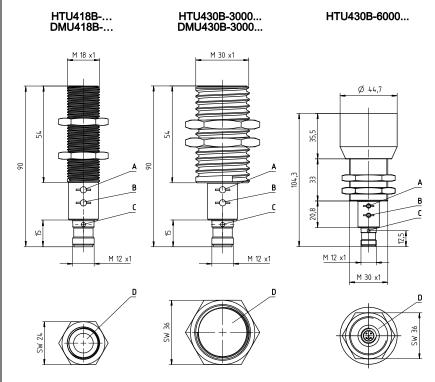

Capteurs à ultrasons ADVANCED avec IO-Link

25 ... 400 mm 100 ... 700 mm 150 ... 1000 mm 150 ... 1300 mm 300 ... 3000 mm 600 ... 6000 mm

- Fonction quasi indépendante de la surface, idéale pour la détection des liquides, des matériaux en vrac, des produits transparents, etc.
- Petite zone morte à une grande distance de détection
- Distance de détection et plage de mesure avec compensation thermique
- 1 sortie de commutation PNP (NPN) et 1 sortie analogique 0 ... 10V / 4 ... 20mA OU

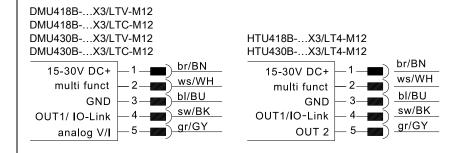
2 sorties de commutation PNP indépendantes

- NOUVEAU Les deux sorties sont programmables simplement par bouton
- NOUVEAU Modèle stable tout en métal
- NOUVEAU Données de processus et paramétrage via interface IO-Link
- NOUVEAU 5 modes de fonctionnement : détection, synchrone, multiplex, avec activation et unidirectionnel



Accessoires:

- (à commander séparément)
- Systèmes de fixationAdaptateur de fixation M18-M30 :
- BTX-D18M-D30 (art. n° 50125860)


 Câbles avec connecteur M12 (K-D ...)
- Adaptateur d'apprentissage PA1/XTSX-M12 (art. n° 50124709), seulement pour HTU Advanced
- Maître USB IO-Link 2.0 (art. n° 50121098)

Encombrement

- A Touche de commande 2
- B Touche de commande 1
- C Diodes témoin
- D Surface active du capteur

Raccordement électrique

Réglage d'usine broche 2 **multi funct** : entrée d'apprentissage

À propos de ce document

 $\overset{\circ}{\mathbb{I}}$

REMARQUE

Ce document vient compléter les fiches techniques spécifiques aux capteurs ADVANCED des séries DMU418B, DMU430B, HTU418B et HTU430B et donne des informations et détails relatifs à l'interface IO-Link.

Interface IO-Link

Tous les capteurs de la gamme ADVANCED disposent d'une interface IO-Link conforme à la spécification 1.1 (octobre 2011). L'interface permet de paramétrer les appareils de façon simple et rapide, et donc économique. De plus, le capteur transmet ses données de processus et donne des informations de diagnostic.

IODD spécifique à l'appareil

Dans la zone de téléchargement pour les capteurs à ultrasons du site internet www.leuze.com, vous trouverez le fichier IODD zippé avec toutes les données nécessaires à l'installation. Décompressez le fichier zip vers un répertoire quelconque de votre disque dur.

Dans le cas du HTU418B par exemple, ce répertoire doit contenir les fichiers suivants (il en est de même pour les HTU430B/DMU418B/DMU430B, désignations de fichier en conséquence) :

