14mm	30mm
MLC150	150	216	0.30	8	4
MLC300	300	366	0.45	14	7
MLC450	450	516	0.60	21	9
MLC600	600	666	0.75	27	12
MLC900	900	966	1.05	39	17
MLC1050	1050	1116	1.20	46	19
MLC1200	1200	1266	1.35	52	22
MLC1500	1500	1566	1.65	64	27
MLC1650	1650	1716	1.80	71	29
MLC1800	1800	1866	1.95	77	32
MLC2100	2100	2166	2.25	89	37
MLC2250	2250	2316	2.40	96	39
MLC2550	2550	2616	2.70	108	44

표 14.8: 효과적인 보호 필드 높이 계산을 위한 추가 치수

R = 해상도	В	С
14mm	6 mm	6 mm
30mm	19mm	9 mm

기술 데이터 Leuze

14.3 액세서리 치수 도면

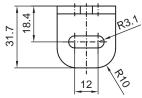


그림 14.2: 각도 고정 장치 BT-L

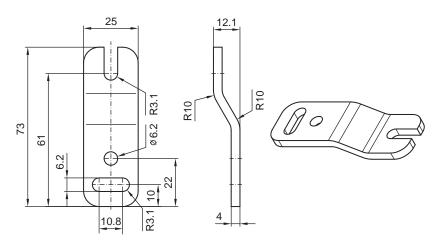


그림 14.3: 병렬 고정 장치 BT-Z

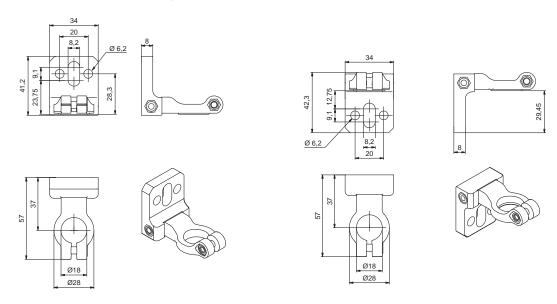


그림 14.4: 스위블 마운트 BT-2HF

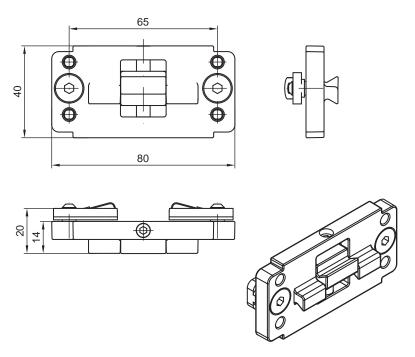


그림 14.5: UDC 장치 칼럼에 고정하기 위한 클램프 고정장치 BT-P40

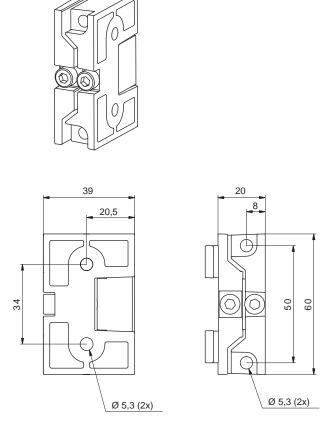


그림 14.6: 스윙 고정장치 BT-2SB10

15 주문 정보 및 액세서리

전문 용어

제품 명칭:

MLCxyy-za-hhhhei-ooo

표 15.1: 제품 키워드

MLC	안전 센서
х	시리즈: 3, MLC 300
х	시리즈: 5, MLC 500
уу	기능 등급:
	00: 송신기
	01: 송신기(AIDA)
	02: 시험 입력부가 있는 송신기
	10: 수신기 기본 - 자동 재시동
	11: 수신기 기본 - 자동 재시동(AIDA)
	20: 수신기 표준 - EDM/RES 선택가능
	30: 수신기 확장 - 블랭킹/뮤팅
z	장치 종류:
	T: 송신기
	R: 수신기
а	해상도:
	14: 14mm
	20: 20mm
	30: 30mm
	40: 40mm
	90: 90mm
hhhh	보호 필드 높이:
	150 ~ 3000: 150mm에서 3,000mm까지
е	호스트/게스트(옵션):
	H: Host
	MG: Middle Guest
	G: Guest
i	인터페이스(옵션):
	/A: AS-i
000	옵션:
	EX2: 폭발 방지(영역 2 + 22)
	/V: high Vibration-proof
	SPG: 스마트 프로세스 게이팅