🕌 help	06.05.2014 13:15	Dateiordner	
button.png	04.10.2011 09:03	PNG-Datei	1 KB
DS_HTU418BX3LT4_de_50124879.pdf	05.02.2014 17:55	PDF-Datei	755 KB
DS_HTU418BX3LT4_en_50124879.pdf	05.02.2014 17:55	PDF-Datei	753 KB
HTU_3072-20140331-iodd1.1.zip	28.05.2014 09:13	zip Archive	1.614 KB
 iodd.js iodd.js	04.10.2011 09:03	JScript-Skriptdatei	3 KB
iodd_print.css	04.10.2011 09:03	Kaskadierendes Stylesheet-Dokument	3 KB
iodd_screen.css	29.05.2012 16:38	Kaskadierendes Stylesheet-Dokument	5 KB
Leuze_electronic-htu_3072-20140331-IODD1.1.xml	07.04.2014 12:01	XML-Dokument	49 KB
💋 leuze_electronic-htu_3072-20140331-IODD1.1-de.html	07.04.2014 12:01	HTML-Dokument	109 KB
💋 leuze_electronic-htu_3072-20140331-IODD1.1-en.html	07.04.2014 12:01	HTML-Dokument	108 KB
Leuze_electronic-htu_3072-20140331-IODD1.1Extensions.xml	07.04.2014 12:16	XML-Dokument	48 KB
Leuze_electronic-HTU_DMU_M18-icon.png	11.07.2013 15:53	PNG-Datei	4 KB
Leuze_electronic-HTU_DMU_M18-pic.png	11.07.2013 15:53	PNG-Datei	19 KB
Leuze_electronic-HTU_DMU_M30-icon.png	11.07.2013 15:53	PNG-Datei	5 KB
Leuze_electronic-HTU_DMU_M30-pic.png	11.07.2013 15:53	PNG-Datei	23 KB
leuze_electronic-logo.png	04.10.2011 09:03	PNG-Datei	6 KB
ReadMe.rtf	16.11.2011 12:16	Rich Text Format	86 KB

Documentation de paramétrage IO-Link

Pour obtenir une description complète des paramètres IO-Link, double-cliquez sur un des deux fichiers html suivants (...-de.html : en allemand ; ...-en.html : en anglais) :

electronic-htu_3072-20140331-IODD1.1-de.html	07.04.2014 12:01	HTML-Dokument	109 KB
leuze_electronic-htu_3072-20140331-IODD1.1-en.html	07.04.2014 12:01	HTML-Dokument	108 KB

Remarques

Respecter les directives d'utilisation conforme!

- Le produit n'est pas un capteur de sécurité et ne sert pas à la protection des personnes.
- Le produit ne doit être mis en service que par des personnes qualifiées.
- Employez toujours le produit dans le respect des directives d'utilisation conforme.

Capteurs à ultrasons ADVANCED avec IO-Link

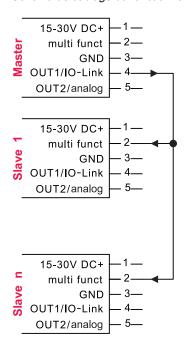
Fonctions paramétrables via l'interface IO-Link

Bloc fonctionnel	Fonction	Description
Mode de fonctionnement	Fonctionnement standard	Le capteur fonctionne comme détecteur avec élimination de l'arrière-plan.
	Fonctionnement multiplex	Il est possible de câbler en réseau un maximum de 10 capteurs, 1 maître et 9 esclaves. Pour ce faire, les capteurs doivent être reliés électriquement par un câble. Le maître génère une temporisation et tous les capteurs en réseau sont activés en différé.
	Fonctionnement synchrone	Il est possible de câbler en réseau un maximum de 10 capteurs, 1 maître et 9 esclaves. Pour ce faire, les capteurs doivent être reliés électriquement par un câble. Le maître génère une temporisation et tous les capteurs en réseau sont activés en même temps.
	Fonctionnement avec activation	Le capteur peut être activé par un signal externe.
	Fonctionnement en barrière unidirectionnelle	Le capteur peut être paramétré comme détecteur ou comme barrière unidirectionnelle. Le fonctionnement en barrière unidirectionnelle nécessite 2 capteurs reliés électriquement par câble.
Sorties de commutation OUT1 / OUT2	Point de commutation 1/2	Les points de commutation peuvent être entrés directement comme valeur de distance en mm.
	Sortie de commutation (OUT1 et OUT2)	Réglage comme sortie de commutation PNP ou NPN.
	Fonction de commutation	Réglage comme contact NF / contact NO.1)
	Comportement de commutation en cas d'erreur	Il est possible de régler le comportement de commutation de la sortie OUT1 du capteur pour les objets qui se trouvent en dehors de la distance de détection en fonctionnement.
	Comportement à 2 points	Si une sortie de commutation doit fonctionner avec 2 points de commutation, il est possible de choisir entre l'apprentissage de fenêtre à 2 points (réglage d'usine) et l'apprentissage à 2 points (p. ex. pour des commandes de pompe simples avec niveaux de remplissage minimal et maximal).
	Temps de délai	Le module de temporisation permet de paramétrer un délai de mise en service/ hors service à la sortie. Le temps de délai dépend de l'intervalle de mise à jour de l'appareil correspondant et peut être calculé selon la formule suivante : délai [ms] = intervalle de mise à jour [ms] * délai de mise en service/ hors service
	Apprentissage de la sortie de commutation OUT1	La sortie de commutation OUT1 peut être programmée via l'interface IO-Link.
	Décalage d'apprentissage	Il est possible d'entrer directement une valeur de distance en mm pour augmenter ou diminuer le décalage au point de commutation. Ce paramètre est actif uniquement pour l'apprentissage à 1 point.
	Teach Lock	Réglage du verrouillage des touches de commande.
Sortie analogique OUT2	Valeur de démarrage analogique	La distance pour le début de la plage de mesure peut être entrée directement en mm.
	Valeur finale analogique	La distance pour la valeur finale de la plage de mesure peut être entrée directement en mm.
	Propriété de la courbe caractéristique	Option de réglage de courbe caractéristique croissante ou décroissante.
	Plage de sortie	Pour les appareils avec sortie en tension : 0 10V (réglage d'usine) ; 0 5V ; 1 6V. Pour les appareils avec sortie en courant : 4 20mA (réglage d'usine) ; 0 20mA.
Température	Compensation thermique	Option de réglage interne (le capteur fonctionne avec le capteur de température intégré) ou externe (en cas de température d'application constante, il est possible d'entrer manuellement cette valeur. Le capteur compense alors les valeurs mesurées avec cette température).
	Unité	Possibilité de réglage en °C ou en °F.
	Température	Entrée de la température en °C ou en °F (si une compensation externe de la température est souhaitée).
Diagnostic	Comportement des LED	Option de réglage du comportement des LED en mode IO-Link
	Intensité du signal	Option de réglage pour l'affichage de l'intensité du signal par la LED jaune d'OUT1.

Contact NO : comportement de commutation normal (not inverted switching) ;
 contact NF : comportement de commutation inversé (inverted switching).

Modes de fonctionnement

Fonctionnement standard


En mode standard (=livraison), le capteur fonctionne en détecteur avec élimination de l'arrière-plan conformément à la description donnée dans la fiche technique spécifique au produit. Le capteur peut être programmé à l'aide des touches de commande ou via la broche 2 **multifunct** qui, dans ce mode, est paramétrée comme entrée d'apprentissage. Le paramétrage des sorties peut aussi être réalisé via IO-Link.

Fonctionnement multiplex

Dans ce mode, l'interférence mutuelle entre capteurs voisins peut être évitée en toute sécurité. Pour cela, les capteurs de même type doivent être câblés entre eux en un réseau conformément au schéma ci-contre.

Il doit toujours y avoir 1 maître et, selon la taille de réseau souhaitée, 1 à 9 esclaves. Les appareils fonctionnent en mode multiplex avec des **impulsions séquentielles** et sont désactivés en dehors de la phase active. Le temps de réaction de chacun des capteurs dans le réseau est donc prolongé par rapport à celui du capteur individuel en fonction du nombre de capteurs en réseau.

Schéma de câblage du fonctionnement multiplex

L'adressage des capteurs est réalisé via le paramètre IO-Link Multiplex Mode Address.

L'adresse est définie comme suit :

Esclave: nombre 1 ... 9; adresse de l'esclave n = 0 ... 8

Maître: adresse du maître > adresse de l'esclave, donc 1 ... 9

REMARQUE

Veuillez vous assurer que le câblage est réalisé conformément au schéma de raccordement. Le capteur avec l'adresse la plus élevée du réseau est toujours le maître, il est raccordé à la broche 4. Tous les esclaves sont raccordés en parallèle à la broche 2.