표 15.2: 제품 설명, 사례

제품 설명 사례	특징
MLC500T14-600	송신기 유형 4, PL e, SIL 3, 해상도 14mm, 보호 필드 높이 600mm
MLC500T30-900	송신기 유형 4, PL e, SIL 3, 해상도 30mm, 보호 필드 높이 900mm
MLC510T90-1500	수신기 기본, 유형 4, PL e, SIL 3, 해상도 90mm, 보호 필드 높이 1,500mm

배송 구성물

- 2 슬롯 너트가 포함된 송신기, 1 주의 사항 설명서 포함
- 2 슬롯 너트가 포함된 수신기, 자가 접착식 주의 사항 표지판 중요 주의 사항과 장치 조작자를 위한 참고 사항, 1 연결 설명서와 사용 설명서(CD-ROM에 저장된 PDF 파일)

표 15.3: 해상도와 보호 필드 높이에 따른 송신기 MLC 500 제품 번호

보호 필드 높이 hhhh [mm]	14mm	30mm
	MLC500T14-hhhh	MLC500T30-hhhh
150	68000101	68000301
300	68000103	68000303
450	68000104	68000304
600	68000106	68000306
900	68000109	68000309
1050	68000110	68000310
1200	68000112	68000312
1500	68000115	68000315
1650	68000116	68000316
1800	68000118	68000318
2100	68000121	68000321
2250	68000122	68000322
2550	68000125	68000325

표 15.4: 해상도와 보호 필드 높이에 따른 수신기 MLC 510.1 제품 번호

보호 필드 높이 hhhh [mm]	14mm	30mm
	MLC510R14-hhhh.1	MLC510R30-hhhh.1
150	MLC510R14-150.1	MLC510R30-150.1
300	MLC510R14-300.1	MLC510R30-300.1
450	MLC510R14-450.1	MLC510R30-450.1
600	MLC510R14-600.1	MLC510R30-600.1
900	MLC510R14-900.1	MLC510R30-900.1
1050	MLC510R14-1050.1	MLC510R30-1050.1
1200	MLC510R14-1200.1	MLC510R30-1200.1
1500	MLC510R14-1500.1	MLC510R30-1500.1
1650	MLC510R14-1650.1	MLC510R30-1650.1
1800	MLC510R14-1800.1	MLC510R30-1800.1
2100	MLC510R14-2100.1	MLC510R30-2100.1
2250	MLC510R14-2250.1	MLC510R30-2250.1
2550	MLC510R14-2550.1	MLC510R30-2550.1

표 15.5: 액세서리

품목 번호	품목	설명		
송신기 MLC 500과	송신기 MLC 500과 수신기 MLC 510.1용 연결 케이블, 차폐됨			
50133860	KD S-M12-5A-P1-050	연결 케이블 5핀, 길이 5m		
50133861	KD S-M12-5A-P1-100	연결 케이블 5핀, 길이 10m		
678057	CB-M12-15000E-5GF	연결 케이블 5핀, 길이 15m		
678058	CB-M12-25000E-5GF	연결 케이블 5핀, 길이 25m		
50137013	KD S-M12-5A-P1-500	연결 케이블 5핀, 길이 50m		
송신기 MLC 500과 수신기 MLC 510.1용 연결 케이블, 차폐 안 됨				
50133841	KD U-M12-5A-P1-050	연결 케이블 5핀, 길이 5m		
50132534	KD U-M12-5A-P1-100	연결 케이블 5핀, 길이 10m		
429088	CB-M12-15000-5GF	연결 케이블 5핀, 길이 15m		
429089	CB-M12-25000-5GF	연결 케이블 5핀, 길이 25m		
429281	CB-M12-50000-5GF	연결 케이블 5핀, 길이 50m		
송신기 MLC 500 과 수신기 MLC 510.1용 조립식 커넥터				
429175	CB-M12-5GF	소켓 전선, 5핀, 금속 하우징, 하우징 차폐		