Avec ce câblage, le maître ne dispose en général plus de la sortie de commutation 1!

Dans le cas du **maître HTU418B/HTU430B**, la sortie de commutation 2 fonctionne selon le mode standard.

Les LED sur l'appareil indiquent l'état de la sortie 2.

Dans le cas du **maître DMU418B/DMU430B**, la sortie analogique fonctionne selon le mode standard

La LED verte indique si un objet se trouve au sein de la distance de détection en fonctionnement. La LED jaune est sans fonction.

Temps de réaction du fonctionnement multiplex

Dist. de détection en fonction-	Durée du cycle t _{cycle} [ms]	Temps de réaction max. [ms] 1)	Temps de réaction min. [ms] 1)
25 400 mm	12ms	/7*n + 2**	(2*=+2)**
100 700mm	13ms	(7*n+2)*t _{cycle}	(3*n+2)*t _{cycle}
150 1000mm	18ms		
150 1300mm	18ms	/2*n + 2**	/4*=±2*+
300 3000 mm	38ms	(3*n+2)*t _{cycle}	(1*n+2)*t _{cycle}
600 6000mm	76ms		

¹⁾ n = nombre de capteurs (maître+nombre d'esclaves)

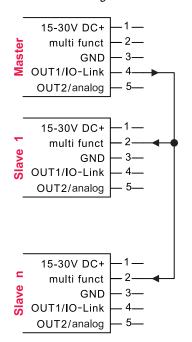
I REMARQUE

Le **temps de réaction max.** résulte de l'entrée subite d'un objet dans la zone de la distance de détection de fonctionnement.

Si un objet se trouve d'abord en dehors de la distance de détection de fonctionnement et qu'il est déplacé dans la zone de la distance de détection de fonctionnement, on parle de **temps de réaction min.**

Exemple:

Pour un réseau comprenant 3 capteurs (1 maître, 2 esclaves) et de distance de détection de fonctionnement 150 ... 1300 mm, le temps de réaction total est compris entre (1*3+2)*18 ms = 90 ms et (3*3+2)*18 ms = 198 ms.


Capteurs à ultrasons ADVANCED avec IO-Link

Fonctionnement synchrone

Dans ce mode, l'interférence mutuelle entre capteurs voisins peut être évitée. Pour cela, les capteurs de même type doivent être câblés entre eux en un réseau conformément au schéma ci-contre.

Il doit toujours y avoir 1 maître et, selon la taille de réseau souhaitée, 1 à 9 esclaves. Les appareils fonctionnent en mode synchrone avec des impulsions simultanées.

Schéma de câblage du fonctionnement synchrone

Contrairement au fonctionnement multiplex, le mode synchrone ne requiert par d'adressage des capteurs.

REMARQUE

Veuillez vous assurer que le câblage est réalisé conformément au schéma de raccordement. Le capteur raccordé à la broche 4 est toujours le maître, il génère le signal de synchronisation pour tous les autres capteurs esclaves du réseau. Ces derniers sont raccordés en parallèle à

Avec ce câblage, le maître ne dispose en général plus de la sortie de commutation 1!

Dans le cas du maître HTU418B/HTU430B. la sortie de commutation 2 fonctionne selon le mode standard.

Les LED sur l'appareil indiquent l'état de la sortie 2.

Dans le cas du maître DMU418B/DMU430B, la sortie analogique fonctionne selon le mode standard.

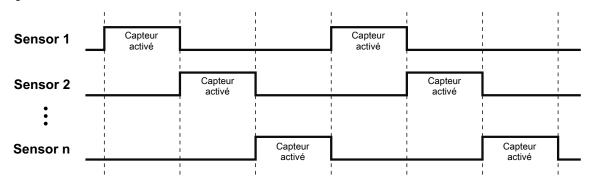
La LED verte indique si un objet se trouve au sein de la distance de détection en fonctionnement.

La LED jaune est sans fonction

Temps de réaction du fonctionnement synchrone

Dist. de détection en fonction- nement	Temps de réaction typique
25 400mm	24 ms
100 700mm	26 ms
150 1000mm	18 ms
150 1300mm	18 ms
300 3000mm	38 ms
600 6000 mm	76 ms

Fonctionnement avec activation


Dans ce mode de fonctionnement, l'émetteur d'un capteur peut être activé par un signal d'activation externe (**U**_N sur la broche 2 **multi funct**). L'émetteur est inactif quand le signal d'activation est passif (**0V** sur la broche 2 **multi funct**).

Il est aussi possible d'utiliser ce mode pour éviter les interférences mutuelles entre capteurs voisins. Le nombre de capteurs raccordés peut alors être quelconque et les capteurs se comportent comme en mode standard.

Schéma de câblage du fonctionnement avec activation

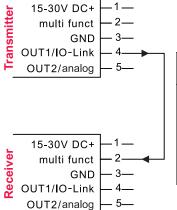
Signaux d'activation en fonctionnement avec activation

REMARQUE

Le capteur fonctionne plus vite avec le temps d'activation min., mais également avec une profondeur d'analyse plus faible. Si une sécurité de fonctionnement plus importante est nécessaire, nous recommandons de doubler le temps d'activation.

Temps d'activation min. en fonctionnement avec activation

Dist. de détection en fonc- tionnement	Longueur minimale du signal d'activation
25 400 mm	38ms
100 700mm	41 ms
150 1000mm	38 ms
150 1300mm	38ms
300 3000mm	78ms
600 6000mm	154ms


Capteurs à ultrasons ADVANCED avec IO-Link

Fonctionnement unidirectionnel

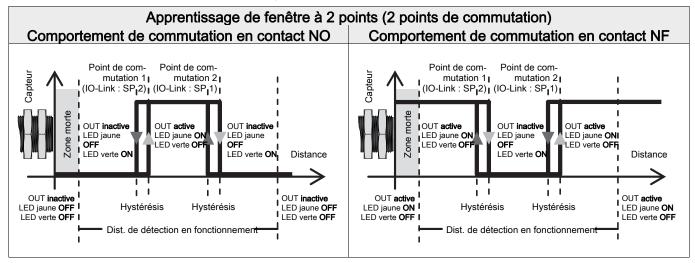
Dans ce mode, il est possible de réaliser une barrière unidirectionnelle à ultrasons à l'aide de 2 capteurs identiques. Avantages :

- Portée (distance de détection) double par rapport au mode de détection.
- Absence de zone morte.

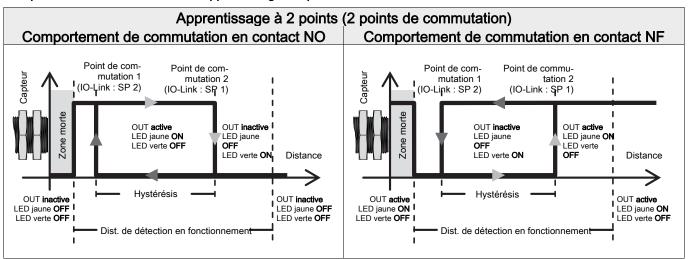
Schéma de câblage du fonctionnement unidirectionnel

I REMARQUE

Veuillez vous assurer que le câblage est réalisé conformément au schéma de raccordement. Chaque capteur peut être émetteur ou récepteur. La fonction réellement exécutée est définie par le câblage.

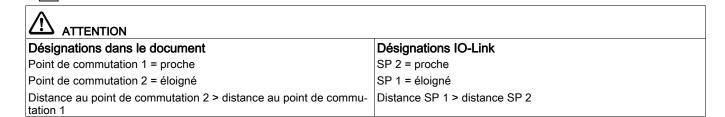

Sur l'émetteur, la LED verte est allumée en permanence et indique ainsi l'état prêt au fonctionnement de l'appareil.

Le récepteur se comporte comme en mode standard, à ceci près que les touches de commande sont sans fonction.


Sorties de commutation : comportement à 2 points

Si une sortie de commutation doit fonctionner avec 2 points de commutation, il est possible de choisir entre l'apprentissage de fenêtre à 2 points (réglage d'usine) et l'apprentissage à 2 points (p. ex. pour des commandes de pompe simples avec niveaux de remplissage minimal et maximal). Vous trouverez ci-après les diagrammes du comportement de commutation.