품목 번호	품목	설명
고정 기술		
429056	BT-2L	L 고정각, 2개
429057	BT-2Z	Z 고정 장치, 2개
429393	BT-2HF	360° 회전 고정장치 2개, MLC 실린더 1개 포함
429394	BT-2HF-S	360° 회전 고정장치(진동 흡수) 2개, MLC 실린더 1개 포함
424417	BT-2P40	장착 세트, 2개의 클램프 브래킷 BT-P40으로 구성, 장치 칼럼 UDC-S2에 고정하기 위함
424422	BT-2SB10	홈 설치용 스윙 고정장치, ± 8°, 2개
424423	BT-2SB10-S	홈 설치용 스윙 고정장치, ± 8°, 진동 흡수, 2개
425740	BT-10NC60	M6 스레드가 있는 슬롯 너트, 10개
425741	BT-10NC64	M6, M4 스레드가 있는 슬롯 너트, 10개
425742	BT-10NC65	M6, M5 스레드가 있는 슬롯 너트, 10개
장치 칼럼		
549855	UDC-900-S2	장치 포스트, U형, 프로필 높이 900mm
549856	UDC-1000-S2	장치 포스트, U형, 프로필 높이 1,000mm
549852	UDC-1300-S2	장치 포스트, U형, 프로필 높이 1,300mm
549853	UDC-1600-S2	장치 포스트, U형, 프로필 높이 1,600mm
549854	UDC-1900-S2	장치 포스트, U형, 프로필 높이 1,900mm
549857	UDC-2500-S2	장치 포스트, U형, 프로필 높이 2,500mm
편향 미러 포스트		
549780	UMC-1000-S2	편향 미러 포스트, 통과형 1,000mm
549781	UMC-1300-S2	편향 미러 포스트, 통과형 1,300mm
549782	UMC-1600-S2	편향 미러 포스트, 통과형 1,600mm
549783	UMC-1900-S2	편향 미러 포스트, 통과형 1,900mm

품목 번호	품목	설명
편향 미러		
529601	UM60-150	편향 미러, 미러 길이 210mm
529603	UM60-300	편향 미러, 미러 길이 360mm
529604	UM60-450	편향 미러, 미러 길이 510mm
529606	UM60-600	편향 미러, 미러 길이 660mm
529607	UM60-750	편향 미러, 미러 길이 810mm
529609	UM60-900	편향 미러, 미러 길이 960mm
529610	UM60-1050	편향 미러, 미러 길이 1,110mm
529612	UM60-1200	편향 미러, 미러 길이 1,260mm
529613	UM60-1350	편향 미러, 미러 길이 1,410mm
529615	UM60-1500	편향 미러, 미러 길이 1,560mm
529616	UM60-1650	편향 미러, 미러 길이 1,710mm
529618	UM60-1800	편향 미러, 미러 길이 1,860mm
430105	BT-2UM60	UM60용 고정 장치, 2개
보호 디스크		
347070	MLC-PS150	보호 디스크, 길이 148mm
347071	MLC-PS225	보호 디스크, 길이 223mm
347072	MLC-PS300	보호 디스크, 길이 298mm
347073	MLC-PS450	보호 디스크, 길이 448mm
347074	MLC-PS600	보호 디스크, 길이 598mm
347075	MLC-PS750	보호 디스크, 길이 748mm
347076	MLC-PS900	보호 디스크, 길이 898mm
347077	MLC-PS1050	보호 디스크, 길이 1,048mm
347078	MLC-PS1200	보호 디스크, 길이 1,198mm
347079	MLC-PS1350	보호 디스크, 길이 1,348mm
347080	MLC-PS1500	보호 디스크, 길이 1,498mm
347081	MLC-PS1650	보호 디스크, 길이 1,648mm
347082	MLC-PS1800	보호 디스크, 길이 1,798mm
429038	MLC-2PSF	MLC 보호 디스크용 고정 부품, 2개
429039	MLC-3PSF	MLC 보호 디스크용 고정 부품, 3개

품목 번호	품목	설명
레이저 조정 보조장치		
560020	LA-78U	외부 레이저 조정 보조장치
520004	LA-78UDC	장치 포스트 고정용 외부 레이저 조정 보조장치
520101	AC-ALM-M	정렬 보조 장치
검사봉		
349945	AC-TR14/30	검사봉 14/30mm
349939	AC-TR20/40	검사봉 20/40mm

16 EU/EC 준수선언서

Leuze electronic

the sensor people

EU/EC 符合性声明

EU/EC 준수선언서

EU-/EG-VERKLARING VAN **OVEREENSTEMMING**

制造商:

제조업체:

Fabrikant:

Leuze electronic GmbH + Co. KG In der Braike 1, PO Box 1111 73277 Owen, Germany

产品介绍:

单光束和多光束安全传感器, 触发光电保护传感器, 安全部件符合 2006/42/EC 附件IV MLC 300, MLC 500 序列号见铭牌

制造商对于本一致性声明的签 发承担唯一的责任。

本声明的上述适用对象符合欧 盟的统一立法规定:

제품 설명:

단일빔및다종빔안전 광전감치기, EU 치침 2006/42/EU 부록 Ⅳ 에 따른 비접촉식으로 작동하는 보호장치 및 안전부품 MLC 300, MLC 500 제폼 시리즈 번호는 명판에 나와 있음

이 준수선언서는 제조업체의 단독 책임으로 발행되었습니다.

위에서 설명한 선언 대상은 조합의 해당 지역 조화 규정을 준수합니다:

Productbeschrijving:

Barrage immatériel uni- et Eén- en meerstraalsveiligheidsfotocel, contactioos werkende beveiligingsinrichting, veiligheidscomponent volgens 2006/42/EG, bijlage IV MLC 300, MLC 500 Serienummer zie typeplaatje

De verantwoordelijkheid voor het opstellen van deze comformiteitsverklaring ligt uitsluitend bij de fabrikant.

Het hierboven gespecificeerde voorwerp van de verklaring voldoet aan de toepassing van zijnde geharmoniseerde wettelijke voorschriften van de Europese Unie:

> Toegepaste EU-/EGrichtlijn(en): 2006/42/EG (*1) 2014/30/EU

应用的 EU/EC 指令:

적용된 EU/EC 지침:

2006/42/EC (*1) 2014/30/EU

2006/42/EU (*1) 2014/30/EU

应用统一标准 / 적용 조화 표준 / Toegepaste geharmoniseerde normen:

EN 61496-1:2013 (Type2/4) EN 62061:2005+A2:2015 (SILCL1/3)

EN 55011:2009+A1:2010

EN ISO 13849-1:2015 (Cat 2/4.PLc/e)

应用技术规范 / 응용 기술 사양 / Toegepaste technische specificaties:

IEC 61496-2:2013 (Type2/4)

EN 50178-1997

EN 61508-1/-2/-3/-4:2010 (SIL1/3)

Notified Body

(*1) TUEV-SUED Product Service GmbH, Zertifizierstelle, Ridlerstraße 65, D-80339 Munich, NB0123, Z10 17 08 68636 029 文档授权代理人为上途制范阁· 또系方式 : quality@leuze.de. 문서 공인 적임자는 언급된 제조업체입니다. 연락처: quality@leuze.de. Gevolmachligde voor de documentatie is de genoemde fabrikant, contact: quality@leuze.de.

2014/30/EU 颁布日期: 2014 年 3 月 29 日、欧盟官方公报编号 L 96/79-106; 2014/30/EU 발행: 2014.03.29, EU 공식 관보 No. L 96/79-106; 2014/30/EU 합행: 2014.03.29, EU 공식 관보 No. L 96/79-106; 2014/30/EU 합행: 2014.03.29, EU 공식 관보 No. L 96/79-106; 2014/30/EU 합행: 2014/30/EU 합청: 2014/30/EU 합청:

publicatieblad nr. L 96/79-106 23.01.2918

日期 /날짜 / Datum

Ulrich Balbach 🗸 总经理 /대표이사 / bedrijfsleider i.A. Fabien Zelenda

Quality Management Central Functions

Leuze electronic GmbH + Co. KG In der Braike 1 D-73277 Owen Telefon +49 (0) 7021 573-0 Telefax +49 (0) 7021 573-199 info@leuze.de www.leuze.com

LEO-ZQM-148-07-FO

Leuze electronic GmbH + Co. KG, Sitz Owen, Registergericht Stuttgart, HRA 230712 Persönlich haftende Gesellschafterin Leuze electronic Geschäftsführungs-GmbH, Sitz Owen, Registergericht Stuttgart, HRB 230550

Geschäftsführer: Ulrich Balbach USt.-IdNr. DE 145912521 | Zollnummer 2554232

Es gelten ausschließlich unsere aktuellen Verkaufs- und Lieferbedingungen Only our current Terms and Conditions of Sale and Delivery shall apply