Comportement de commutation en apprentissage de fenêtre à 2 points


Comportement de commutation en apprentissage à 2 points

Remarque!

 \bigcirc

Le comportement de commutation dans la zone morte n'est pas défini.

Valeurs à respecter pour les sorties de commutation

Domaine de détection	Hystérésis de com- mutation	Distance minimale entre les points de commutation (sortie de commutation)
25 400 mm	5mm	50 mm
150 1000mm	10mm	100mm
150 1300mm	10mm	100mm
300 3000mm	25mm	250mm
600 6000mm	50mm	500 mm

Capteurs à ultrasons ADVANCED avec IO-Link

Sortie analogique - plages de sortie et distances minimales

Diago do cortio	Valeurs d'erreur	
Plage de sortie	Min.	Max.
0 20mA	0mA	20,5 21,1mA
4 20mA ¹⁾	3,5 3,8mA	20,5 21,1mA
0 10V ¹⁾	0 V	10,5 11V
0 5V	0 V	5,5 6V
1 6V	0 0.5V	6.5 7V

¹⁾ Réglage d'usine

Valeurs à respecter pour les sorties analogiques

Domaine de détection	Distance minimale entre le début et la fin de la plage de mesure
25 400mm	50mm
150 1300mm	100mm
300 3000mm	250mm
600 6000mm	500 mm

Diagnostic - intensité du signal

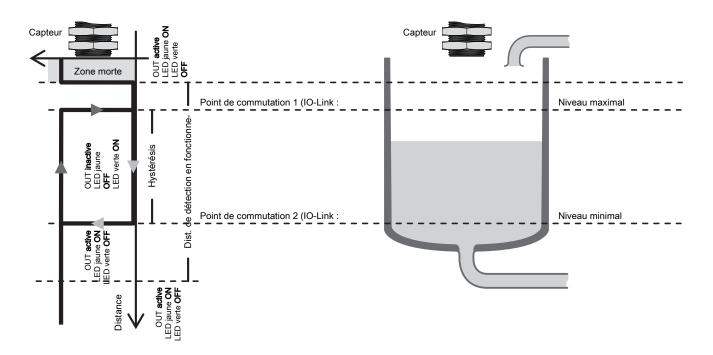
Option de réglage pour l'affichage de l'intensité du signal par la LED jaune d'OUT1

Si la fonction est activée, l'intensité actuelle du signal par rapport au signal de la cible normative carrée est sortie sous forme de valeur numérique via l'interface IO-Link. En outre, la LED jaune d'OUT1 clignote à 2 fréquences de clignotement différentes selon l'intensité du signal.

Fréquence de clignotement de la LED jaune d'OUT1

Intensité du signal	Fréquence de clignote- ment de la LED jaune
< 20 %	Constamment éteinte
20 50%	Clignote lentement
50 80%	Clignote rapidement
> 80 %	Constamment allumée

Cible normative


Distance de détection	Taille de la cible normative
Jusqu'à 400mm	Plaque 20x20mm
Jusqu'à 1300mm	Plaque 100x100mm
Jusqu'à 3000mm	Plaque 100x100mm
Jusqu'à 6000mm	Plague 100x100mm

Remarques concernant l'application sur commande du niveau de remplissage de conteneurs

L'apprentissage à 2 points peut être utilisé pour une commande de pompe min/max simple.

Pour cela, le capteur est configuré comme contact NF et les niveaux minimal et maximal dans les conteneurs affectés comme suit :

Si le conteneur est vide, par exemple après un nettoyage ou pour le premier remplissage, le capteur doit tout d'abord envoyer un signal de commande actif pour une pompe qui remplit le conteneur jusqu'au niveau maximal.

Au niveau de remplissage maximal, le signal de commande bascule à l'état passif et la pompe s'arrête. Le conteneur se vide jusqu'au niveau minimal. Le capteur émet alors à nouveau un signal de commande actif pour la pompe qui remplit le conteneur jusqu'au niveau maximal.